
Julienne: A Framework for Parallel Graph Algorithms
using Work-efficient Bucketing

Laxman Dhulipala

Carnegie Mellon University

ldhulipa@cs.cmu.edu

Guy Blelloch

Carnegie Mellon University

guyb@cs.cmu.edu

Julian Shun

UC Berkeley

jshun@eecs.berkeley.edu

ABSTRACT

Existing graph-processing frameworks let users develop efficient im-

plementations for many graph problems, but none of them support

efficiently bucketing vertices, which is needed for bucketing-based
graph algorithms such as ∆-stepping and approximate set-cover.

Motivated by the lack of simple, scalable, and efficient implemen-

tations of bucketing-based algorithms, we develop the Julienne

framework, which extends a recent shared-memory graph process-

ing framework called Ligra with an interface for maintaining a

collection of buckets under vertex insertions and bucket deletions.

We provide a theoretically efficient parallel implementation of

our bucketing interface and study several bucketing-based algo-

rithms that make use of it (either bucketing by remaining degree

or by distance) to improve performance: the peeling algorithm for

k-core (coreness), ∆-stepping, weighted breadth-first search, and
approximate set cover. The implementations are all simple and con-

cise (under 100 lines of code). Using our interface, we develop the

first work-efficient parallel algorithm for k-core in the literature

with nontrivial parallelism.

We experimentally show that our bucketing implementation

scales well and achieves high throughput on both synthetic and

real-worldworkloads. Furthermore, the bucketing-based algorithms

written in Julienne achieve up to 43x speedup on 72 cores with

hyper-threading over well-tuned sequential baselines, significantly

outperform existing work-inefficient implementations in Ligra, and

either outperform or are competitive with existing special-purpose

parallel codes for the same problem. We experimentally study our

implementations on the largest publicly available graphs and show

that they scale well in practice, processing real-world graphs with

billions of edges in seconds, and hundreds of billions of edges in a

few minutes. As far as we know, this is the first time that graphs

at this scale have been analyzed in the main memory of a single

multicore machine.

1 INTRODUCTION

Both the size and availability of real-world graphs has increased

dramatically over the past decade. Due to the need to process this

data quickly, many frameworks for processing massive graphs have

been developed for both distributed-memory and shared-memory

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’17, , July 24-26, 2017, Washington DC, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4593-4/17/07. . . $15.00

https://doi.org/10.1145/3087556.3087580

parallel machines such as Pregel [36], GraphLab [32, 33], Power-

Graph [22], and Ligra [51]. Implementing algorithms using frame-

works instead of as one-off programs enables users to easily take

advantage of optimizations already implemented by the framework,

such as direction-optimization, compression and parallelization

over both the vertices and edges of a set of vertices [5, 55].

The performance of algorithms in these frameworks is often

determined by the total amount of work performed. Unfortunately,

the simplest algorithms to implement in existing frameworks are

often work-inefficient, i.e., they perform asymptotically more work

than the most efficient sequential algorithm. While work-inefficient

algorithms can exhibit excellent self-relative speedup, their absolute

performance can be an order of magnitude worse than the running

time of the baseline sequential algorithm, even on a very large

number of cores [38].

Many commonly implemented graph algorithms in existing

frameworks are frontier-based algorithms. Frontier-based algorithms

proceed in rounds, where each round performs some computation

on vertices in the current frontier, and frontiers can change from

round to round. For example, in breadth-first search (BFS), the fron-

tier on round i is the set of vertices at distance i from the source

of the search. In label propagation implementations of graph con-

nectivity [22, 51], the frontier on each round consists of vertices

whose labels changed in the previous round.

However, several fundamental graph algorithms cannot be ex-

pressed as frontier-based algorithms. These algorithms, which we

call bucketing-based algorithms, maintain vertices in a set of ordered

buckets. In each round, the algorithm extracts the vertices contained

in the lowest (or highest) bucket and performs some computation

on these vertices. It can then update the buckets containing either

the extracted vertices or their neighbors. Frontier-based algorithms

are a special case of bucketing-based algorithms, specifically they

are bucketing-based algorithms that only use one bucket.

As an example, consider the weighted breadth-first search (wBFS)

algorithm, which solves the single-source shortest path problem

(SSSP) with nonnegative, integral edge weights in parallel [18]. Like

BFS, wBFS processes vertices level by level, where level i contains
all vertices at distance exactly i from src, the source vertex. The i’th
round relaxes the neighbors of vertices in level i and updates any

distances that change. Unlike a BFS, where the unvisited neighbors

of the current level are in the next level, the neighbors of a level in

wBFS can be spread across multiple levels. Because of this, wBFS

maintains the levels in an ordered set of buckets. On round i , if a
vertex v can decrease the distance to a neighbor u it places u in

bucket i+d (v,u). Finding the vertices in a given level can then easily
be done using the bucket structure. We can show that the work of

this algorithm isO (rsrc + |E |) and the depth isO (rsrc log |V |) where
rsrc is the eccentricity from src (see Section 2). However, without

https://doi.org/10.1145/3087556.3087580

bucketing, the algorithm has to scan all vertices in each round to

compute the current level, which makes it perform O (rsrc |V | + |E |)
work and the same depth, which is not work-efficient.

In this paper, we study four bucketing-based graph algorithms—

k-core1, ∆-stepping, weighted breadth-first search (wBFS), and ap-

proximate set-cover. To provide simple and theoretically-efficient

implementations of these algorithms, we design and implement a

work-efficient interface for bucketing in the Ligra shared-memory

graph processing framework [51]. Our extended framework, which

we call Julienne, enables us to write short (under 100 lines of code)

implementations of the algorithms that are efficient and achieve

good parallel speedup (up to 43x on 72 cores with two-way hyper-

threading). Furthermore we are able to process the largest publicly-

available real-world graph containing over 225 billion edges in the

memory of a single multicore machine [39]. This graph must be

compressed in order to be processed even on a machine with 1TB of

main memory. Because Julienne supports the compression features

of Ligra+, we were able to run our codes on this graph without extra

modifications [55]. All of our implementations either outperform or

are competitive with hand-optimized codes for the same problem.

We summarize the cost bounds for the algorithms developed in this

paper in Table 1.

Using our framework, we obtain the first work-efficient algo-

rithm for k-core with nontrivial parallelism. The sequential requires

performs O (n +m) work [4], however the best prior parallel algo-

rithms [16, 20, 41, 44, 51] require at leastO (kmaxn+m) work where
kmax is the largest core number in the graph—this is because these

algorithms scan all remaining vertices when computing vertices

in a particular core. By using bucketing, our algorithm only scans

the edges of vertices with minimum degree, which makes it work-

efficient. On a graph with 225B edges using 72 cores with two-way

hyper-threading, our work-efficient implementation takes under 4

minutes to complete, whereas the work-inefficient implementation

does not finish even after 3 hours.

Contributions. The main contributions of this paper are as fol-

lows.

(1) A simple interface for dynamically maintaining sets of

identifiers in buckets.

(2) A theoretically efficient parallel algorithm that implements

our bucketing interface, and four applications implemented

using the interface.

(3) The first work-efficient implementation of k-core with non-
trivial parallelism.

(4) Experimental results on the largest publicly available graphs,

showing that our codes achieve high performance while

remaining simple. To the best of our knowledge, this work

is the first time graphs at the scale of billions of vertices

and hundreds of billions of edges have been analyzed in

minutes in the memory of a single shared-memory server.

1
The definitions ofk -core and coreness (see Secton 4.1) have been used interchangeably
in the literature, however they are not the same problem, as pointed out in [46]. In

this paper we use k -core to refer to the coreness problem. Note that computing a

particular k -core from the coreness numbers requires finding the largest induced

subgraph among vertices with coreness at least k , which can be done efficiently in

parallel.

Algorithm Work Depth Parameters

k-core O (|E | + |V |) O (ρ log |V |) ρ : peeling complexity,

see Section 4.1.

wBFS O (rsrc + |E |) O (rsrc log |V |) rsrc : eccentricity from

the source vertex src,
see Section 2.

∆-stepping O (w∆) O (d∆ log |V |) w∆ , d∆: work and

number of rounds

of the original ∆-
stepping algorithm.

Approximate

Set Cover

O (M) O (log3 M) M : sum of the sizes of

the sets.

Table 1: Cost bounds for the algorithms developed in this paper.

The work bounds are in expectation and the depth bounds are with

high probability.

