
Exploring the Design Space of Static and Incremental Graph
Connectivity Algorithms on GPUs

Changwan Hong

MIT CSAIL

changwan@mit.edu

Laxman Dhulipala

CMU

ldhulipa@andrew.cmu.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

ABSTRACT
Connected components and spanning forest are fundamental graph

algorithms due to their use in many important applications, such

as graph clustering and image segmentation. GPUs are an ideal

platform for graph algorithms due to their high peak performance

and memory bandwidth. While there exist several GPU connec-

tivity algorithms in the literature, many design choices have not

yet been explored. In this paper, we explore various design choices

in GPU connectivity algorithms, including sampling, linking, and

tree compression, for both the static as well as the incremental

setting. Our various design choices lead to over 300 new GPU im-

plementations of connectivity, many of which outperform state-of-

the-art. We present an experimental evaluation, and show that we

achieve an average speedup of 2.47x speedup over existing static al-

gorithms. In the incremental setting, we achieve a throughput of up

to 48.23 billion edges per second. Compared to state-of-the-art CPU

implementations on a 72-core machine, we achieve a speedup of

8.26–14.51x for static connectivity and 1.85–13.36x for incremental

connectivity using a Tesla V100 GPU.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms.

KEYWORDS
Connected components, Graph algorithms, GPU algorithms, Span-

ning forest

ACM Reference Format:
Changwan Hong, Laxman Dhulipala, and Julian Shun. 2020. Exploring the

Design Space of Static and Incremental Graph Connectivity Algorithms

on GPUs. In Proceedings of the 2020 International Conference on Parallel
Architectures and Compilation Techniques (PACT ’20), October 3–7, 2020,
Virtual Event, GA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/

10.1145/3410463.3414657

1 INTRODUCTION
Connected components (connectivity) is a fundamental graph prob-

lem that plays a critical role in many graph applications. Given an

undirected graph with n vertices andm edges, the problem assigns

each vertex a label such that vertices that are reachable from each

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00

https://doi.org/10.1145/3410463.3414657

other have the same label, and otherwise have different labels [25].

Connectivity algorithms are used in many applications, such as

computer vision [31, 43], VLSI design [61], and social analysis [41].

Graph connectivity is also a key subroutine to solve other graph al-

gorithms, such as biconnectivity [86] and clustering [33, 72, 90, 91],

and some of these algorithms require many calls to graph connectiv-

ity. As such, there has been a large amount of work on efficient paral-

lel connectivity algorithms [2–7, 11, 12, 14, 15, 17, 20–23, 27, 34, 36–

40, 42, 46–48, 50, 55–59, 62, 63, 67, 68, 73–75, 77–79, 81–83, 85, 87].

Graphics processing units (GPUs) are attractive devices for per-

forming graph computations because of their high computing power

and memory bandwidth. However, achieving high performance

using GPUs is challenging due to several factors, including unco-

alesced memory access, insufficient parallelism to tolerate high

memory latency, load imbalance, and thread divergence. Several

GPU connectivity implementations have been proposed in the lit-

erature [13, 24, 49, 65, 71, 85, 88], but we found that there are many

algorithmic choices and optimizations that have not been thor-

oughly explored for GPU connectivity. The goal of this paper is to

explore this large design space to better understand how different

choices affect performance.

In this paper, we study min-based connectivity algorithms [52, 53,
62, 73, 78, 83], which are based on vertices propagating labels to

other connected vertices, and keeping the minimum label received.

At convergence, vertices will have the same label if and only if

they are in the same connected component. A large number of

our algorithms are based on using a union-find data structure for

maintaining disjoint sets. The data structure maintains a tree for

each sub-component found so far, and joins trees to merge sub-

components that are connected. We also study several other min-

based algorithms that maintain trees, but not using a disjoint set

data structure. All existing GPU connectivity implementations are

min-based; however, there are various design choices that have not

been explored, such as different rules for searching and compressing

union-find trees and for propagating labels. Furthermore, these

algorithms can be improved by using sampling as a preprocessing

step to remove vertices in a large component from consideration,

so that the remaining steps are more efficient. Sutton et al. [85]

provide one instantiation of sampling combined with a particular

union-find algorithm. Inspired by their work, we explore different

sampling strategies in this paper, and combine them with each of

our algorithms to sweep the search space.

To implement different connectivity algorithms, we designed

the GConn framework, which is an extension of the ConnectIt
framework [29] for multicore CPUs. However, achieving high per-

formance for connectivity algorithms on GPUs requires significant

effort beyond what is provided in ConnectIt for two reasons. The

first reason is that the programming models on CPUs and GPUs are

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

55

https://doi.org/10.1145/3410463.3414657
https://doi.org/10.1145/3410463.3414657
https://doi.org/10.1145/3410463.3414657

0
1
2
3
4
5
6

co
PapersD

BLP

cit
-Patents

road_usa

so
c-L

ive
Journal1

ljo
urnal-2

008

delaunay_
n24

europe_osm

hollyw
ood-2009

kro
n_g5

00-lo
gn

21

co
m-O

rku
t

indoch
ina-2004

uk-2002

tw
itte

r7

co
m-Fr

iendste
r

N
or

m
al

ize
d

sp
ee

du
p

Graph

GPU-CC GSWITCH ECL-CC Afforest GCONN

Figure 1: Normalized speedup of four existing implementa-
tions/libraries and GConn. The fastest existing implementa-
tion’s performance is normalized to 1.

different, which required us to significantly rewrite the codebase.

The second reason is that the bottlenecks on CPUs and GPUs are

different (e.g., on GPUs, performance can be easily degraded from

uncoalesced memory accesses, low parallelism, and heavy use of

atomics), and this required us to apply GPU-specific optimizations

to achieve high performance.GConn contains several GPU-specific

optimizations: edge reorganization, which is specific to our connec-

tivity algorithms, and CSR coalescing and vertex gathering, which

are commonly used in other graph algorithms.

In this paper, we generate a total of 339 different connectivity

implementations and evaluate their performance. With our compre-

hensive study, we are able to obtain the fastest GPU connectivity

algorithms to date. Figure 1 shows the normalized performance

of the fastest implementation in GConn compared to four state-

of-the-art GPU implementations: GPU-CC [82], GSWITCH [65],

ECL-CC [49], and Afforest [85]. We achieve an average speedup

of 2.48x over the fastest implementation for each graph input. Al-

though we consider many connectivity implementations, we note

that based on the results of our experimental study, practitioners

only need to consider a handful of these implementations to obtain

high performance.

In addition to connected components, most of our algorithms

solve the related problem of computing a spanning forest of a

graph. Furthermore, we extend our algorithms to the incremental

setting, where the connected components or spanning forest is

updated upon new edge arrivals. Our incremental algorithms are

able to achieve throughputs of up to 48.23 billion edges per second,

which improves upon state-of-the-art for GPUs—EvoGraph [76]—

by orders of magnitude based on a rough comparison of reported

numbers since their code is not available. Additionally, we com-

pare our GPU implementations to the CPU implementations in

ConnectIt on a 72-core CPU and show that we achieve speedups of

8.27–17.48x for static connectivity, and 1.85–13.36x for incremental

connectivity on a Tesla V100 GPU that costs about half as much

as the CPU. Finally, we perform an analysis of different design

choices to explain where the performance benefits of our fastest

implementations are coming from. GConn is publicly available at

https://github.com/hochawa/gconn.

Summary of Contributions. We believe that this paper presents

the most comprehensive study of GPU implementations of con-

nectivity for both static and incremental connectivity to date. By

performing this extensive study, we provide an understanding of

how different algorithmic choices affect performance and where the

performance benefits of fast connectivity implementations come

from. Our paper provides the fastest GPU implementations of con-

nectivity, which we obtain by combining many combinations of

algorithmic choices that prior work did not explore. Building high-

performance implementations of these optimizations and combin-

ing them is key to achieving high performance. We believe that our

proposed techniques can be integrated into graph processing com-

pilers and other frameworks to significantly improve performance.

The remainder of the paper is organized as follows. Section 2

discusses graph terminology and prior work. Section 3 describes

the design choices in GConn, and their relation to prior work. We

perform a comprehensive evaluation of our implementations in

Section 4, and conclude in Section 5.

2 NOTATION, PRELIMINARIES, AND PRIOR
WORK

Graph Notation and Formats. In this paper, we focus on undi-

rected, unweighted graphs, which we denote as G = (V , E). V and

E are the set of vertices and edges, and n = |V | andm = |E | are
the number of vertices and edges, respectively. We consider two

graph formats, coordinate list (COO) and compressed sparse row

(CSR), with 0-based index notation (i.e., each vertex is labeled with

a unique identifier in the range [0, . . . ,n − 1]). The COO format

is represented using an array of edges, where each edge contains

a source and a destination vertex. The CSR format contains two

arrays, Offsets and Edges, of lengths n + 1 andm, respectively. The

edges for vertex i are stored in Offsets[i], . . . ,Offsets[i + 1] − 1, and
Offsets[n] =m, and we assume they are in sorted order.

Graph Connectivity Problems. A connected component (CC)
in G is a maximal set of vertices in which each pair of vertices

in the component is connected by a path. A connected compo-

nents algorithm computes a vertex label labels(v) for each v ∈ V .
Two vertices u,v ∈ V are in the same component if and only if

labels(u) = labels(v). A connectivity query returns true if and

only if two input vertices belong to the same component. A span-
ning forest (SF) maintains a connected tree for each connected

component. A breadth-first search (BFS) takes a graph with a

source vertex and returns an arrayAwhereA(v) stores the shortest
path between the source and v . If a vertex v is unreachable from

the source vertex, A(v) is set to infinity.

A union-find (disjoint set) data structure keeps track of a num-

ber of disjoint sets such that elements in each set have the same

labels. Each set is represented by a tree and each element in the

set has a parent pointer. The parent of a tree root points to itself.

In this paper, we assume that elements either point to themselves

or point to a parent with a smaller ID. The data structure provides

three operations: MakeSet, Union, and Find [25]. MakeSet(u)
generates a new tree that is composed of only one node u, which
is a root. Union(u,v) joins two trees, u and v , into a single tree.

Find(u) returns the label of the root of the tree containing u. Find
and Union operations can perform path compression during execu-

tion to speed up subsequent operations. Union-find can be used for

connectivity by creating a set for each vertex, and calling Union

on the endpoints of each edge. The labels of the vertices can be

obtained in the end by running Find on each vertex.

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

56

https://github.com/hochawa/gconn

In this paper, we also consider connectivity algorithms that main-

tain trees, where we can move vertices between trees without com-

pletely joining the trees (as needed for merging sets in union-find).

We refer to an algorithm as root-based if it only modifies the parent

pointers of tree roots to point to vertices in other trees (vertices

are still free to update their pointer to point to other vertices in the

same tree). All of the union-find algorithms are root-based.

Compare-and-Swap. In this paper, we use the atomic compare-
and-swap (CAS) primitive, which takes as input a memory loca-

tion, an old value, and a new value. If the value stored in thememory

location is equal to the old value, then the CAS atomically replaces

the old value with the new value, and returns true. Otherwise, the

CAS does not update the value, and returns false.

Prior work on GPUs. Soman et al. [82] provide GPU-CC, the
first high-performance implementation of the Shiloach-Vishkin al-

gorithm [77] on GPUs. Many libraries (e.g.,Gunrock [89], IrGL [71],
and Groute [13]) also adopt a variant of this approach. Note that

GPU-CC uses the COO format so the performance does not suffer

from poor load-balance on GPUs. GSWITCH [65] is a framework

for graph processing which provides different combinations of

optimization strategies for different graph algorithms, including

connectivity. Hence, GSWITCH allows tens of different combina-

tions of optimizations (e.g., different load-balancing strategies can

be combined with other optimization strategies). The best set of

optimizations is found using a machine learning approach. ECL-
CC [49] uses a concurrent union-find algorithm for connectivity

in the CSR format. Afforest [85] incorporates the k-out sampling

strategy (described in Section 3.3) that significantly improves per-

formance on many real-world graphs. Afforest uses the CSR format,

and uses the load-balancing technique from [13].

3 GConn OVERVIEW
We first describe the overview of ConnectIt in Section 3.1. Then

we provide an overview of the GConn framework in Section 3.2. In

Sections 3.3 and 3.4, we provide an overview of specific algorithmic

choices that we explore. Due to space constraints, we defer the

complete description and pseudocode for some of these methods to

the full version of our paper [45].

3.1 Overview of ConnectIt
ConnectIt is a framework for multicore connectivity algorithms

that outperforms existing state-of-the-art multicore algorithms and

generates various implementations for connectivity based on a two-

phase execution model: a sampling phase and a finish phase. In the

sampling phase, a subset of edges are inspected to partially form

connected components. Next, the most frequently occurring label

(Lmax) is identified. In the finish phase, only vertices whose label

is not equal to Lmax need to process their outgoing edges. Vertices

with label Lmax skip processing their edges, since any neighbor with

label Lmax is already in the same component, and any neighbor

with label other than Lmax will process an edge to this vertex. This

two-phase execution can significantly reduce the number of edges

processed. ConnectIt provides correctness proofs for the two-phase
execution. GConn is an extension of ConnectIt that we developed
for GPUs, which enables easy exploration of different algorithmic

choices.

Algorithm 1 GConn for Static Connectivity

1: procedure StaticConn(G(V , E), sample, finish, compress)
2: labels← InitLabel(V)
3: labels← SamplePhase(G , labels, sample, finish, compress)
4: Lmax ← GetMostFreqentLabel(labels)
5: labels← FinishPhase(G , labels, finish, comp)
6: labels← LabelFinalization(V , labels)
7: return labels

Algorithm 2 GConn for Spanning Forest

1: procedure SpanningForest(G(V , E), sample, finish, compress)
2: labels← InitLabel(V)
3: edges← InitEdge(V)
4: (labels, edges) ← SamplePhase(G , labels, sample, finish, compress)
5: Lmax ← GetMostFreqentLabel(labels)
6: (labels, edges) ← FinishPhase(G , labels, finish, comp)
7: return edges

3.2 GConn Framework
In this section, we give an overview of the GConn that we use to

obtain our GPU implementations for static connectivity, spanning

forest, and incremental connectivity.

StaticConnectivity.Algorithm 1 presents themain steps inGConn.
GConn takes in a graph in either CSR or COO format, as well as

parameters for the sampling algorithm (sample), the finish algo-

rithm (finish), and the compression algorithm (compress). The label
of each vertex is initialized to its own ID on Line 2, and the sam-

pling phase is performed on Line 3. On Line 4, the most frequently

occurring label (Lmax) is identified from the result of the sampling

phase. On Line 5, GConn performs the finish phase, processing

edges of vertices with label not equal to Lmax. Finally, on Line 6, we

finalize the labels of each vertex by assigning each vertex the label

of the root of its tree. We use C++ templates and inlined functions

to achieve high-performance implementations while keeping the

GConn implementations high-level. Our implementations modu-

larize the routines for the sampling algorithm, finish algorithm,

compression algorithm, the load-balancing strategy, and graph for-

mat, making it easy to test different implementations and add new

variants.

Static Spanning Forest. As shown in Algorithm 2, implemen-

tations for spanning forest are similar to those for connectivity;

GConn supports different combinations of sampling and finish

methods while generating correct spanning forest algorithms. In

conjunction with the label initialization (Line 2), we also maintain

the edges in the spanning forest using an auxiliary array of size

n (Line 3). The key idea behind our implementations of spanning

forest is to assign each edge of the discovered spanning forest to a

unique vertex that is one of the endpoints of the edge. This special

vertex is the root vertex in the union-find structure that updates

its parent pointer to point to another vertex, so that it is no longer

a root. Hence, the root-based algorithms for connectivity (to be

described in Section 3.4) can be converted to compute spanning

forests. The sampling phase simply creates a subset of the edges for

the spanning forest (Line 4), while computing partially connected

components and determining Lmax, as in static connectivity (Line 5).

After that, using Lmax, the finish phase computes the rest of the

edges for the spanning forest (Line 6). The finalization step is not

required for spanning forest since the edges of the spanning forest

have already been generated in previous steps, which eliminates

the overhead for the post-processing. In our experiments, we found

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

57

that spanning forest algorithms are 6% faster on average than their

static connectivity counterpart.

Incremental Connectivity. As many real-world graphs are be-

ing updated frequently, many connectivity algorithms have been

proposed for dynamic graphs [1, 28, 30, 64, 76, 80]. Many of our

algorithms are a natural fit for the incremental setting, where edges
are inserted but not deleted. We designed GConn to support incre-

mental connectivity (and spanning forest) algorithms that receive

batches of operations consisting of edge insertions and connectiv-

ity queries that can be executed in parallel. We will describe how

GConn supports incremental connectivity algorithms in Section 3.6.

3.3 Sampling Algorithms
As done in ConnectIt [29], we decompose connectivity algorithms

into the sampling and finish phases. The sampling phase traverses

a subset of edges in the graph to update the labels of vertices. The

sampling phase can reduce the number of edges inspected in the

finish phase, since in practice we expect that a large fraction of

the vertices will already be settled in the Lmax component after

applying the sampling phase. All connectivity algorithms in the

literature today, except forAfforest [85], only support a finish phase.
We implement sampling for graphs in CSR format due to the ease

of skipping over all edges for particular vertices (i.e., the ones

with label Lmax after sampling). Below we introduce the different

sampling methods implemented in GConn. We discuss them in

the context of connectivity, although they are used similarly in

spanning forest. Pseudocode for these methods can be found in the

full version of our paper [45].

k-out Sampling. Given a parameter k , k-out sampling computes

connected components on a sampled graph constructed by uni-

formly sampling k edges out of each vertex [44]. Sutton et al. [85]

use a type of k-out sampling strategy where the first k edges out

of each vertex are used. The vertices obtain labels as a result of

running a parallel connected components algorithm on the sampled

graph. In practice, after applying k-out sampling, many of the ver-

tices in the largest connected component will have the same label,

since many real-world graphs have a single massive component

that most vertices will be a part of in the sampled graph. In GConn,
we implemented several variants of k-out sampling for different

values of k , and found that taking the first 2 edges, as in [85], gave

the best performance overall. Taking the first 2 edges per vertex

enabled us to label most of the vertices in the largest component

with the final label, and minimized the overall number of edge in-

spections during the sampling and finish phases. Moreover, since in

many real-world graphs, the edges for a vertex are sorted and if all

vertices choose their first two edges (neighbors), there are likely to

be many shared neighbors, which improves locality and increases

the size of the large component found. For running connectivity

on the subgraph, we use different variants of union-find (discussed

in Section 3.4).