2 PRELIMINARIES

We denote a directed unweighted graph by G (V ,E) where V is the

set of vertices and E is the set of (directed) edges in the graph. A

weighted graph is denoted by G = (V ,E,w), wherew is a function

which maps an edge to a real value (its weight). The number of

vertices in a graph is n = |V |, and the number of edges ism = |E |.
Vertices are assumed to be indexed from 0 to n − 1. For undirected
graphs we use N (v) to denote the neighbors of vertex v and deg(v)
to denote its degree. We use rs to denote the eccentricity, or longest
shortest path distance between a vertex s and any vertexv reachable

from s . We assume that there are no self-edges or duplicate edges

in the graph.

We analyze algorithms in the work-depth model, where the

work is the number of operations used by the algorithm and the

depth is the length of the longest sequential dependence in the

computation [25]. We allow for concurrent reads and writes in

the model. A compare-and-swap (CAS) is an atomic instruction

that takes three arguments—a memory location (loc), an old value

(oldV) and a new value (newV). If the value currently stored at

loc is equal to oldV it atomically updates newV at loc and returns

true. Otherwise, loc is not modified and the CAS returns false. A
writeMin is an atomic instruction that takes two arguments—a

memory location (loc) and an old value (val), and atomically updates

the value stored at loc to be the minimum of the stored value and val,
returning true if the stored value was atomically updated and false
otherwise. We assume that both CAS and writeMin takeO (1) work
and note that both primitives are very efficient in practice [52].

The following parallel procedures are used throughout the paper.

Scan takes as input an array X of length n, an associative binary

operator ⊕, and an identity element⊥ such that⊥⊕x = x for any x ,
and returns the array (⊥,⊥⊕X [0],⊥⊕X [0]⊕X [1], . . . ,⊥⊕n−2i=0 X [i])

as well as the overall sum, ⊥ ⊕n−1i=0 X [i]. Scan can be done in O (n)
work and O (logn) depth (assuming ⊕ takes O (1) work) [25]. Re-
duce takes an array A and a binary associative function f and

returns the “sum” of elements with respect to f . Filter takes an

array A and a function f returning a boolean and returns a new

array containing e ∈ A for which f (e) is true, in the same order as

in A. Both reduce and filter can be done in O (n) work and O (logn)
depth (assuming f takes O (1) work). A semisort takes an input

array of elements, where each element has an associated key and

reorders the elements so that elements with equal keys are contigu-

ous, but elements with different keys are not necessarily ordered.

The purpose is to collect equal keys together, rather than sort them.

A semisort can be done inO (n) expected work andO (c logn) depth
with probability 1−1/nc (i.e.,with high probability (w.h.p.)) [23].

2.1 Ligra Framework

In this section, we review the Ligra framework for shared-memory

graph processing [51]. Ligra provides data structures for represent-

ing a graphG = (V ,E), and vertexSubsets (subsets of the vertices).
It provides the functions vertexMap, used for mapping over ver-

tices, and edgeMap, used for mapping over edges. vertexMap

takes as input a vertexSubsetU and a function F returning a boolean.

It applies F to all vertices inU and returns a vertexSubset containing

U ′ ⊆ U where. u ∈ U ′ if and only if F (u) = true. F can side-effect

data structures associated with the vertices. edgeMap takes as

input a graph G (V ,E), a vertexSubsetU , and two functions F and

C which both return a boolean. edgeMap applies F to (u,v) ∈ E
s.t. u ∈ U and C (v) = true (call this subset of edges Ea), and re-

turns a vertexSubsetU ′ where u ∈ V if and only if (u,v) ∈ Ea and

F (u,v) = true. As in vertexMap, F can side-effect data structures

associated with the vertices.

Additional Primitives.We add several primitives to Julienne in

addition to those provided by Ligra that simplify the expression of

our algorithms. We include an option type maybe(T). We extend

the vertexSubset data structure to allow vertices in the subset to

have associated values. We denote a vertexSubset with associated

value type T as vertexSubsetT. A vertexSubsetT can be supplied

to any functions that accept a vertexSubset. We also add a function

call operator to vertexSubset which returns a (vertex, data) pair.

We provide a new primitive, edgeMapReduce, which takes a

graph G, vertexSubset S , a map functionM : vtx→ T, an associa-

tive and commutative reduce function R : T×T→ T, and an update
function U : vtx × T → maybe(O), and returns a vertexSubsetO .

edgeMapReduce performs the following logic common to many

graph algorithms: M is applied to each neighbor of S in parallel.

The mapped values are reduced to a single value per neighbor using

R (in an arbitrary ordering since R is associative and commutative).

Finally, U is called on the neighboring vertex v and the reduced

value for v . The output is a vertexSubsetO, where all vertices for
whichU returned None are filtered out. In our applications, we use

edgeMapSum, which specializesM to 1 and R to sum.

We provide a primitive, edgeMapFilter, which takes a graph

G , vertexSubsetU , and a predicate P , and outputs a vertexSubsetint,
where each vertex u ∈ U has an associated count for the num-

ber of neighbors that satisfied P . edgeMapFilter also takes an

optional parameter Pack which lets applications remove edges to

all neighbors that do not satisfy P by mutating G.

3 BUCKETING

The bucket structure maintains a dynamic mapping from identifiers
to bucket_ids. The purpose of the structure is to provide efficient ac-

cess to the inverse map—given a bucket_id,b, retrieve all identifiers
currently mapped to b.

3.1 Interface

The bucket structure uses several types that we now define. An

identifier is a unique integer representing a bucketed object. An

identifier is mapped to a bucket_id, a unique integer for each

bucket. The order that buckets are traversed in is given by the

bucket_order type. bucket_dest is an opaque type representing

where an identifier is moving inside of the structure. Once the

structure is created, an object of type buckets is returned to the

user.

The structure is created by calling makeBuckets and providing

n, the number of identifiers, D, a function which maps identifiers
to bucket_ids andO , a bucket_order. Initially, some identifiers may

not be mapped to a bucket, so we add nullbkt, a special bucket_id
which lets D indicate this. Buckets in the structure are accessed

monotonically in the order specified by O . While the interface can

easily be modified to support random-access to buckets, we do not

know of any algorithms that require it. Although we currently only

use identifiers to represent vertices, our interface is not specific to

storing and retrieving vertices, and may have applications other

than graph algorithms. Even in the context of graphs, we envision

algorithms where identifiers represent other objects such as edges,

triangles, or graph motifs.

After the structure is created, nextBucket can be used to access

the next non-empty bucket in non-decreasing (resp. non-increasing)

order while updateBuckets updates the bucket_ids for multiple

identifiers. To iterate through the buckets, the structure internally

maintains a variable cur which stores the value of the current

bucket being processed. Note that the cur bucket can potentially be

returned more than once by nextBucket if identifiers are inserted
back into cur. The getBucket primitive is how users indicate that

an identifier is moving buckets. We added this primitive to allow

implementations to perform certain optimizations without extra

involvement from the user. We describe these optimizations and

present the rationale for the getBucket primitive in Section 3.3.

The full list of functions is therefore:

• makeBuckets(n : int,
D : identifier 7→ bucket_id
O : bucket_order : buckets

Creates a bucket structure containing n identifiers in the

range [0,n) where the bucket_id for identifier i is D (i).
The structure iterates over the buckets in orderO which is

either increasing or decreasing.

• nextBucket() : (bucket_id, identifiers)
Returns the bucket_id of the next non-empty bucket and

the set of identifiers contained in it. When no identifiers
are left in the bucket structure, the pair (nullbkt, {}) is
returned.

• getBucket(prev : bucket_id,
next : bucket_id) : bucket_dest

Computes a bucket_dest for an identifier moving from

bucket_id prev to next. Returns nullbkt if the identifier
does not need to be updated, or if next< cur.

• updateBuckets(F : int 7→ (identifier, bucket_dest),
k : int)

Updatesk identifiers in the bucket structure. The i’th identifier
and its bucket_dest are given by F (i).

3.2 Algorithms

We first discuss a sequential algorithm implementing the interface

and analyze its cost. The sequential algorithm shares the same

underlying ideas as the parallel algorithm, so we go through it

in some detail. Both algorithms in this section represent buckets

exactly and so the bucket_dest and bucket_id types are identical

(in particular getBucket just returns next).

Sequential Bucketing.We represent each bucket using a dynamic

array, and the set of buckets using a dynamic array B (Bi is the dy-
namic array for bucket i). For simplicity, we describe the algorithm

in the case when buckets are processed in increasing order. The

structure is initialized by computing the initial number of buckets

by iterating overD and allocating a dynamic array of this size. Next,

we iterate over the identifiers, inserting identifier i into bucket BD (i)
if D (i) is not nullbkt, resizing if necessary. Updates are handled
lazily. When updateBuckets is called, we leave the identifier in

Bprev and just insert it into Bnext, opening new buckets if next is

outside the current range of buckets. As discussed in Section 3.1,

buckets are extracted by maintaining a variable cur which is ini-

tially the first bucket. When nextBucket is called, we check to

see whether Bcur is empty. If it is, we increment cur and repeat.

Otherwise, we compact Bcur, only keeping identifiers i ∈ Bcur
where D (i) = cur, and return the resulting set of identifiers if it is

nonempty, and repeat if it is empty.

We now discuss the total work done by the sequential algorithm.

The work done by initialization is O (n +T) work where T is the

largest bucket used by the structure, as T is an upper bound on

the number of buckets when the structure was initialized. Now,

suppose the structure receives K calls to updateBuckets after

being initialized, each of which updates a set Si of identifiers where
0 ≤ i < K . By amortizing the cost of creating new buckets againstT ,
and noticing that each update that didn’t create a new bucket can be

done inO (1) work, the total work across all calls to updateBuckets
is O (T +

∑K
i=0 |Si |).

We now argue that the total work done over all calls tonextBucket

is also O (T +
∑K
i=0 |Si |). If cur is empty, we increment it and re-

peat, which can happen at mostT times. Otherwise, there are some

number of identifiers i ∈ Acur. By charging each identifier, which

can either be dead (D (i) , cur) or live (D (i) == cur), to the opera-

tion that inserted it into the current bucket, we obtain the bound.

Summing the work for each primitive gives the following lemma.

Lemma 3.1. The total work performed by sequential bucketing
when there are n identifiers, T total buckets and K calls to update-
Buckets each of which updates a set Si of identifiers is O (n +T +∑K
i=0 |Si |).

As discussed in Section 3.1 a given bucket can be returned mul-

tiple times by nextBucket, and the same identifiers can be rein-

serted into the structure multiple times using updateBuckets, so

the total work of the bucket structure can potentially be much

larger than O (n). Some of our applications have the property that∑K
i=0 |Si | = O (m), while also boundingT , the total number of buck-

ets, as O (n). For these applications, the cost of using the bucket-

structure is O (m + n).

Parallel Bucketing. In this section we describe a work-efficient

parallel algorithm for our interface. The algorithm performs ini-

tialization, K calls to updateBuckets, and L calls to nextBucket

in the same work as the sequential algorithm and O ((K + L) logn)
depth w.h.p. As before, we maintain a dynamic array B of buck-

ets. We initialize the structure by calculating the number of initial

buckets in parallel using reduce in O (n) work and O (logn) depth
and allocating a dynamic array containing the initial number of

buckets. Inserting identifiers into B can be done by then calling up-

dateBuckets(D, n). nextBucket performs a filter to keep i ∈ Acur

with D (i) == cur in parallel which can be done in O (k) work and

O (logk) depth on a bucket containing k identifiers.
We now describe our parallel implementation of updateBuck-

ets, which on a set of k updates inserts the identifiers into their

new buckets in O (k) expected work and O (logn) depth w.h.p. The

key to achieving these bounds is a work-efficient parallel semisort
(as described in Section 2).

Our algorithm first creates an array of (identifier, bucket_id)
pairs and then calls the semisort routine, using bucket_ids as keys.
The output of the semisort is an array of (identifier, bucket_id) pairs
where all pairs with the same bucket_id are contiguous. Next, we

map an indicator function over the semisorted pairs which outputs

1 if the index is the start of a distinct bucket_id and 0 otherwise.

We then pack this mapped array to produce an array of indices

corresponding to the start of each distinct bucket. Both steps can

be done in O (k) work and O (logk) depth. Using the offsets, we

calculate the number of identifiers moving to each bucket and, in

parallel, resize all buckets that have identifiers moving to them.

Because all identifiers moving to a particular bucket are stored

contiguously in the output of the semisort, we can simply copy

them to the newly resized bucket in parallel.

Semisorting the pairs requiresO (k) expected work andO (logn)
depth w.h.p. As in the sequential algorithm, the expected work

done by K calls to updateBuckets where the i’th call updates a

set Si of identifiers isO (
∑K
i=0 |Si |). Finally, because each substep of

the routine requires at most O (logn) depth, each call to update-

Buckets runs inO (logn) depth w.h.p. As nextBucket also runs in

O (logn) depth, we have that a total of K calls to updateBuckets,

and L calls to nextBucket runs in O ((K + L) logn) depth w.h.p.

This gives the following lemma.

Lemma 3.2. When there are n identifiers, T total buckets, K calls
to updateBuckets, each of which updates a set Si of identifiers and
L calls to nextBucket parallel bucketing takesO (n +T +

∑K
i=0 |Si |)

expected work and O ((K + L) logn) depth w.h.p.

3.3 Optimizations

In practice, while many of our applications initialize the bucket

structure with a large number of buckets (even O (n) buckets), they
only process a small fraction of them. In other applications like

wBFS, the number of buckets needed by the algorithm is initially

unknown. However, as the eccentricity of Web graphs and social

networks tends to be small, few buckets are usually needed [58].

To make our code more efficient in situations where few buckets

are being accessed, or identifiers are moved many times, we let

the user specify a parameter nB . We then only represent a range

of nB buckets (initially the first nB buckets), and store identifiers

in the remaining buckets in an ‘overflow’ bucket. We only move

an identifier that is logically moving from its current bucket to a

new bucket if its new bucket is in the current range, or if it is not

yet in any bucket. This optimization is enabled by the getBucket

primitive, which has the user supply both the current bucket_id
and next bucket_id for the identifier. Once the current range is

finished, we remove identifiers in the overflow bucket and insert

them back into the structure, where the nB buckets are now used

to represent the next range of nB buckets in the algorithm.

The main benefit of this optimization is a potential reduction in

the number of identifiers updateBuckets must move as a small

value ofnB can causemost of themovement to occur in the overflow

bucket. We tried supporting this implementation strategy without

requiring the getBucket primitive by having the bucket structure

maintain an extra internal mapping from identifiers to bucket_ids.
However, we found that the cost of maintaining this array of size

O (n) was significant (about 30% more expensive) in our applica-

tions, due to the cost of an extra random-access read and write per

identifier in updateBuckets.

Additionally, while implementingupdateBuckets using a semisort

is theoretically efficient, we found that it was slow in practice due

to the extra data movement that occurs when shuffling the updates.

Instead, our implementation of updateBuckets directly writes

identifiers to their destination buckets and avoids the shuffle phase.

We first break the array of updates into n/M blocks of lengthM (we

setM to 2048 in our implementation). Next, we count the number

of identifiers going to each bucket in each block and store these

per-block histograms in an array. We then scan the array with a

stride of nB to compute the total number of identifiers moving to

each bucket and resize the buckets. Finally, we iterate over each

block again, compute a unique offset into the target bucket using

the scanned value, and insert the identifier into the target bucket

at this location. The total depth of this implementation of update-

Buckets isO (M+ logn) as each block is processed sequentially and
the scan takes O (logn). For small values of nB (our default value

is 128), we found that this implementation is much faster than a

semisort.

3.4 Performance

In this section we study the performance of our parallel implemen-

tation of bucketing on a synthetic workload designed to simulate

how our applications use the bucket structure.

Experimental Setup. We run all of our experiments on a 72-core

Dell PowerEdge R930 (with two-way hyper-threading) with 4 ×

2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a 4800MHz

bus and 45MB L3 cache) and 1TB of main memory. Our programs

use Cilk Plus to express parallelism and are compiled with the g++
compiler (version 5.4.1) with the -O3 flag.

Microbenchmark. The microbenchmark simulates the behavior

of a bucketing-based algorithm such as k-core and ∆-stepping. On
each round, these applications extract a bucket containing a set S of

identifiers (vertices), and update the buckets for identifiers in N (S).
The microbenchmark simulates this behavior on a degree-8 random

graph. Given two inputs, b, the number of initial buckets, and n, the
number of identifiers, it starts by bucketing the identifiers uniformly

at random and iterating over the buckets in increasing order. On

 1x10
8

 5x10
8

 1x10
9

 100 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

th
ro

u
g

h
p

u
t

(n
u

m
.

id
e

n
ti
fi
e

rs
 /

 s
e

c
o

n
d

)

average number of identifiers / round

128 buckets
256 buckets
512 buckets

1024 buckets
k-core
w-BFS

delta-stepping
setcover

Figure 1: Log-log plot of throughput (billions of identifiers per sec-

ond) vs. average number of identifiers processed per round.

each round, it extracts a set S of identifiers and for each extracted

identifier, it picks 8 randomly chosen neighbors {v0, . . . ,v7}, checks
whether the bucket for vi is greater than cur, and if so updates its

bucket to max(cur,D (vi)/2). If D (vi) ≤ cur, it sets vi ’s bucket to
nullbkt which ensures that identifiers extracted from the bucket

structure are never reinserted.