Hook-Based Search (HB) Sampling. Inspired by ECL-CC [49],

we designed the hook-based search (HB) sampling approach to

potentially reduce the number of edge traversals compared to k-out
sampling. This approach uses a union-find structure tomaintain ver-

tex labels. First, each vertex v inspects its smallest (i.e., first) neigh-

borw , and updates its label to labels(v) = min(labels(v), labels(w)).

This step is efficient since there is no contention. Second, for all

vertices that are still roots (i.e., labels(v) = v), we inspect their

first N edges and apply the union operation to these edges. The

goal of these steps is to minimize the total number of roots after

sampling, since fewer roots mean that the graph is more connected.

This approach can potentially require fewer edge traversals than

k-out sampling for k ≥ 2 if there are few roots after the first step.

Breadth-First Search (BFS) Sampling. In breadth-first search

(BFS) sampling, we run a BFS from a chosen source vertex, which

discovers the connected component of this source. If the graph has

a massive connected component (containing a large fraction of the

vertices), we have a high probability of finding the largest connected

component. Connected component algorithms typically incur a

large overhead in a concurrent setting, whereas BFS with idempo-

tent operations can incur a smaller overhead [66]. Furthermore, the

performance of BFS can be improved using direction-optimizing to

reduce unnecessary edge traversals for many real-world graphs [9].

In our BFS sampling strategy, we applied a BFS from a source ver-

tex, which we chose by sampling a subset of vertices and using the

vertex with the largest degree from the sample. This idea was used

by Slota et al. [81] to speed up label propagation.

3.4 Finish Algorithms
Here we introduce the finish algorithms in GConn. Again, we dis-
cuss them in the context of connectivity, but they are applied simi-

larly in spanning forest. Our algorithms are min-based algorithms,

where vertices maintain labels, propagate labels to other connected

vertices, and keep the minimum label received. When the algo-

rithms converge, vertices will have the same label if and only if

they are in the same component. Pseudocode for our algorithms

can be found in the full version of our paper [45].

Union-Find. Union-find algorithms are a special case of min-

based algorithms that use a disjoint set data structure to main-

tain and propagate labels. GConn includes a broad set of concur-

rent union-find algorithms that are obtained by combining dif-

ferent union operations with different path compression strate-

gies, all of which are root-based algorithms. In particular, it con-

tains concurrent GPU implementations of union used in Rem’s

algorithm (Union-Rem-Lock [73]), randomized linking by index

(Union-Async [52]), and randomized linking by rank (Union-JTB
[53]). Note thatUnion-Async andUnion-JTB are lock-free compare-

and-swap (CAS) implementations, whereas Union-Rem-Lock is a
lock-based implementation. Spin-locks are used inUnion-Rem-Lock,
which can significantly degrade parallelism on GPUs [32], so we

also implemented a lock-free version using CAS (Union-Rem-CAS).
We also implement two variations of Union-Async: Union-Early,
which traverses the paths of the two inputs simultaneously and

terminates once a common node is reached [52]; and Union-Hooks,
which performs CAS operations on an auxiliary hooks array so

that writes to the labels array are uncontended (on the other hand,

Union-Async directly performs CAS operations directly on the

labels array). All of our union operations link from larger to smaller

ID to ensure that there are no cycles. Find is implemented by

traversing to the root of the tree of the input vertex.

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

58

In our implementations, path compression is done on-the-fly

when calling either Union or Find, and GConn includes five op-

tions: no path compression, path-splitting, path-halving, full path

compression, and path-splicing. We describe these operations in

detail in the full version of our paper [45]. Each union operation

can be combined with a subset of these path compression rules.

ConnectIt[29] proves which of the combinations are valid, and

GConn supports the valid combinations from [29].

All of the implementations are asynchronous, meaning that

Union and Find calls can be executed concurrently without syn-

chronization. Furthermore, all of the implementations, except for

Union-Rem-Lock, are wait-free. As far as we know, none of the

variants of union-find above have been implemented for GPUs in

the literature. The only union-find variants that have been imple-

mented on GPUs are ECL-CC [49] and Afforest [85]. ECL-CC [49]

implements a union-find algorithm, which uses the Union-Async
rule, but has a separate path compression step to fully compress the

paths, which requires synchronization. Afforest [85] implements a

variant of the classic Shiloach-Vishkin algorithm [77]. Their algo-

rithm also has a separate compression step, and requires synchro-

nization. Both ECL-CC and Afforest are root-based algorithms. We

also implemented these algorithms using GConn.
OtherMin-based Algorithms. Besides the union-find algorithms

previously described, we also implement the following min-based

algorithms in GConn: Shiloach-Vishkin (SV) algorithms [3], Liu-

Tarjan (LT) algorithms [62], Stergiou’s algorithm [83], and the Label

Propagation (LP) algorithm [78]. These other min-based algorithms

generalize the union-find algorithms by allowing a vertex v in tree

T to be moved to another treeT ′, without requiring that all vertices
inT be moved toT ′. The algorithms still link from larger to smaller

ID to prevent cycles.

The SV algorithm is a classical parallel connectivity algorithm,

and many variants of it have been proposed in the literature, e.g., [3,

5, 10, 13, 24, 36, 65, 71, 82, 89, 92]. Besides Afforest, all other GPU
implementations [13, 65, 71, 82, 89] are based on a GPU implemen-

tation by Soman et al. [82]. Soman et al.’s algorithm alternates be-

tween hooking from smaller to larger ID and from larger to smaller

ID (the idea was originally proposed by Greiner [36]), but does

not guarantee that only roots are hooked. We also implemented a

root-based variant of SV, where on every round each vertex uses

an atomic minimum operation to update their neighbors’ labels,

followed by full path compression via pointer jumping.

The LT algorithms are generated by combining several simple

rules about how to update the labels array by using edges to transfer
connectivity information. The updates are done using atomic min

operations. In their paper [62], only five algorithms are considered,

but ConnectIt supports 16 variants by considering more combina-

tions of rules (all are min-based, and 6 variants are root-based as

well). Stergious’s algorithm [83] is very similar to one of the LT

variants, but it maintains two labels arrays, one for the previous
iteration and one for the current iteration.

Many implementations and frameworks for connectivity adopt

the LP algorithm, including [69, 78, 81]. In each round of the LP

algorithm, the labels corresponding to the endpoints of each edge

are compared, and if they are different, the larger label updates

0

0.6

1.2

1.8

co
PapersD

BLP

cit
-Patents

road_usa

so
c-L

ive
Journal1

ljo
urnal-2

008

delaunay_
n24

europe_osm

hollyw
ood-2009

kro
n_g5

00-lo
gn

21

co
m-O

rku
t

indoch
ina-2004

uk-2002

tw
itte

r7

co
m-Fr

iendste
r

Sp
ee

du
p

ov
er

 B
as

el
in

e

Graph

Base Base+CSR-C
Base+CSR-C+ER Base+CSR-C+ER+VG

Figure 2: The speedup of adding each optimization tech-
nique against Baseline for Union-Async with path compres-
sion and k-out sampling, which is the fastest connectivity
variant on average. The performance of each graph is nor-
malized to Baseline.

itself to be equal to the smaller label. The LP algorithm terminates

when there is a round in which no labels are updated.

3.5 Iterative GPU Optimizations
This section describes three key GPU optimizations—CSR coalescing
(CSR-C), edge reorganization (ER), and vertex gathering (VG)—that
we apply to our implementations in GConn. For practical purposes,
we only consider the optimization strategies that improve the per-

formance of the fastest GConn implementations. Since we found

Afforest [85] to be the fastest existing implementation in most cases,

we identify the performance bottlenecks in Afforest, and show how

to iteratively apply our optimizations to achieve the performance of

our fastest implementations. We first substituted their union-find

implementation with Union-Async, which we found to be faster,

and use this as the baseline. Figure 2 shows how performance im-

proves over the baseline (Base) with each additional optimization

applied.

CSR Coalescing (CSR-C). We identified that the sampling phase

requires a significant amount of time in Afforest (35.15–98.63%,
with a median of 88.80%), as shown in our experimental evaluation

in Section 4.2. During k-out sampling with k = 2, Afforest has
two sub-phases, the first which traverses the first edge out of every

vertex, and the second which traverses the second edge out of every

vertex. This strategy traverses the scattered entries in the CSR array

twice, which wastes memory bandwidth. Since the first two edges

of a vertex are contiguous in the memory layout, the two edges of

a vertex can be processed simultaneously by two adjacent threads,

which makes memory accesses for the CSR array coalesced and

halves the data volume needed to access the CSR array. We observe

that applying this optimization on top of the baseline (Base+CSR-C
in Figure 2) improves performance by an average of 20.68%.

Edge Reorganization (ER). During k-out sampling, we found

that CAS operations make the warp-efficiency on the GPU very

low due to only a few threads in a warp being active. For these

algorithms, if two edges having the same endpoint try to update a

memory location at the same time, then the updates can become

serialized. This is often the case in CSR format since edges incident

to a single vertex are processed in the same warp. To alleviate

this issue, we could have each thread read the first two edges of a

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

59

vertex and process them sequentially; however, this would cause

threads to have scattered accesses to the CSR edge array, which

decreases memory efficiency. The edge reorganization optimization

groups threads into pairs, where each pair reads the two edges

for one vertex together, and then reads the two edges for another

vertex together. Each time, the pair of threads reads contiguous

locations in memory. Then, using warp shuffling [18, 84] the four

edges can be reorganized so that the edges from the same vertex

are contiguous in memory, enabling each thread to process the two

edges of a vertex serially to avoid CAS operations. Base+CSR-C+ER
in Figure 2 shows the performance improvement after applying ER

on top of CSR-C. We achieve an average performance improvement

of 28.79% over the baseline.