We profile the performance of the bucket structure while varying

b, the number of buckets. As our applications request at most about

1000 buckets, we run the microbenchmark to see how it performs

when b is in the range [128, 256, 512, 1024]. For a given number of

buckets, we vary the number of identifiers to generate different

data points. The throughput of the bucket structure is calculated

as the total number of identifiers extracted by nextBucket, plus

the number of identifiers that move from their current bucket to a

new bucket. Because identifiers moving to the nullbkt-bucket are

inexpensively handled by the bucket structure, (such requests are

ignored by updateBuckets and do not incur any random reads or

writes) we exclude these requests from our total count.

We plot the throughput achieved by the structure vs. the av-

erage number of identifiers per round in Figure 1. The average

number of identifiers per round is the total number of identifiers

that are extracted and updated, divided by the number of rounds

required to process all of the buckets. Using this data, we calculated

the peak throughput supported by the bucket structure, and the

half-performance length
2
which are approximately 1 billion identi-

fiers per second, and an average of 500,000 identifiers per round,

respectively.

Applications.We also plot points corresponding to the through-

put and average number of identifiers per round achieved by our

applications when run on our graphs in Figure 1. We observe that

the benchmark throughput is a useful guideline for throughput

achieved by our applications. We note that the average number of

identifiers per round in k-core is noticeably lower than our other

applications—this is because of the large number of rounds nec-

essary to compute the coreness of each vertex using the peeling

algorithm in our graphs (up to about 130,000). We discuss more

details about our algorithms in Section 4 and their performance in

Section 5.

2
The number of identifiers when the system achieves half of its peak performance.

4 APPLICATIONS

In this section, we describe four bucketing-based algorithms and

discuss how our framework can be used to produce theoretically

efficient implementations of them.

4.1 k-core and Coreness

A k-core of an undirected graph G is a maximal connected sub-

graph where every vertex has induced-degree at least k . k-cores
are widely studied in the context of data mining and social network

analysis because participation in a large k-core is indicative of the
importance of a node in the graph. The coreness problem is to

compute for each v ∈ V the maximum k-core v is in. We call this

value the coreness of a vertex and denote it as λ(v).
The notion of a k-core was introduced independently by Sei-

dman [48], and by Matula and Beck [37] (who used the term k-
linkage) and identifies the subgraphs of G that satisfy the induced

degree property as the k-cores of G. Anderson and Mayr showed

that the decision problem for k-core can be solved in NC for k ≤ 2,

but is P-complete
3
for k ≥ 3 [3]. Since being defined, k-cores and

coreness values have found many applications from graph min-

ing, network visualization, fraud detection, and studying biological

networks [2, 50, 60].

Matula and Beck give the first algorithm which computes all

coreness values. Their algorithm bucket-sorts vertices by their de-

gree, and then repeatedly deletes the minimum-degree vertex. The

affected neighbors are then moved to a new bucket correspond-

ing to their induced degree. The total work of their algorithm is

O (m + n). Batagelj and Zaversnik (BZ) give an implementation of

the Matula-Beck algorithm that runs in the same time bounds [4].

While the sequential algorithm requires O (m + n) work, all ex-
isting parallel algorithms with non-trivial parallelism take at least

O (m + kmaxn) work where kmax is the largest core number in the

graph [16, 20, 41, 44, 51]. This is because the implementations do

not bucket the vertices and must scan all remaining vertices when

computing each core number. Our parallel algorithm as well as

some existing parallel algorithms are based on a peeling procedure,

where on each iteration of the procedure, vertices below a certain

degree are removed from the graph. The peeling process on random

(hyper)graphs has been studied and it has been shown thatO (logn)
rounds of peeling suffices [1, 26], although for arbitrary graphs the

number of rounds could be linear in the worst case. We note that

computing a particular k-core from the coreness numbers requires

finding the largest induced subgraph among vertices with coreness

at least k , which can be done efficiently in parallel [14, 54].

The pseudocode for our implementation is shown in Algorithm 1.

D holds the initial bucket for each vertex, which is initially its

degree inG . The bucket structure is created on line 12 by supplying

n, D and the increasing keyword, as lowest degree vertices are

removed first. On line 14, the next non-empty bucket is extracted

from the structure, with k updated to be the bucket id (this could be

the same as the previous round if there are still vertices with that

coreness number). The bucket contains all vertices with degree k .
As these vertices now have their coreness set, we update finished
with the number of vertices in the current bucket on line 15. We

3
There is no polylogarithmic depth algorithm for this problem unless P = NC.

Algorithm 1 Coreness

1: D = {deg(v0), . . . , deg(vn−1) } ▷ initialized to initial degrees

2: k = 0 ▷ the core number being processed

3: procedure Update(v , edgesRemoved)
4: inducedD = D[v], newD = ∞
5: if (inducedD > k) then
6: newD = max(inducedD − edgesRemoved, k), D[v] = newD
7: bkt = B.get_bucket(inducedD, newD)
8: if (bkt , nullbkt) then

9: return Some(bkt)
10: return None

11: procedure Coreness(G)

12: B = makeBuckets(G .n, D, increasing), finished = 0

13: while (finished < G .n) do

14: (k , ids) = B.nextBucket()
15: finished = finished + |ids |
16: moved = edgeMapSum(G, ids, Update)
17: B.updateBuckets(moved, |moved |)

18: return D

call edgeMapSum on line 16, with the Update function (lines 3–

10) to count the number edges removed for each vertex. For a

neighbor v , Update updates D[v]. It returns a maybe(bucket_dest)
by calling getBucket on the previous induced-degree of v and

the new induced-degree (if the new induced-degree falls below k ,
it will be set to k so that it can be placed in the current bucket).

The result of edgeMapSum is a vertexSubsetbucket_dest. On line 17

we update the buckets for vertices that have changed buckets, and

repeat. The algorithm terminates once all of the vertices have been

extracted from the bucket structure.

We now analyze the complexity of our algorithm by plugging in

quantities into Lemma 3.2. We can bound

∑K
i=0 |Si | ≤ 2m, as in the

worst case each removed edge will cause an independent request to

the bucket structure. Furthermore, the total number of buckets, T
is at most n, as vertices are initialized into a bucket corresponding

to their degree. Plugging these quantities into Lemma 3.2 gives us

O (m+n) expected work, which makes our algorithm work-efficient.

To analyze the depth of our algorithm, we define ρ to be the

peeling-complexity of a graph, or the number of steps needed to

peel the graph completely. A step in the peeling process removes

all vertices with minimum degree, decrements the degrees of all

adjacent neighbors and repeats. On graphs with peeling-complexity

ρ, our algorithm runs in O (ρ logn) depth w.h.p., as each peeling-

step potentially requires a call to the bucket structure to update

the buckets for affected neighbors. While ρ can be as large as n in

the worst-case, in practice ρ is significantly smaller than n. Our
algorithm is the first work-efficient algorithm for coreness with

non-trivial parallelism. The bounds are summarized in the following

theorem.

Theorem 4.1. Our algorithm for coreness requires O (m + n) ex-
pected work and O (ρ logn) depth with high probability, where ρ is
the peeling-complexity of the graph.

Our serial implementation of coreness is based on an imple-

mentation of the BZ algorithm written in Khaouid et al. [28]. We

re-wrote their code in C++ and integrated it into the Ligra+ frame-

work (an extension of Ligra that supports graph compression) [55],

which lets us run our implementation on our largest graphs.

4.2 ∆-stepping and wBFS

The single-source shortest path (SSSP) problem takes as input

a weighted graph G = (V ,E,w (E)) and a source vertex src, and
computes the shortest path distance from src to each vertex in V ,
with unreachable vertices having distance∞. On graphs with non-

negative edge weights, the problem can be solved inO (m +n logn)
work by using Dijkstra’s algorithm [19] with Fibonacci heaps [21].

While Dijkstra’s algorithm cannot be used on graphs with negative

edge-weights, the Bellman-Ford algorithm can, but at the cost of

an increased worst-case work-bound of O (mn) [15]. Bellman-Ford

often performs very well in parallel, but is work-inefficient for

graphs with only non-negative edge weights.

Both Dijkstra and Bellman-Ford work by relaxing vertices. We

denote the shortest path to each vertex by SP . A relaxation occurs

over a directed edge (u,v) when vertex u checks whether SP (u) +
w (u,v) < SP (v), updating SP (v) to the smaller value if this is the

case. In Dijkstra’s algorithm, only the vertex,v , that is closest to the
source is relaxed—as the graph is assumed to have non-negative

edge-weights, we are guaranteed that SP (v) is correct, and so each

vertex only relaxes its outgoing edges once. In the simplest form of

Bellman-Ford, all vertices relax their neighbors in each step, and

so each step costs O (m). The number of steps needed for Bellman-

Ford to converge is proportional to the largest number of hops in a

shortest path from src to any v ∈ V , which can be as large as O (n).
Weighed breadth-first search (wBFS) is a version of Dijkstra’s

algorithm that works well for small integer edge weights and low-

diameter graphs [18]. As described in Section 1, wBFS keeps a

bucket for each possible distance and goes through them one by

one from the lowest. Each bucket acts like a frontier as in BFS, but

when we process a vertex v in a frontier i instead of placing its

unvisited neighbors in the next frontier i+1we place each neighbor
u in the bucket i + d (v,u). wBFS turns out to be a special case of

∆-stepping, and hence we return to it later.

The ∆-stepping algorithm provides a way to trade-off between

the work-efficiency of Dijkstra’s algorithm and the increased paral-

lelism of Bellman-Ford [40]. In ∆-stepping, computation is broken

up into a number of steps. On step i , vertices in the annulus at

distance [i∆, (i + 1)∆) are relaxed until no further distances change.
The algorithm then proceeds to the next annulus, repeating until

the shortest-path distances for all reachable vertices are set. Note

that when ∆ = ∞, this algorithm is equivalent to Bellman-Ford.

While Bellman-Ford is easy to implement in parallel, previous

work has identified the difficulty in producing a scalable imple-

mentation of bucketing [24], which is required in the ∆-stepping
algorithm [40]. Due to the difficulty of bucketing in parallel, many

implementations of SSSP in graph-processing frameworks use the

Bellman-Ford algorithm [22, 51]. Implementations of ∆-stepping
do exist, but the algorithms are not easily expressed in existing

frameworks, so they are either provided as primitives in a graph

processing framework [42, 59] or are stand-alone implementa-

tions [6, 17, 24, 34, 35]. There are other parallel algorithms for SSSP,

but for some of the algorithms, there is low parallelism [11, 43], and

for others no parallel implementations exist [8, 13, 29, 49, 56]. Note

that there is currently no parallel algorithm for single-source short-

est paths with non-negative edge weights that matches the work

of the sequential algorithm and has polylogarithmic depth. Our

Algorithm 2 ∆-stepping

1: SP = {∞, . . . , ∞} ▷ initialized to all∞

2: F l = {0, . . . , 0} ▷ initialized to all 0

3: procedure GetBucketNum(i) return ⌊SP [i]/∆⌋
4: procedure Update(s , d , w)

5: nDist = SP [s] +w, oDist = SP [d], res = None

6: if (nDist < oDist) then

7: if (CAS(&F l [d], 0, 1) then

8: res = Some(oDist) ▷ the distance at the start of this round

9: writeMin(&SP [d], nDist)
10: return res
11: procedure Reset(v , oldDist)
12: F l [v] = 0, newDist = SP [d]
13: return B.get_bucket(⌊oldDist/∆⌋, ⌊newDist/∆⌋)
14: procedure ∆-stepping(G , ∆, src)
15: SP [r] = 0

16: B = makeBuckets(G .n, GetBucketNum, increasing)
17: while ((id, ids) = B.nextBucket() and id , nullbkt) do

18: Moved = edgeMap(G, ids, Update)
19: NewBuckets = vertexMap(Moved, Reset)
20: B.updateBuckets(NewBuckets, |NewBuckets |)
21: return SP

bucketing interface allows us to give a simple implementation of

∆-stepping with work matching that of the original algorithm [40].

The pseudocode for our implementation is shown in Algorithm 2.

Shortest-path distances are stored in an array SP , which are ini-

tially all∞, except for the source, src which has an entry of 0. We

also maintain an array of flags, Fl , which are used by edgeMap to

remove duplicates. The bucket structure is created by specifying n,
SP , and the keyword increasing (line 16). The i’th bucket repre-

sents the annulus of vertices between distance [i∆, (i + 1)∆) from
the source. Each ∆-step processes the closest unfinished annulus

and so the buckets are processed in increasing order. On line 17 we

extract the next bucket, and terminate if it is nullbkt. Otherwise,

we explore the outgoing edges of the set of vertices in the bucket

using edgeMap. In the Update function passed to edgeMap (lines

4–10), a neighboring vertex, d , is visited over the edge (s,d,w). s
checks whether it relaxes d , i.e., SP[s] + w < SP[d]. If it can, it
first uses a CAS to test whether it is the unique neighbor of d that

read its value before any modifications in this round (line 7) setting

this distance to be the return value (line 8) if the CAS succeeds. s
then uses an atomic writeMin operation to update the distance to

d (line 9). Unsuccessful visitors return None, which signals that

they did not capture the old value of d . The result of edgeMap is a

vertexSubset where the value stored for each vertex is the distance

before any modifications in this round.

Next, we call vertexMap (line 19), which calls the Reset func-

tion (lines 11–13) on each visited neighbor, v , that had its distance

updated. Reset first resets the flag for v (line 12) to enable v to be

correctly visited again on a future round. It then calculates the new

bucket for v (line 13) and returns this value. The output is another

vertexSubset called NewBuckets containing the neighbors and their

new buckets. Finally, on line 20, we update the buckets containing

each neighbor that had its distance lowered, by calling Update-

Buckets on the vertexSubset NewBuckets. We repeat these steps

until the bucket structure is empty. While we describe visitors from

the current frontier CAS’ing values in a separate array of flags, Fl ,

our actual implementation uses the highest-bit of SP to represent

Fl , as this reduces the number of random-memory accesses and

improves performance in practice.

The original description of∆-stepping byMeyer and Sanders [40]

separates edges into light edges and heavy edges, where light edges
are of length at most ∆. Inside each annulus, light edges may be

processed multiple times but heavy edges only need to be pro-

cessed once, which reduces the amount of redundant work. We

implemented this optimization but did not find a significant im-

provement in performance for our input graphs. Note that this

optimization can fit into our framework by creating two graphs,

one containing just the light edges and the other just the heavy

edges. Light edges can be processed multiple times until the bucket

number changes, at which point we relax the heavy edges once for

the vertices in the bucket.

We will now argue that our implementation of ∆-stepping (with

the light-heavy edge optimization) does the same amount of work

as the original algorithm. The original algorithm takes at most

(dc/∆)lmax rounds to finish, where dc is the maximum distance in

the graph and lmax is the maximum number of light edges in a path

with total weight at most ∆. Our implementation takes the same

number of rounds to finish because we are relaxing exactly the

same vertices as the original algorithm on each round. Using our

work-efficient bucketing implementation, by Lemma 3.2 the work

per round is linear in the number of vertices and outgoing edges

processed, which matches that of the original algorithm. The depth

of our algorithm is O (logn) times the number of rounds w.h.p.

When edge weights are integers, and ∆ = 1, ∆-stepping becomes

wBFS. This is because there can only be one round within each step.

In this case we have the following strong bound on work-efficiency.

Theorem 4.2. Our algorithm for wBFS (equivalent to ∆-stepping
with integral weights and ∆ = 1) when run on a graph withm edges
and eccentricity rsrc from the source src, runs inO (rsrc +m) expected
work and O (rsrc logn) depth w.h.p.

Proof. The work follows directly from the fact we do no more

work than the sequential algorithm, charging only O (1) work per

bucket insertion and removal, which is proportional to the number

of edges (every edge does atmost one insertion and is later removed).

The depth comes from the number of rounds and the fact that each

round takes O (logn) depth w.h.p. for the bucketing. □

4.3 Approximate Set Cover

The set cover problem takes as input a universe U of ground el-

ements, F a collection of sets of U s.t.

⋃
F = U and a cost

function c : F → R+. The problem is to find the cheapest collec-

tion of sets A ⊆ F that coversU , where the cost of a solution A

is c (A) =
∑
S ∈A c (S). This problem can be modeled as a bipartite

graph where sets and elements are vertices, with an edge connect-

ing a set to an element if and only if the set covers that element.