Vertex Gathering (VG). The previous optimizations improve the

performance of the sampling phase. However, we found that the

performance of the finish phase can also be improved. In the kernel

for the finish phase in Afforest, each thread accesses entries in the

labels array in a cyclic fashion, and if the entry of the i’th label is

not equal to Lmax, then the edges of vertex i are processed in a load-

balanced fashion by distributing the edges across threads. However,

as we show in Section 4.2, only a small subset of vertices have labels

not equal to Lmax. Therefore, many threads will be idle during the

finish phase, which degrades performance. To improve performance

in the finish phase, we first aggregate the vertices whose labels are

not equal to Lmax into an active vertex set, and in the finish phase,

each thread reads a vertex in the active vertex set, and distributes the

edges for load-balancing. We show the performance improvement

of adding the vertex gathering optimization in Base+CSR-C+ER+VG
of Figure 2. With all three optimizations, the overall performance

is 41.55% faster than the baseline on average.

3.6 Incremental Connectivity Support
Algorithm 3 GConn for Incremental Connectivity

1: procedure Incremental(G(V , E), sample, finish, compress)
2: labels← StaticConn(G(V , E), sample, finish, compress)
3: for B ∈ Batches do
4: (labels, query_results) ←

FinishPhaseBatch(B, labels, finish, comp)

This section describes how GConn supports incremental con-

nectivity given batches of updates. We support incremental connec-

tivity for the root-based algorithms, and the pseudocode is shown

in Algorithm 3. We first generate the initial graph (which can be

empty) by initializing the labels array for the vertices in the graph

(Line 2) using the StaticConn procedure from Algorithm 1. We

assume that the labels array is large enough to hold all of the ver-

tices that will be encountered, but we only initialize the entries

for vertices present in the initial graph. Batches of insertions and

connectivity queries arrive in an online fashion, and are processed

using one of the finish algorithms on just the batch (Lines 3–4).

The batches are given in COO format, which is a natural input for

streaming algorithms. However, sampling is inefficient for graphs

in COO format, and hence we do not use sampling for incremental

algorithms.

Each batch B is composed of a mix of inserts and queries. For

an update, FinishPhaseBatch updates the labels array as Finish-

Phase from Algorithm 1 does. Furthermore, a thread that inserts a

new vertex will initialize its entry in the labels array by acquiring

a spin lock. For a query, FinishPhaseBatch calls the Find func-

tion (one of the compression algorithms GConn provides) for both

query endpoints to check whether they are in the same component.

The query results (query_results in Line 4) are stored in a bitvector:

the i’th entry in the bitvector is true if the i’th edge of B is a query,

and the two endpoints of it are in the same component.

As shown in Algorithm 3, the previous batches are never in-

spected because the root-based algorithms guarantee correctness

without requiring inspecting edges in a previous batch [29]. The

root-based algorithms incorporated into GConn are all union-find

algorithms used for static connectivity, Shiloach-Vishkin, and the

root-based Liu-Tarjan algorithms. However, whenUnion-Rem-CAS
and Union-Rem-Lock with SpliceAtomic is used, the updates and
queries need to be processed separately to guarantee correctness [29].

4 EVALUATION
In this section, we provide an experimental evaluation and analysis

of GConn. All numbers reported in this section are the median of

five runs on the Volta machine unless noted otherwise. We found

that the trends for spanning forest are similar to the trends for

connectivity, with our spanning forest implementations obtaining

an average speedup of 6% over the connectivity implementations

due to not requiring the label finalization step.

Overview of Results. The results of this section can be summa-

rized as follows:

• We provide an experimental evaluation of GConn connectivity

implementations in the no sampling setting (Section 4.1). With-

out sampling, Union-Async and Union-Rem-CAS are the fastest

implementations.

• In the sampling setting, we provide a detailed analysis of different

sampling procedures and find thatk-out sampling or HB sampling

can significantly improve the performance unless the average

degree of vertices is low (Section 4.2).

• The fastest GConn algorithms consistently and significantly out-

perform state-of-the-art GPU connectivity implementations (Sec-

tion 4.3).

• GConn incremental connectivity algorithms can achieve a through-

put of tens of billions of edges per second. We also evaluate the

throughput for different batch sizes, and ratios of insertions to

queries (Section 4.4). In the incremental setting, Union-Async is
usually the fastest implementation.

• Compared to ConnectIt, a framework for CPU connectivity algo-

rithms, GConn achieves 8.26–14.51x speedup for static connec-

tivity and 1.85–13.36x speedup for incremental connectivity. Our

analyses also show GPUs are an attractive platform for connec-

tivity algorithms in terms of both speed and cost (Section 4.6).

Experimental Setup. Our GPU evaluation is performed on two

machines. The first is an NVIDIA Tesla V100, which is a Volta gener-

ation GPU with 32GB that offers a 900 GB/sec memory bandwidth,

6MB of L2 cache, and 128KB of L1 cache per Streaming Multipro-

cessor (SM) with a total of 80 SMs. The second is an NVIDIA TITAN

Xp, which is a Pascal generation GPU with 12GB that offers a 547.6

GB/sec memory bandwidth, 3MB of L2 cache, and 48KB of L1 cache

per SM with a total of 30 SMs. All implementations are compiled

with NVCC v10.0 using the -O3 and --use_fast_math flags.

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

60

Dataset n m Diam. Num. Comps. Largest Comp.

coPapersDBLP 540.49K 30.49M 15* 1 540.49K

cit-Patents 3.77M 33.04M 20* 3,627 3.76M

road_usa 23.95M 57.71M 6,809 1 23.95M

soc-LiveJournal1 4.85M 85.70M 16 1,876 4.84M

ljournal-2008 5.36M 99.03M 31* 75 5.36M

delaunay_n24 16.78M 100.66M 1,720* 1 16.78M

europe_osm 50.91M 108.11M 19,314* 1 50.91M

hollywood-2009 1.14M 112.75M 11 44,508 1.07M

kron_g500-logn21 2.10M 182.08M 6 553,159 1.54M

com-Orkut 3.07M 234.37M 9 1 3.07M

indochina-2004 7.41M 301.97M 26 295 7.32M

uk-2002 18.52M 523.57M 29* 38,359 18.46M

twitter7 41.65M 2.41B 23* 1 41.65M

com-Friendster 65.61M 3.61B 32 1 65.61M

Table 1: Graph inputs, including number of vertices (n),
edges (m), diameter, number of connected components, and
the largest connected component. The graphs are symmet-
ric, and edges are counted once in each direction. For graphs
on which we were unable to compute the exact diameter, we
compute the effective diameter (marked with *), which is a
lower bound on the actual diameter.

0

2

4

6

8

co
PapersD

BLP

cit
-Patents

road_usa

so
c-L

ive
Journal1

ljo
urnal-2

008

delaunay_
n24

europe_osm

hollyw
ood-2009

kro
n_g5

00-lo
gn

21

co
m-O

rku
t

indoch
ina-2004

uk-2002

tw
itte

r7

co
m-Fr

iendste
r

slo
w

do
w

n
ov

er
 fa

st
es

t

Graph

Union-Async Rem-CAS
JTB Union-Hooks
Rem-Lock Union-Early

12.39 10.31

Figure 3: The slowdown over the fastest union-find variants
for each graph in the no-sampling setting.

Graph Data. To show how GConn performs on various graphs of

different scales, we selected all publicly-available graphs used in

ECL-CC [49], EvoGraph [76], and ConnectIt [29] that have more

than 30M edges and fit in the GPU memory. Table 1 shows the

details of our graph inputs, including the number of vertices and

edges, the graph diameter, the number of connected components,

and the size of the largest component. Our inputs include many

Web and social network graphs that have low diameters, as well

as road networks that have high diameters. All graphs that we use

were obtained from SuiteSparse [26] or SNAP [60]. We symmetrized

all of the graphs.

4.1 Static Parallel Connectivity without
Sampling

In this section, we evaluate our GConn implementations for static

connectivity algorithms in the No Sampling setting.

Evaluation of Union-Find Variants. The first group of rows in

Table 2 shows the results of the fastest implementations of each

algorithm in the no sampling setting.

Figure 3 shows the slowdown of the fastest of each of the union-

find variants over the fastest overall variant for each graph. For

each graph, six bars are listed in order of average performance.

0
4000
8000
12000
16000
20000

0
4
8

12
16
20

kro
n_g5

00-lo
gn

21

co
m-O

rku
t

hollyw
ood-2009

co
PapersD

BLP

so
c-L

ive
Journal1

cit
-Patents

tw
itte

r7

indoch
ina-2004

uk-2002

ljo
urnal-2

008

co
m-Fr

iendste
r

delaunay_
n24

road_usa

europe_osm

Di
am

et
er

slo
w

do
w

n
ov

er
 fa

st
es

t

Graph

LT SV LP diam.
269 972 3632

Figure 4: Slowdowns for other min-based algorithms com-
pared to the fastest union-find variants for each graph in
the no-sampling setting. The graphs are sorted in ascending
order of diameter.