Finding the cheapest collection of sets is an NP-complete problem,

and a sequential greedy algorithm [27] gives a Hn-approximation,

where Hn =
∑n
k=1 1/k , in O (m) work for unweighted sets and

O (m logm) work for weighted sets, wherem is the sum of the sizes

of the sets, or equivalently the number of edges in the bipartite

graph. Parallel algorithms have been designed for approximating

Algorithm 3 Approximate Set Cover

1: El = {∞, . . . , ∞} ▷ initialized to all∞

2: F l = {0, . . . , 0} ▷ initialized to all 0

3: D = {deg(v0), . . . , deg(vn−1) } ▷ initialized to initial out-degrees

4: b ▷ the current bucket number

5: procedure BucketNum(s) return ⌊log
1+ϵ D[s]⌋

6: procedure ElmUncovered(e) return F l [e] == 0

7: procedure UpdateD(s , d) D[s] = d
8: procedure AboveThreshold(s , d) return d >= ⌈(1 + ϵ)max(b,0) ⌉

9: procedure WonElm(s , e) return s == El [e]
10: procedure InCover(s) return D[s] == ∞
11: procedure VisitElms(s , e) writeMin(&El [e], s)
12: procedure WonEnough(s , elmsWon)
13: threshold = ⌈(1 + ϵ)max(b−1,0) ⌉

14: if (elmsWon > threshold) then

15: D[s] = ∞ ▷ puts s in the set cover

16: procedure ResetElms(s , e)
17: if (El [e] == s) then

18: if (InCover(s)) then

19: F l [e] = 1 ▷ e is covered by s
20: else

21: El [e] = ∞ ▷ reset e
22: procedure SetCover(G = (S ∪ E, A))
23: B = makeBuckets(|S |, BucketNum, decreasing)
24: while ((b, Sets) = B .nextBucket() and b , nullbkt) do

25: SetsD = edgeMapFilter(G, Sets, ElmUncovered, Pack)
26: vertexMap(SetsD, UpdateD)
27: Active = vertexFilter(SetsD, AboveThreshold)
28: edgeMap(G, Active, VisitElms, ElmUncovered)
29: ActiveCts = edgeMapFilter(G, Active, WonElm)
30: vertexMap(ActiveCts, WonEnough)
31: edgeMap(G, Active, ResetElms)
32: Rebucket = {(s, B .get_bucket(b, BucketNum(s)) |

s ∈ Sets and not InCover(s) }
33: B .updateBuckets(Rebucket, |Rebucket |)
34: return {i | InCover(i) == true }

the set cover [7, 9, 10, 12, 30, 45, 57], and Blelloch et al. [9] present a

work-efficient parallel algorithm for the problem, which takesO (m)
work andO (log3m) depth, and gives a (1+ ϵ)Hn -approximation to

the set cover problem. Blelloch et al. [10] later present a multicore

implementation of the parallel set cover algorithm. Their code, how-

ever, is special-purpose, not being part of any general framework,

and is not work-efficient. In this section, we give a work-efficient

implementation of their algorithm using our bucketing interface,

and we compare the performance of the codes in Section 5.

The Blelloch et al. algorithm works by first bucketing all sets

based on their cost. In the weighted case, the algorithm first en-

sures that the ratio between the costliest set and cheapest set is

polynomially bounded, so that the total number of buckets is kept

logarithmic (see Lemma 4.2 of [10]). It does this by discarding sets

that are costlier than a threshold, and including sets cheaper than

another threshold in the cover. The remaining sets are bucketed

based on their normalized cost (the cost per element). In order to

guarantee polylogarithmic depth, only O (logm) buckets are main-

tained, with a set having cost C going into bucket

⌊
log

1+ϵ C
⌋
. The

main loop of the algorithm iterates over the buckets from the least

to most costly bucket. Each step invokes a subroutine to compute

a maximal nearly-independent set (MaNIS) of sets in the current

bucket. MaNIS computes a subset of the sets in the current bucket

that are almost non-overlapping in the sense that each set chosen

by MaNIS covers many elements that are not covered by any other

chosen set. For sets not chosen by MaNIS, the number of uncovered

elements they cover is shrunk by a constant factor w.h.p. We refer

the reader to the original paper for proofs on both MaNIS and the

set cover algorithm.We now describe our algorithm for unweighted

set cover, and note that it can be easily modified for the weighted

case as well.

The pseudocode for our implementation of the Blelloch et al.

algorithm is shown in Algorithm 3. We assume that the set cover

instance is represented as an undirected bipartite graph with sets

and elements on opposite sides. The array El contains the set each
element is assigned to. The array Fl specifies whether elements

are covered (Fl[e] = 0 if and only if e is uncovered). Initially all

elements are not covered (lines 1–2). The array D contains the

number of remaining elements covered by each set (line 3). As sets

are represented by vertices, each entry of D is initially just the

degree of that vertex. b stores the current bucket id (line 4), which

is updated on line 24 when we extract the next bucket. The bucket

structure is created by specifying n = |S |, BucketNum, and the

keyword decreasing (line 23), as we process sets in decreasing

order based on the number of uncovered elements they cover.

Each round starts by extracting the next non-empty bucket (line

24). The degrees of sets are updated lazily, so the first phase of the

algorithm packs out edges to covered elements and computes the

sets that still cover enough elements to be active in this round. On

line 25, we call edgeMapFilter with the function ElmUncovered

and the option Pack, which packs out any covered elements in the

sets’ adjacency lists and updates their degrees. The return value

of edgeMapFilter is a vertexSubsetint (SetsD), where the associ-
ated value with each set is its new degree. On line 26 we apply

vertexMap over SetsD with the function UpdateD, which updates

D with the new degrees. Finally, we call vertexFilter with the

function AboveThreshold to compute the vertexSubset, Active,
which is the subset of SetsD that still have sufficient degree.

The next phase of the algorithm implements one step of MaNIS.

Note that instead of implementing MaNIS as a separate subroutine,

we implicitly compute it by fusing the loop that computes a MaNIS

with the loop that iterates over the buckets. On line 28, active sets

reserve uncovered elements using an edgeMap, breaking ties based

on their IDs using writeMin. edgeMap checks whether a neigh-

boring element is uncovered using ElmUncovered (line 6), and if

so calls VisitElms (line 11), which uses a writeMin to atomically

update the parent of e . Next, we compute a vertexSubset, ActiveCts,
by calling edgeMapFilter with the functionWonElm (line 9). The

value associated with each set in ActiveCts is the number of ele-

ments successfully reserved by it. We then apply vertexMap over

ActiveCts (line 30) with the function WonEnough (lines 12–15),

which checks whether the number of elements reserved is above a

threshold (line 13), and if so updates the set to be in the cover.

The last phase of the algorithm marks elements that are newly

covered, resets elements whose sets did not make it into the cover,

and finally reinserts sets that did not make it into the cover back

into the bucket structure. On line 31, we call edgeMap with the

Input Graph Num. Vertices Num. Edges ρ
com-Orkut 3,072,627 234,370,166 5,667

Twitter 41,652,231 1,468,365,182 –

Twitter-Sym 41,652,231 2,405,026,092 14,963

Friendster 124,836,180 3,612,134,270 10,034

Hyperlink2012-Host 101,717,775 2,043,203,933 –

Hyperlink2012-Host-Sym 101,717,775 3,880,015,728 19,063

Hyperlink2012 3,563,602,789 128,736,914,167 –

Hyperlink2012-Sym 3,563,602,789 225,840,663,232 58,710

Hyperlink2014 1,724,573,718 64,422,807,961 –

Hyperlink2014-Sym 1,724,573,718 124,141,874,032 130,728

Table 2: Graph inputs, including both vertices and edges.

supplied function ResetElms (lines 16–21) which first checks that

s is the set which reserved e (line 17). If s joined the cover, then we

mark e as covered (line 19). Otherwise, we reset El[e] = ∞ (line

21) so that e can be correctly visited on future rounds. Finally, we

compute Rebucket, a vertexSubset containing the sets that did not

join the cover in this round, where the value associated with each

set is its bucket_dest. The bucket structure is updated with the sets

in Rebucket on line 33. Finally, after all rounds are over, we return

the subset of sets whose ids are in the cover (line 34).

5 EXPERIMENTS

All of our experiments are run on the same machine configuration

as in Section 3.4. The input graph sizes and peeling-complexity

(for undirected graphs) that we use are shown in Table 2. com-

Orkut is an undirected graph of the Orkut social network. Twitter

is a directed graph of the Twitter network, where edges represent

the follower relationship [31]. Friendster is an undirected social-

network graph. Hyperlink2012 and Hyperlink2014 are directed

hyperlink graphs obtained from the WebDataCommons dataset

where nodes represent web pages [39]. Hyperlink2012-Host is a

directed hyperlink graph also from the WebDataCommons dataset

where nodes represent a collection of web pages belonging to the

same hostname. Unless mentioned otherwise, the input graph is

assumed to be directed, with the symmetrized version of the graph

denoted with the suffix Sym.