From Figure 3, we observe that the fastest implementation is ei-

ther Union-Async or Union-Rem-CAS in the No Sampling setting.

Union-Rem-CAS is 1.02x slower on average than Union-Async
across all graphs, and Union-JTB is 1.26x slower on average than

Union-Async due to the usage of 64-bit CAS operations. Union-
Hooks is designed to reduce the overhead for atomic operations,

but it is 1.44x slower on average than Union-Async due to a costly

memory barrier needed to avoid race conditions. Union-Rem-Lock
is 3.81x slower on average than Union-Rem-CAS due to the poor

performance of spin locks on GPUs.

Evaluation of Other Min-based Algorithms. Figure 4 shows

the slowdown of the other min-based algorithms compared to the

fastest variant across all algorithms in the no-sampling setting. The

graphs that are sorted in order of increasing diameter (presented

with the red curve).

As shown in Figure 4, the other min-based algorithms are much

slower than the union-find algorithms because union-find algo-

rithms only inspect each edge at once, whereas the other algorithms

typically traverse edges multiple times, which leads to redundant

computation. The fastest Liu-Tarjan and Shiloach-Vishkin variants

are 3.72x and 5.19x slower on average than Union-Async in the

no-sampling setting, respectively. We have included the Stergiou
algorithm in the category of Liu-Tarjan algorithms as this algo-

rithm is similar to Liu-Tarjan algorithms; however, it is always

much slower than the fastest variant of Liu-Tarjan algorithms (up

to 66x slower).

As shown for the three graphs located on the far right in Figure 4,

the performance of LabelPropagation degrades significantly as the

diameter increases. This is because LabelPropagation needs a large

number of rounds to propagate the minimum label to all vertices,

and during that time most vertices are active. Even on low-diameter

graphs (diameter at most 32 in our experiments), LabelPropagation
is still 7.76x slower on average than the union-find algorithms

since LabelPropagation still requires multiple traversals per edge,

whereas the union-find algorithms do not.

As shown in Table 2, we also incorporate the finish algorithms

used in two fastest state-of-the-art works, ECL-CC [49] (denoted as

G_ECL-CC) and Afforest [85] (denoted asG_Afforest), intoGConn,
and evaluate them in Section 4.3.

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

61

Group Algorithm coPapers
DBLP

cit-
Patents road_usa soc-Live

Journal1
ljournal
-2008

delaunay
_n24

europe
_osm

hollywood
-2009

kron_g500
-logn21

com-
Orkut

indochina
-2004 uk-2002 twitter7 com-

Friendster

N
o
s
a
m
p
l
i
n
g

Union-Early 1.49 4.79 5.68 8.18 8.83 17.65 6.87 8.14 16.23 14.11 26.39 32.89 375.50 853.87

Union-Hooks 0.68 3.44 5.56 3.94 5.26 5.98 11.67 1.95 4.65 4.02 7.36 13.97 155.98 410.61

Union-Async 0.46 2.02 3.39 3.07 3.17 3.84 6.76 1.62 3.64 3.85 5.32 9.09 123.78 365.98

Union-Rem-CAS 0.45 1.88 3.83 2.98 3.20 4.09 5.90 1.53 3.60 3.70 5.39 9.26 133.46 369.59

Union-Rem-Lock 0.90 4.66 9.57 5.73 7.59 10.31 11.45 2.73 6.52 4.19 65.96 93.69 484.23 487.72

Union-JTB 0.53 2.84 5.53 3.70 3.68 5.29 10.85 1.96 5.23 5.78 6.40 11.07 130.01 400.17

Liu-Tarjan 1.20 6.73 12.13 7.72 11.27 12.60 31.23 4.69 12.39 10.16 21.53 31.44 464.76 998.77

Shiloach-Vishkin 1.47 13.05 15.65 12.23 17.17 18.63 34.49 7.57 15.93 34.09 35.01 47.73 1056.17 2066.00

LabelPropagation 2.57 8.98 3289.59 15.01 58.89 1032.09 2.14e4 6.18 12.50 18.58 79.25 112.74 1361.37 3646.96

G_ECL-CC 0.51 2.26 3.76 3.18 3.80 4.19 10.09 1.92 3.84 5.01 6.75 11.58 161.13 385.48

G_Afforest 5.96 23.07 4.01 25.46 42.12 6.70 19.07 85.02 91.66 97.24 43.12 73.80 143.75 1661.75

k
-
o
u
t
s
a
m
p
l
i
n
g

Union-Early 0.26 3.30 8.93 1.28 1.85 6.34 9.50 0.74 0.85 1.00 7.33 7.83 22.59 49.34

Union-Hooks 0.20 2.52 8.13 1.05 1.63 4.87 10.57 0.39 0.61 0.74 2.42 4.39 14.01 31.09

Union-Async 0.18 1.60 5.27 0.85 1.19 3.60 6.95 0.35 0.51 0.63 2.07 3.46 10.91 27.79

Union-Rem-CAS 0.16 1.98 5.98 0.86 1.38 3.44 7.78 0.33 0.53 0.62 1.86 3.52 12.81 44.87

Union-Rem-Lock 0.71 3.79 13.28 1.80 3.00 8.46 13.57 0.98 0.99 0.74 35.74 41.10 26.83 53.61

Union-JTB 0.24 2.31 6.97 1.27 1.75 4.66 13.38 0.47 0.65 0.86 2.95 5.04 13.80 32.20

Liu-Tarjan 1.29 11.56 20.71 3.07 13.96 15.19 40.17 5.20 13.05 0.65 20.20 26.76 41.69 522.27

Shiloach-Vishkin 1.55 18.88 21.35 12.68 17.37 17.42 47.61 8.46 15.99 33.79 32.47 67.94 1150.68 2059.18

LabelPropagation 2.28 16.44 8228.75 2.67 72.57 895.65 65136.83 8.32 18.65 0.60 103.27 134.05 27.01 163.80

G_ECL-CC 0.19 1.67 4.88 0.88 1.28 3.19 7.28 0.38 0.56 0.66 2.11 3.80 11.14 27.29

G_Afforest 0.24 4.72 5.63 1.25 4.40 3.81 9.58 0.84 2.41 0.80 2.79 5.60 13.46 31.84

H
B
s
a
m
p
l
i
n
g

Union-Early 0.41 2.59 17.79 1.03 1.86 48.33 25.42 1.48 0.76 0.49 12.95 17.26 12.62 19.26

Union-Hooks 0.24 1.75 12.45 0.70 1.41 7.37 16.78 0.43 0.64 0.50 3.00 5.99 9.90 17.97

Union-Async 0.24 1.47 8.60 0.67 1.22 5.95 14.99 0.41 0.57 0.49 2.60 4.97 9.12 17.75

Union-Rem-CAS 0.24 1.56 8.62 0.67 1.28 6.37 13.66 0.41 0.57 0.50 2.43 4.83 9.60 18.30

Union-Rem-Lock 1.51 2.39 14.37 8.16 1.90 9.63 17.11 0.60 1.59 0.49 10.60 20.95 11.78 19.09

Union-JTB 0.70 5.68 8.54 6.09 5.37 7.09 18.86 2.56 11.11 15.28 9.78 12.13 339.15 738.97

Liu-Tarjan 1.36 11.68 21.85 1.91 10.53 24.67 40.01 3.70 9.06 0.61 15.80 27.15 14.33 353.80

Shiloach-Vishkin 2.94 18.55 21.38 6.33 14.49 24.37 54.87 9.20 27.01 0.64 25.44 67.48 46.30 829.49

LabelPropagation 6.58 16.62 7943.94 2.22 73.01 982.00 6.65e04 8.24 19.12 0.57 97.24 125.14 24.71 123.77

G_ECL-CC 0.26 1.39 8.44 0.71 1.23 6.32 14.21 0.47 0.61 0.50 2.71 5.28 8.78 17.57
G_Afforest 0.26 2.85 8.04 0.73 2.03 9.12 13.80 0.55 1.14 0.50 3.56 6.22 10.83 17.75

B
F
S
s
a
m
p
l
i
n
g

Union-Early 1.34 2.39 409.15 2.10 2.67 90.27 1778.75 1.25 0.81 1.06 80.15 35.55 22.20 20.58

Union-Hooks 1.35 2.38 391.73 1.90 2.68 92.41 1652.54 1.22 0.80 1.03 79.23 32.24 22.19 20.56

Union-Async 1.32 2.40 390.92 1.93 2.68 92.91 1578.57 1.23 0.83 1.05 80.58 32.54 22.22 20.54

Union-Rem-CAS 1.34 2.38 397.09 2.07 2.78 90.25 1598.75 1.26 0.82 1.03 79.64 32.32 22.16 20.52

Union-Rem-Lock 1.32 2.38 399.62 2.06 2.74 92.41 1584.45 1.26 0.80 1.02 83.84 33.09 22.19 20.52

Union-JTB 1.36 2.53 406.20 2.21 3.06 104.46 1627.93 1.29 0.89 1.18 80.51 32.89 23.98 23.72

Liu-Tarjan 1.38 3.14 395.90 2.55 2.92 91.79 1659.59 1.44 1.04 1.10 81.54 35.14 22.57 21.19