We create weighted graphs for evaluating wBFS by selecting

edge weights between [1, logn) uniformly at random. These graphs

are not suitable for testing ∆-stepping, as we found that ∆ = 1

was always faster than a larger value of ∆. To understand the per-

formance of our ∆-stepping implementation, we generate another

family of weighted graphs with edge weights picked uniformly

between [1, 105). We successfully added edge-weights between

[1, logn) to the Hyperlink2014 graph. However, due to space limi-

tations on our machine, we were unable to store the Hyperlink2012

graph with edge-weights between [1, logn) and both the Hyper-

link2012 and Hyperlink2014 graphs with edge-weights between

[1, 105). We use ‘in parallel’ to refer to running times using 144

hyper-threads.

k-core (coreness). Table 3 shows the running time of the work-

efficient implementation of k-core from Julienne and the work-

inefficient implementation of k-core from Ligra. Figure 2 shows the

running time of both implementations as a function of thread count.

We see that our work-efficient implementation achieves between

4-41x parallel speedup over the implementation running on a single

thread. Our speedups are smaller on graphs where ρ is large while

n andm are relatively small, such as com-Orkut and Twitter-Sym.

We also ran the Batagelj and Zaversnik (BZ) algorithm described in

Section 4.1 and found that our single-thread times are always about

1.3x faster than that of the BZ algorithm. This is because on each

round we move a vertex to a new bucket just once, even if many

edges are deleted from it whereas the BZ algorithm will move that

vertex many times. As our algorithm on a single thread is always

faster than the BZ algorithm, we report self-relative speedup, which

is a lower bound on speedup over the BZ algorithm.

Unfortunately, we were unable to obtain the code for the ParK

algorithm [16], which is to the best of our knowledge the fastest

existing parallel implementation of k-core. Instead, we used a sim-

ilar work-inefficient implementation of k-core available in Ligra.

In parallel, our work-efficient implementation is between 2.6–9.2x

faster than the work-inefficient implementation from Ligra. On

Hyperlink2012-Sym and Hyperlink2014-Sym, the work-inefficient

implementation did not terminate in a reasonable amount of time,

and so we only report times for our implementation in Julienne.

A recent paper also reported experimental results for a different

parallel algorithm for k-core that is not work-efficient [47]. On a

similar configuration to their machine our implementation is about

10x faster on com-Orkut, the largest graph they test on.

wBFS and ∆-stepping. Table 3 shows the running time of the ∆-
stepping and wBFS implementations from Julienne and the GAP

benchmark suite, the priority-based Bellman-Ford implementation

from Galois, the Bellman-Ford implementation from Ligra and the

sequential solver from the DIMACS shortest path challenge [6, 42].

Figures 3 and 4 show the running time of the four parallel im-

plementations as a function of thread count. To the best of our

knowledge, we are not aware of any existing parallel implementa-

tions of wBFS, so we test wBFS against the same implementations

as ∆-stepping, setting ∆ = 1. We see that our work-efficient im-

plementation achieves between 22–43x parallel speedup over the

implementation running on a single thread for wBFS and between

18–32.4x parallel speedup over our implementation running on a

single thread for ∆-stepping. For ∆-stepping, we found that setting

∆ = 32768 performed best in our experiments.

Like our implementation, the SSSP implementation in GAP does

not perform the light/heavy optimization described in the original

∆-stepping paper [40]. Instead of having shared buckets, it uses

thread-local bins to represent buckets. The Galois algorithm is a

version of Bellman-Ford that schedules nodes based on their dis-

tance from the source (closer vertices have higher priority). Because

the Galois algorithm avoids synchronizing after each annulus, it

achieves good speedup on graphs with large diameter, but where

paths with few hops are also likely to be the shortest paths in

the graph (such as road networks). On such graphs our algorithm

performs poorly due to a large amount of synchronization.

All implementations achieve good speedup with an increased

number of threads. On a single thread our implementation is usu-

ally faster than the single-thread times for other implementations.

This is likely because of an optimization we implemented in our

edgeMap routine, which allows traversals to only write to an

amount of memory proportional to the size of the output frontier. In

parallel, while the GAP implementation usually outperforms us by

a small amount, we remain very competitive, being between 1.07-

1.1x slower for wBFS, and between 1.1–1.7x faster for ∆-stepping.

We are between 1.6–3.4x faster than the Galois implementation

on wBFS and between 1.2–2.9x faster on ∆-stepping. Our imple-

mentation is between 1.2–3.9x faster for wBFS and 1.8–5.2x faster

for ∆-stepping compared to the Bellman-Ford implementation in

Ligra [51]. We note that there is recent work on another parallel

algorithm for SSSP [35] and based on their speedups over the ∆-
stepping implementation in Galois, our Julienne implementation

seems competitive. We leave a detailed comparison for future work.

Approximate Set Cover. We generated bipartite graphs to use as

set cover instances by having vertices represent both the sets and

the elements. Table 3 shows the running time of the work-efficient

implementation of approximate set cover from Julienne and the

work-inefficient implementation of approximate set cover from the

PBBS benchmark suite [53]. Figure 5 shows the running time of

both implementations as a function of thread count. We set ϵ to

be 0.01 for both implementations. We see that our work-efficient

implementation achieves between 4–35x parallel speedup over the

implementation running on a single thread. Both implementations

achieve poor speedup on com-Orkut, due to the relatively large

number of rounds compared to the graph size. Our implementation

achieves between 17–35x parallel speedup on our other test graphs.

The PBBS implementation is from Blelloch et al. [10] and imple-

ments the same algorithm as us [9]. Both implementations compute

the same covers. We note that the PBBS implementation is not

work-efficient. Instead of rebucketing the sets that are not chosen

in a given step by using a bucket structure, it carries them over

to the next step. In parallel, our times are between 1.2x slower to

2x faster compared to the PBBS implementation. On graphs like

Twitter-Sym, the PBBS implementation carries a large number of

unchosen sets for many rounds. In these cases, our implementation

achieves good speedup over the PBBS implementation because it

rebuckets these sets instead of inspecting them on each round.

6 CONCLUSION

We have presented the Julienne framework which allows for sim-

ple and theoretically efficient implementations of bucketing-based

graph algorithms. Using our framework, we obtain the first work-

efficient k-core algorithm with non-trivial parallelism. Our im-

plementations either outperform or are competitive with hand-

optimized codes for the same applications, and can process graphs

with hundreds of billions of edges in the order of minutes on a

single machine.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CCF-1314590

and CCF-1533858, the Intel Science and Technology Center for

Cloud Computing, and the Miller Institute for Basic Research in

Science at UC Berkeley.

REFERENCES

[1] D. Achlioptas and M. Molloy. The solution space geometry of random linear

equations. Random Structures & Algorithms, 46(2), 2015.
[2] J. I. Alvarez-Hamelin, L. Dall’asta, A. Barrat, and A. Vespignani. Large scale

networks fingerprinting and visualization using the k -core decomposition. In

NIPS. 2005.
[3] R. Anderson and E. W. Mayr. A P-complete problem and approximations to it.

Technical report, 1984.

Application com-Orkut Twitter Friendster Hyperlink2012-Host Hyperlink2012 Hyperlink2014

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

k-core (Julienne) 5.43 1.3 4.17 74.6 6.37 11.7 182 7.7 23.6 118 8.7 13.5 8515 206 41.3 2820 97.2 29.0

k -core (Ligra) 11.6 3.35 3.46 119 19.9 5.97 745 56 13.3 953 80.1 11.9 - - - - - -

wBFS (Julienne)
∗

2.01 0.093 21.6 22.8 0.987 23.1 73.9 2.29 32.2 37.9 1.39 27.2 - - - 392 9.02 43.4

Bellman-Ford (Ligra)
∗

4.02 0.175 22.9 37.9 1.19 31.8 190 6.08 31.2 84.2 2.17 38.8 - - - 2610 35.5 73.5

wBFS (GAP)
∗

2.35 0.083 28.3 25.9 0.919 28.1 88.1 2.14 41.1 40.4 1.26 32.0 - - - - - -

wBFS (Galois)
∗

3.46 0.319 10.8 31.9 1.59 20.06 87.6 4.49 19.5 45.5 2.85 15.9 - - - - - -

wBFS (DIMACS)
∗

3.488 - - 26.54 - - 78.19 - - 35.38 - - - - - - - -

∆-stepping (Julienne)
†

3.18 .167 19.0 36.3 2.01 18.0 112 3.45 32.4 49.0 2.09 23.4 - - - - - -

Bellman-Ford (Ligra)
†

10.2 0.423 24.1 111 3.64 30.4 613 18.2 33.6 295 7.84 37.6 - - - - - -

∆-stepping (GAP)† 4.33 .294 14.7 67.6 2.39 28.2 175 4.23 41.3 57.9 2.33 24.8 - - - - - -

∆-stepping (Galois)† 5.1 .487 10.4 64.1 2.58 24.8 122 5.56 21.9 53.8 3.17 16.9 - - - - - -

∆-stepping (DIMACS)
†

4.44 - - 35.7 - - 105 - - 55.5 - - - - - - - -

Set Cover (Julienne) 3.66 0.844 4.33 55.4 3.23 17.1 165 6.6 25.0 93.5 4.83 19.3 3720 104 35.7 1070 45.1 23.7

Set Cover (PBBS) 4.47 0.665 6.72 48.4 6.71 7.21 137 6.86 19.9 71.6 8.58 8.34 - - - - - -

Table 3: Running times (in seconds) of our algorithms over various inputs on a 72-core machine (with hyper-threading) where (1) is the

single-thread time, (72h) is the 72 core time using hyper-threading and (SU) is the speedup of the application (single-thread time divided by

72-core time). Applicationsmarkedwith ∗ and † use graphs withweights uniformly distributed in [1, logn) and [1, 105) respectively.We display

the fastest sequential and parallel time for each problem in each column in bold.