Shiloach-Vishkin 1.41 3.07 401.61 2.50 2.90 97.07 1616.75 1.53 1.05 1.15 82.49 34.78 23.29 22.19

LabelPropagation 1.39 3.23 403.12 2.49 2.77 93.34 1626.54 1.51 0.95 1.07 89.03 40.99 22.35 20.86

G_ECL-CC 1.33 2.41 397.33 2.06 2.82 94.21 1631.24 1.24 0.83 1.06 81.36 32.57 22.20 20.51

G_Afforest 1.30 2.39 393.34 2.06 2.80 91.45 1625.83 1.30 0.83 1.06 83.19 32.84 22.18 20.48

E
x
i
s
t
i
n
g

a
l
g
o
r
i
t
h
m
s

GPU-CC [82] 2.77 9.74 22.85 10.18 31.5 22.83 46.38 21.38 34.04 21.25 44.96 49.01 417.25 x
GSWITCH [65] 1.07 4.5 21.03 7.06 9.24 8.22 38.39 6.82 7.45 7.54 13.46 26.1 x x
ECL-CC [49] 0.78 5.89 22.55 7.14 7.71 18.94 25.97 2.1 6.02 8.58 9.06 26.31 258.56 415.44

Afforest [85] 0.35 6.13 5.54 1.27 5.07 3.69 9.13 1.06 2.97 0.82 4.55 7.67 13.5 32.4

BFS-CC 1.33 721.59 577.38 277.35 8.51 89.33 1749.63 4267.22 5.07e04 0.96 133.77 3698.56 21.07 19.22

Table 2: Running times of implementations in GConn and state-of-the-art static connectivity algorithms in miliseconds on a
V100 GPU. We report running times for five groups: implementations with No sampling, k-out sampling, HB sampling, BFS
sampling, and existing algorithms. Within each of the first four group, we display the fastest variant for each graph in green.
For each graph, we also display the fastest variant across all groups in bold font. xmeans that we were unable to obtain results
due to the graph not fitting in the GPU memory for the given implementation.

4.2 Static Parallel Connectivity with Sampling
This section studies how our three sampling strategies affect per-

formance, in terms of their execution time and the quality of the

resulting sub-problem that they generate for the finish step in

GConn. We start by studying how k-out sampling performs.

Evaluation of k-out sampling. The second group of rows in Ta-

ble 2 presents the results of the fastest implementations of each

algorithm using k-out sampling. The fastest implementation is

Union-Async, Union-Rem-CAS, or G_ECL-CC; Union-Rem-CAS

is 1.03x slower on average than Union-Async, and we defer the

analysis for G_ECL-CC to Section 4.3.

Figure 5 shows how each sampling algorithm improves perfor-

mance. To see the performance improvement with respect to the

average degree of the vertices (i.e.,m/n), we sorted the graphs in
ascending order of the average degree.

For the union-find variants, except on the two road-network

graphs (road_usa and europe_osm), k-out sampling improves per-

formance over the unsampled versions by 6.16x on average due

to the significant reduction of edges that need to be inspected, as

we will show shortly. For the other min-based algorithms, other

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

62

0
20
40
60
80
100
120

0
2
4
6
8

10

europe_osm

road_usa

delaunay_
n24

cit
-Patents

so
c-L

ive
Journal1

ljo
urnal-2

008

uk-2002

indoch
ina-2004

co
m-Fr

iendste
r

co
PapersD

BLP

tw
itte

r7

co
m-O

rku
t

kro
n_g5

00-lo
gn

21

hollyw
ood-2009

m
/n

sp
ee

du
p

ov
er

 n
o

sa
m

pl
in

g

Graph

k-out sampling
HB sampling
BFS sampling
m/n

17.87
20.84
13.41

11.34 14.10

Figure 5: The speedup of the best variant of each sampling
algorithm over the best variant in the no-sampling setting.
The graphs are sorted in ascending order ofm/n (i.e., the av-
erage degree).

than on the two road-network graphs, k-out sampling improves

performance by 4.61x on average over the unsampled versions.

As shown in Figure 5, when the average degree is small (e.g.,

road_usa and europe_osm), k-out sampling as well as other sampling

algorithms degrades performance. This is because most of the edges

in the graph get inspected in the sampling phase, and there is

additional overhead to split the computation across two phases. In

general, k-out sampling decreases the number of edge inspections

by up tom − kn, and so as the average degree increases, we can

expect a higher potential performance improvement. As shown in

Figure 5, k-out sampling usually shows better performance when

the average degree is large.

Evaluation of HB sampling. The third group of rows in Table 2

presents the fastest variants of each algorithm using HB sampling

with a default value of N = 4, which we found to work the best

on average across our input graphs.
1
Unlike k-out sampling, HB

sampling does not always improve performance; in many cases,

the performance is degraded. The overall trend of HB sampling

is similar to that of k-out sampling. As shown in Figure 5, when

the average degree of vertices is small, HB sampling significantly

degrades performance, and otherwise HB sampling can greatly

improve performance. We will discuss how HB sampling compares

with our other sampling schemes shortly.

Evaluation of BFS sampling. The fastest variants using BFS sam-

pling are presented in the fourth group in Table 2. The effectiveness

of BFS sampling is dependent on the diameter of an input graph

and the parameters for the direction-optimizing BFS. As shown

in Figure 5, for the high-diameter graphs (the three graphs on the

far left), BFS sampling degrades performance by 24.59x on average

over the unsampled versions due to the very small active vertex set

for each BFS iteration and since a GPU kernel must be launched for

each iteration. For the other graphs, BFS sampling achieves a 0.07–

174.87x speedup over the unsampled versions. Note that as shown

in the last row of Table 2, we also implemented the BFS-CC algo-

rithm introduced in Ligra [78], in which a BFS is repeated on each

new component until all components are found. BFS-CC performs

1
Although the optimal value of N can vary based on the input graph, determin-

ing the optimal value on a per-graph basis would incur significant overhead, which

would outweigh the benefits of using the optimal parameter as opposed to the default

parameter.

Graph BFS

Time

BFS

Cov

BFS

IC

KOut

Time

KOut

Cov

KOut

IC

HB

Time

HB

Cov

HB

IC

coPapersDBLP 60.3% 100.0% 0.0% 46.7% 98.9% 0.2% 97.2% 89.1% 5.4%

cit-Patents 83.9% 99.7% 0.0% 90.1% 98.2% 0.6% 99.5% 96.0% 2.3%

road_usa 86.8% 100.0% 0.0% 85.4% 95.9% 3.6% 83.1% 0.0% 100.0%

soc-LiveJournal1 86.9% 99.9% 0.0% 91.0% 99.9% 0.0% 92.1% 99.5% 1.1%

ljournal-2008 92.1% 100.0% 0.0% 83.7% 99.3% 0.2% 92.0% 94.9% 2.5%

delaunay_n24 92.3% 100.0% 0.0% 76.9% 100.0% 0.0% 89.3% 0.0% 100.0%

europe_osm 92.4% 100.0% 0.0% 79.2% 100.0% 0.0% 92.4% 0.0% 100.0%

hollywood-2009 55.1% 93.8% 0.1% 42.0% 91.0% 0.5% 99.8% 87.4% 2.0%

kron_g500-logn21 93.5% 73.6% 0.0% 41.2% 73.6% 0.0% 99.7% 73.5% 0.0%

com-Orkut 74.4% 100.0% 0.0% 54.4% 100.0% 0.0% 97.8% 100.0% 0.0%

indochina-2004 90.3% 98.7% 1.3% 42.5% 86.8% 7.4% 99.5% 63.2% 24.4%

uk-2002 95.9% 99.7% 0.1% 90.2% 92.0% 4.9% 88.2% 72.4% 20.8%

twitter7 93.4% 100.0% 0.0% 39.4% 100.0% 0.0% 99.7% 99.5% 0.0%

com-Friendster 98.0% 100.0% 0.0% 95.2% 100.0% 0.0% 90.3% 99.9% 0.0%

Table 3: This table presents how effective the sampling strat-
egy is for each of our graph inputs. The Time columns show
the percentage of sampling time to the total execution time.
The Cov columns show the percentage of vertices that are in
the largest connected component after the sampling phase.
Hence, the edges incident to these vertices are not inspected
in the finish phase. The IC columns show the percentage of
inter-component edges that will be processed in the finish
phase.

0
0.5

1
1.5

2
2.5

3
3.5

4

coPapersDBLP

cit-Patents

road_usa

soc-LiveJournal1

ljournal-2008

delaunay_n24

europe_osm

hollyw
ood-2009

kron_g500-logn21

com
-O

rkut

indochina-2004

uk-2002

tw
itter7

com
-Friendster

N
or

m
al

ize
d

nu
m

be
r

of
 e

dg
e

in
sp

ec
te

d

Graph

13.42 5.12 11.46 5.1618.31

BFS
HBk-out

0
0.5

1
1.5

2
2.5

3
3.5

4

coPapersDBLP

cit-Patents

road_usa

soc-LiveJournal1

ljournal-2008

delaunay_n24

europe_osm

hollyw
ood-2009

kron_g500-logn21

com
-O

rkut

indochina-2004

uk-2002

tw
itter7

com
-Friendster

N
or

m
al

ize
d

th
e

nu
m

be
r

of
 e

dg
e

in
sp

ec
tio

n

Graph
Union-Find Label Init. BFS

Figure 6: The normalized number of edges inspected for
each sampling strategy. The first bar for each graph (green
only) corresponds to the number of edge inspections for k-
out using union-find. The second bar for each graph (red
and green) shows the number of edge inspections in the la-
bel initialization step, and the number of edges inspected by
the union-find step ofHB sampling respectively. Finally, the
blue bar shows the number of edges inspected in BFS sam-
pling.

poorly due to the GPU kernel launch overhead for high-diameter

graphs and for graphs with many connected components.

Comparing Different Sampling Strategies. Table 3 shows how
many vertices and edges are covered by each sampling algorithm.

As shown in Table 3, since BFS traverses all vertices connected to a

source vertex likely to be in the largest connected component, the

fraction of vertices covered (Cov) and the fraction of remaining

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

63

inter-component edges (IC) are maximized and minimized, respec-

tively. Unfortunately, as shown in Table 2, BFS sampling takes

significantly longer than other sampling algorithms, especially for

the high-diameter graphs (delaunay_n24, road_usa, and europe_osm)

due to the kernel launch overhead and low parallelism on these

graphs. It also inspects significantly more edges than the other two

schemes, as we will show shortly. Although BFS sampling usually

takes longer than k-out sampling, we observe that Cov and IC for

BFS sampling and k-out sampling are very similar on our inputs.

The sampling time for HB sampling is much lower than for the

others due to the reduced number of edge inspections, but for some

graphs, CoV and IC are significantly lower than for the other two

schemes (especially for high-diameter graphs). The Time columns

in Table 3 show the ratio of the sampling time to the total execution

time. We see that the sampling phase takes most of the time, and

hence, the design of an efficient, high-quality sampling algorithm

is of paramount importance.

Figure 6 shows the normalized total number of edges inspected

during the execution of each sampling algorithm. For each graph,

Figure 6 shows three bars. The first bar (green only) corresponds

to the number of edges inspected by k-out sampling using union-

find. The second bar (red and green) shows the number of edges

inspected during the label initialization step, and the union-find

step of HB sampling, respectively. Finally, the third bar (blue) shows

the number of edges inspected by BFS sampling. From Table 2 and

Figure 6, we observe that BFS sampling is never the fastest, and HB

sampling is the fastest when the number of edge inspections for

union-find is small during the sampling phase. In this case, the total

number of edge inspections is also minimized. For com-Friendster,
as shown in Table 2, BFS sampling is faster than k-out sampling;

the number of edge inspections with BFS sampling is usually the

highest, but for com-Friendster, the total number of edge inspections

for both BFS sampling and k-out sampling is similar, and thus BFS

sampling is faster because the edge inspection step performed by

the BFS (a single CAS on one of the endpoints) is much faster

than the edge inspection by a union-find algorithm (a loop that

must potentially run multiple times due to contention). As seen in

Figures 5 and 6, for some graphs (e.g., indochina-2004, which has a

speedup of 0.07x), the number of edge inspections is much higher

for BFS, leading to significant performance degradation.

4.3 Comparison with State-of-the-art
This section compares our implementations with current state-of-

the-art connectivity implementations on GPUs, which are shown

in the last group of rows in Table 2. Figure 7 presents the normal-

ized execution time over the fastest current state-of-the-art im-

plementation for each graph with our fastest variant without and

with sampling. Note that we did not report results for Groute [13],
Gunrock [88], and IrGL [71] as they are outperformed by ECL-CC
[49], which we compare against. We also tried the strategy by Cong

and Muzio [24], but it never gave the best performance.

GPU-CC [82] andGSWITCH [65].GPU-CC adopts a classic SV al-

gorithm,which turns out to be slow as shown in Figure 7. Our fastest

implementations without sampling and with sampling are 7.06x and

26.68x faster on average than GPU-CC, respectively. GSWITCH
also applies a classic SV algorithm, but outperforms GPU-CC due

0
1
2
3
4
5
6

co
PapersD

BLP

cit
-Patents

road_usa

so
c-L

ive
Journal1

ljo
urnal-2

008

delaunay_
n24

europe_osm

hollyw
ood-2009

kro
n_g5

00-…

co
m-O

rku
t

indoch
ina-2004

uk-2002

tw
itte

r7

co
m-Fr

iendste
r

N
or

m
al

ize
d

sp
ee

du
p

Graph

GPU-CC GSWITCH
ECL-CC Afforest
GCONN (NS) GCONN (S)

Figure 7: The normalized speedup over GPU-CC of current
state-of-the-art implementations/libraries and GConn (with
and without sampling). GCONN(NS) and GCONN(S) show
the normalized speedup without and with sampling, respec-
tively.

to several additional optimizations. Our fastest implementations

without sampling and with sampling are 3.24x and 8.88x faster on

average than GSWITCH.
ECL-CC [49]. ECL-CC is faster than bothGPU-CC andGSWITCH
due to using a more efficient algorithm based on union-find. As

shown in Figure 7, our fastest implementations without sampling

and with sampling are 2.78x and 10.15x faster on average than

ECL-CC, respectively, mainly because we use a more efficient load-

balancing strategy, and more efficient find and compress rules.

We also implemented the finish algorithm G_ECL-CC that is

used in ECL-CC. As shown in Table 2,G_ECL-CCwithout sampling

is 2.30x faster on average than ECL-CC. The speedup comes from

using a different load-balancing strategy; in ECL-CC, one thread
handles all edges of a vertex with degree at most 16, which can

lead to significant load-imbalance. In contrast,GConn enables those
edges to be processed in a load-balanced fashion using a variation of

a strategy by Merrill et al. [66] that we designed. Without sampling

and with sampling,G_ECL-CC is 1.19x and 1.04x slower on average

than our fastest variants, respectively.

Afforest [85]. Afforest also implements a root-based algorithmwith

k-out sampling. As shown in Figure 7, our fastest implementations

without sampling are 1% slower on average than Afforest with sam-

pling due to the fact that many edges are not inspected in Afforest.
Our fastest implementations with sampling are 2.51x faster on

average because variants using HB sampling sometimes outper-

form those using k-out sampling, and the finish algorithm used in

Afforest is slower than those used in our fastest variants. We also

implemented G_Afforest, the finish algorithm used in Afforest, in
GConn. We found that compared to other finish algorithms in the

no sampling setting,G_Afforest is 12.6x slower on average than our

fastest finish algorithm. The main reason seems to be due to some

union-find algorithms, such as Union-Async and Union-Rem-CAS,
handling path compression more efficiently than the method used

in G_Afforest.

4.4 Incremental Parallel Graph Connectivity
In this section, we evaluate incremental connectivity algorithms

on GPUs. We achieve a raw speedup of 2,482x over EvoGraph [76]

which is the fastest current state-of-the-art streaming connectivity

implementation. Furthermore, the memory bandwidth-normalized

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

64

1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Th
ro

ug
hp

ut

Batch Size

Liu-Tarjan Union-Hooks
Shiloach-Vishkin Union-JTB
Union-Async Union-Rem-CAS

Figure 8: Throughput vs. batch size for com-Orkut.

speedup is 794x over EvoGraph. Unfortunately, we are not able

to directly compare our streaming connectivity implementations

with existing implementations on the same machine, although we

provide indirect comparisons based on the numbers provided by

the authors in their paper.
2 cuSTINGER [35] and Hornet [16] are

GPU frameworks for streaming graphs, but their code does not

contain streaming connectivity algorithms.

We conduct two types of streaming experiments. In the first type

of experiment, we generate a stream of edge updates from the input

graphs in Table 1. The second type of experiment models real-world

graph streams using synthetic graph generators. Specifically, we use

the RMAT generator [19] with parameters (a,b, c) = (0.5, 0.1, 0.1)
and the Barabasi-Albert (BA) generator [8]. For both generators,

we use n = 2
27

andm = 10n. The edges in a batch are given in COO

format, and are unsorted.

Throughput. We evaluate the throughput of our incremental con-

nectivity implementations on all of the input graphs in Table 2, and

the two large synthetic graphs generated from the RMAT and BA

generators. Table 4 reports the streaming throughput achieved by

the fastest variant of each algorithm for each input when all of the

edges are treated as a single batch of updates.

As shown in Table 4, theUnion-Async algorithmusually achieves

the highest throughput. Recall that for static parallel connectivity,

Union-Rem-CAS is 1.02x slower on average than Union-Async, but
hereUnion-Rem-CAS is 3.41x slower on average thanUnion-Async.
In the incremental setting, when accessing an element of the labels
array, the algorithm must check whether the element has been ini-

tialized, which incurs an additional overhead: for instance, Union-
Async when used in the incremental setting is 1.73x slower on

average than when it is used in the static setting. Compared to

Union-Async, inUnion-Rem-CAS, the labels array is accessedmuch

more often, which decreases the throughput.

The other min-based algorithms are much slower than the union-

find algorithms because the other min-based algorithms inspect

more edges. In particular, Liu-Tarjan is 2.86x slower on average than
Union-Async, and Shiloach-Vishkin is 4.87x slower on average than
Union-Async.
Throughput vs. Batch Size. Figure 8 shows the throughput of the
fastest variant for each algorithm with respect to different batch

sizes. When the batch size is small, the performance significantly

degrades mainly due to the GPU kernel launch overhead: the time

to launch the GPU kernel takes tens of times longer than the time

to run it for a small batch size. For small batch sizes, the Liu-Tarjan
and Shiloach-Vishkin algorithms are much slower because for each

2
We contacted the authors for their code, but were unable to obtain it.

0.E+00
2.E+08
4.E+08
6.E+08
8.E+08
1.E+09
1.E+09
1.E+09

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Th
e

nu
m

be
r o

f
ed

ge
s i

ns
pe

ct
ed

Batch Size

LT SV

0

Figure 9: The number of edges inspected for each batch size
for Liu-Tarjan and Shiloach-Vishkin on com-Orkut.