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

(a) Friendster

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

(b) Hyperlink2012-Host-Sym

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

(c) Twitter-Sym

Figure 2: Running time of k-core in seconds on a 72-core machine (with hyper-threading). “72h” refers to 144 hyper-threads.

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

(a) Friendster

 1

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

(b) Hyperlink2012-Host-Sym

 1

 10

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

(c) Twitter-Sym

Figure 3: Running time of wBFS in seconds on a 72-core machine (with hyper-threading). The graphs have edge weights that are uniformly

distributed in [1, logn). “72h” refers to 144 hyper-threads.

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

(a) Friendster

 1

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

(b) Hyperlink2012-Host-Sym

 1

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

(c) Twitter-Sym

Figure 4: Running time of ∆-stepping in seconds on a 72-core machine (with hyper-threading). The graphs have edge weights that are uni-

formly distributed in [1, 105). “72h” refers to 144 hyper-threads.

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne
PBBS

(a) Friendster

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne
PBBS

(b) Hyperlink2012-Host-Sym

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of threads

Julienne
PBBS

(c) Twitter-Sym

Figure 5: Running time of set cover in seconds on a 72-core machine (with hyper-threading). “72h” refers to 144 hyper-threads.

[4] V. Batagelj and M. Zaversnik. An O (m) algorithm for cores decomposition of

networks. CoRR, cs.DS/0310049, 2003.
[5] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first

search. In SC, 2012.
[6] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP benchmark suite. CoRR,

abs/1508.03619, 2015.

[7] B. Berger, J. Rompel, and P. W. Shor. Efficient NC algorithms for set cover with

applications to learning and geometry. J. Comput. Syst. Sci., 49(3), Dec. 1994.
[8] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan. Parallel shortest paths using

radius stepping. In SPAA, 2016.
[9] G. E. Blelloch, R. Peng, and K. Tangwongsan. Linear-work greedy parallel

approximate set cover and variants. In SPAA, 2011.
[10] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O efficient set

covering algorithms. In SPAA, 2012.
[11] G. S. Brodal, J. L. Träff, and C. D. Zaroliagis. A parallel priority queue with

constant time operations. J. Parallel Distrib. Comput., 49(1), Feb. 1998.
[12] F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In WWW,

2010.

[13] E. Cohen. Using selective path-doubling for parallel shortest-path computations.

J. Algorithms, 22(1), Jan. 1997.
[14] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning forests in

logarithmic time and linear work using random sampling. In SPAA, 1996.
[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(3. ed.). MIT Press, 2009.

[16] N. S. Dasari, R. Desh, and M. Zubair. ParK: An efficient algorithm for k -core
decomposition on multicore processors. In Big Data, 2014.

[17] A. A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel

GPU methods for single-source shortest paths. In IPDPS, 2014.
[18] R. B. Dial. Algorithm 360: Shortest-path forest with topological ordering [H].

Commun. ACM, 12(11), Nov. 1969.

[19] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1), Dec. 1959.

[20] B. Elser and A. Montresor. An evaluation study of bigdata frameworks for graph

processing. In Big Data, 2013.
[21] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. J. ACM, 34(3), July 1987.

[22] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Dis-

tributed graph-parallel computation on natural graphs. In OSDI, 2012.
[23] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In SPAA,

2015.

[24] M. A. Hassaan,M. Burtscher, and K. Pingali. Ordered vs. unordered: A comparison

of parallelism and work-efficiency in irregular algorithms. In PPoPP, 2011.
[25] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

[26] J. Jiang, M. Mitzenmacher, and J. Thaler. Parallel peeling algorithms. ACM Trans.
Parallel Comput., 3(1), Jan. 2017.

[27] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci., 9(3), 1974.

[28] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo. k -core decomposition of

large networks on a single PC. Proc. VLDB Endow., 9(1), Sept. 2015.
[29] P. N. Klein and S. Subramanian. A randomized parallel algorithm for single-

source shortest paths. J. Algorithms, 25(2), Nov. 1997.
[30] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in

mapreduce and streaming. ACM Trans. Parallel Comput., 2(3), Sept. 2015.
[31] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a

news media? InWWW, 2010.

[32] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.

Distributed GraphLab: A framework for machine learning and data mining in

the cloud. Proc. VLDB Endow., 5(8), Apr. 2012.
[33] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.

GraphLab: A new parallel framework for machine learning. In UAI, July 2010.

[34] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak. An experimental study

of a parallel shortest path algorithm for solving large-scale graph instances. In

ALENEX, 2007.
[35] S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, and K. Pingali. DSMR:

A parallel algorithm for single-source shortest path problem. In ICS, 2016.
[36] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: A system for large-scale graph processing. In SIGMOD,
2010.

[37] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph

coloring algorithms. J. ACM, 30(3), July 1983.

[38] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In

HotOS, 2015.
[39] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph structure in the

web–analyzed on different aggregation levels. The Journal of Web Science, 1(1),
2015.

[40] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path algorithm. J.
Algorithms, 49(1), 2003.

[41] A. Montresor, F. D. Pellegrini, and D. Miorandi. Distributed k-core decomposition.

TPDS, 24(2), 2013.
[42] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph

analytics. In SOSP, 2013.
[43] R. C. Paige and C. P. Kruskal. Parallel algorithms for shortest path problems. In

ICPP, 1985.
[44] K. Pechlivanidou, D. Katsaros, and L. Tassiulas. MapReduce-based distributed

k -shell decomposition for online social networks. In SERVICES, 2014.
[45] S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation algorithms

for set cover and covering integer programs. SIAM J. Comput., 28(2), Feb. 1999.
[46] A. E. Sariyüce and A. Pinar. Fast hierarchy construction for dense subgraphs.

Proc. VLDB Endow., 10(3), Nov. 2016.
[47] A. E. Sariyuce, C. Seshadhri, and A. Pinar. Parallel local algorithms for core,

truss, and nucleus decompositions. arXiv preprint arXiv:1704.00386, 2017.
[48] S. B. Seidman. Network structure and minimum degree. Soc. Networks, 5(3), 1983.
[49] H. Shi and T. H. Spencer. Time-work tradeoffs of the single-source shortest paths

problem. J. Algorithms, 30(1), Jan. 1999.
[50] K. Shin, T. Eliassi-Rad, and C. Faloutsos. CoreScope: Graph mining using k -core

analysis–patterns, anomalies and algorithms. In ICDM, 2016.

[51] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework for

shared memory. In PPoPP, 2013.
[52] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention

through priority updates. In SPAA, 2013.
[53] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,

and K. Tangwongsan. Brief announcement: the problem based benchmark suite.

In SPAA, 2012.
[54] J. Shun, L. Dhulipala, and G. Blelloch. A simple and practical linear-work parallel

algorithm for connectivity. In SPAA, 2014.
[55] J. Shun, L. Dhulipala, and G. Blelloch. Smaller and faster: Parallel processing of

compressed graphs with Ligra+. In DCC, 2015.
[56] T. H. Spencer. Time-work tradeoffs for parallel algorithms. J. ACM, 44(5), Sept.

1997.

[57] S. Stergiou and K. Tsioutsiouliklis. Set cover at web scale. In SIGKDD, 2015.
[58] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook

social graph. arXiv preprint arXiv:1111.4503, 2011.
[59] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gunrock: a

high-performance graph processing library on the GPU. In PPoPP, 2016.
[60] S. Wuchty and E. Almaas. Peeling the yeast protein network. Proteomics, 5(2),

2005.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ligra Framework

	3 Bucketing
	3.1 Interface
	3.2 Algorithms
	3.3 Optimizations
	3.4 Performance

	4 Applications
	4.1 k-core and Coreness
	4.2 -stepping and wBFS
	4.3 Approximate Set Cover

	5 Experiments
	6 Conclusion
	References