0

0.5E+09

1E+09

1.5E+09

2E+09

2.5E+09

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 (O

ps
/s

ec
)

Insert-To-Query Ratio

Union-Early Union-Hooks
Union-Async Rem-CAS
Rem-Lock JTB

Figure 10: Throughput of the fastest variant (when the be-
low ratio is 1) of each algorithm on europe_osm, plotted for
different ratios of insertions to queries.

batch, the GPU kernels are launched multiple times to process the

current batch until the labels array converges.

One interesting point is that Liu-Tarjan and Shiloach-Vishkin
become slower when the batch size is larger than 10

7
due to the

increase in the number of edge inspections. Figure 9 shows the

number of edges being inspected for different batch sizes for one

variant of Liu-Tarjan as well as Shiloach-Vishkin on com-Orkut.
The number of edges examined increases significantly for a batch

size larger than 10
7
because in those algorithms, all edges in a

batch need to be inspected until the batch converges. We observed

a similar trend in the other graphs for all variants of Liu-Tarjan as

well as Shiloach-Vishkin.
Mixed Inserts and Queries. We evaluate the performance of the

variants used in Figure 8 to study how the ratio of insertions to

queries affects the throughput. For a ratio of insertions to queries

of x , we generate 1/x queries with random vertex pairs per insert,

and shuffle them with the original edges (which are insertions) that

are also randomly permuted to prevent data locality from affecting

performance.

Figure 10 shows the throughput with different insert-to-query

ratios on the europe_osm graph. As the ratio decreases, throughput

also increases because the path to the root vertex in the labels array
is compressed, which speeds up the processing of the remaining

insertions and queries. Note that for very well connected graphs

(e.g., com-Orkut), the throughput with respect to different ratios

is quite stable, because even when the ratio is 1, the labels have

converged after processing a small subset of insertions.

4.5 Evaluation on Titan Xp (Pascal)
This section presents our evaluation of GConn on the Titan Xp

(Pascal) GPU. Table 5 shows the average slowdown against our eval-

uation on the V100 GPU, as well as the average of the speedup over

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

65

Algorithm coPapers
DBLP

cit-
Patents road_usa

soc-Live
Journal1

ljournal
-2008

delaunay
_n24

europe
_osm

hollywood
-2009

kron_g500
-logn21

com-
Orkut

indochina
-2004 uk-2002 twitter7 com-

Friendster RMAT BA

Union-Early 8.18e09 6.08e09 5.44e09 5.19e09 3.78e09 4.87e09 6.83e09 4.65e09 4.37e09 5.58e09 2.39e09 3.42e09 3.19e09 1.78e09 3.67e09 7.50e08

Union-Hooks 2.66e10 7.51e09 5.69e09 1.17e10 9.58e09 8.78e09 4.75e09 3.52e10 2.65e10 4.26e10 1.29e10 1.29e10 1.18e10 5.54e09 9.95e09 4.81e09

Union-Async 3.17e10 1.27e10 7.35e09 1.72e10 1.31e10 1.24e10 6.74e09 3.93e10 3.25e10 4.66e10 1.59e10 1.65e10 1.51e10 6.08e09 1.17e10 5.03e09

Union-Rem-CAS 1.05e10 6.50e09 4.46e09 6.20e09 4.00e09 5.70e09 6.05e09 7.64e09 1.03e10 1.16e10 1.98e09 3.27e09 3.80e09 3.14e09 5.60e09 9.61e08

Union-Rem-Lock 3.25e09 5.45e09 3.48e09 1.96e09 4.97e08 5.50e09 4.44e09 6.20e09 1.94e10 4.49e10 4.14e07 1.55e08 5.46e08 7.23e09 1.11e10 4.17e09

Union-JTB 2.78e10 8.70e09 5.29e09 1.33e10 9.39e09 8.63e09 4.68e09 3.32e10 2.52e10 2.94e10 1.14e10 1.21e10 1.41e10 5.85e09 8.14e09 5.70e09
Liu-Tarjan 1.39e10 2.50e09 2.92e09 7.41e09 6.99e09 4.62e09 2.63e09 1.42e10 7.38e09 1.18e10 8.85e09 9.56e09 4.74e09 2.08e09 3.05e09 2.28e09

Shiloach-Vishkin 9.42e09 2.09e09 2.97e09 5.39e09 4.27e09 3.12e09 2.02e09 4.84e09 3.90e09 3.79e09 5.90e09 7.90e09 3.22e09 1.37e09 2.50e09 2.36e09

Table 4: Throughput achieved by incremental connectivity algorithms inGConn on a V100 GPUmachine when all of the edges
in the graph are treated as a single batch of updates. For each graph, the highest throughput is shown in green.

Algorithm

Average slowdown against V100 Average speedup

over state-of-the-artAcross all variants Fastest variants

Static conn. 1.62 1.71 2.38

Span. forest 1.59 1.60 –

Streaming conn. 1.79 2.25 –

Table 5: Summary of results on the Titan Xp machine.

0

5

10

15

road_usa+
NS

so
c-L

ive
Journal1+NS

co
m-O

rku
t+NS

tw
itte

r7+NS

co
m-Fr

iendste
r+NS

road_usa+
kout

so
c-L

ive
Journal1+kout

co
m-O

rku
t+ko

ut

tw
itte

r7+ko
ut

co
m-Fr

iendste
r+kout

Sp
ee

du
p

Graph + Sampling setting

Speedup in execution time
Speedup in memory movement time

Figure 11: The performance comparison between the fastest
variant on the GPU vs. CPU for each graph in the no-
sampling setting (+NS) and with k-out sampling (+kout).

the fastest one among GPU-CC, GSWITCH, ECL-CC, and Afforest
also run on the Titan Xp GPU. As shown in Table 5, the trends for

both GPU machines are very similar, and except for incremental

connectivity, the average slowdown is close to the ratio of the band-

width of the V100 to that of Titan Xp (900/547.6 = 1.6). For incre-

mental connectivity, accessing the labels array requires spin-locks,

which prevents the algorithms from fully saturating the memory

bandwidth. We note that we had to modify Union-Rem-Lock to

avoid deadlocks [51, 70] for the Pascal machine in which threads

in a warp are executed in lock-step [54].

4.6 Performance analysis on CPUs vs. GPUs
In this section, we compare the performance of GConn [29] on the

V100 with the performance of ConnectIt. ConnectIt’s experiments

were performed on a Dell PowerEdge R930 with 4 × 2.4GHz Intel 18-

core E7-8864 x4 Xeon professors, a 45MB L3 Cache and a memory

bandwidth of 85 GB/sec.

We compare CPU and GPU performance with the five graphs

used in ConnectIt that can fit in the GPU memory [29]. To under-

stand the relation between the execution time and the total data

movement from/to memory, Figure 11 shows the speedup in execu-

tion time achieved by GConn over ConnectIt (blue bars), and the

speedup in time for the data movement from/to memory at peak

memory bandwidth using the GPU compared to the CPU (red bars).

Our GPU provides 900/85 = 10.59 times higher memory bandwidth

compared to the CPU, but the CPU L3 cache is much larger than the

GPU L2 cache. Hence, there can be more memory transactions on

the GPU, depending on the graph. As shown in Figure 11, there is a

strong correlation between the execution time and the time for data

movement (a Pearson correlation coefficient of 0.854). Note that the

first five pairs of bars are without sampling, and the rest of them are

with k-out sampling. For a fair comparison, we did not apply HB

sampling because the best variants in ConnectIt for these graphs
always adopt k-out sampling. The best variant of GConn without

HB sampling achieves 8.26–14.51x speedup over the best variant

with ConnectIt. For incremental algorithms, when we treat all of

the edges as one large batch, GConn only achieves 1.85–13.36x

speedup over ConnectIt due to the spin-locks on the labels array
being more expensive on GPUs than CPUs.

To obtain a rough estimate of the monetary cost savings for

running the connectivity algorithms on the GPU vs. the CPU, we

compare two machines on Amazon EC2: the p3.2xlarge configura-
tion, which is very similar to our V100 setup, and the x1.16xlarge
configuration, which provides a multicore similar to the Dell Pow-

erEdge R930. On-demand pricing of the p3.2xlarge and x1.16xlarge
instances is $3.06 and $6.669 per hour, respectively. The fastest vari-

ant of GConn is 12.02x faster on average than that of ConnectIt.
Hence, for our input graphs, we can expect to save roughly a factor

of (6.669/3.06) × 12.02 = 26.2 in costs by using a similar GPU

compared to a similar CPU.

4.7 Takeaways and Guidelines
Based on our experimental study, we found that variants of union-

find that have not been studied in prior work on GPU connectivity

performed the best. We discovered that the sampling phase mostly

dominates the execution time, which indicates that reducing the

overhead for the sampling phase is crucial for high performance.

We found that many of our static connectivity algorithms can be

extended to support spanning forest and incremental connectivity,

and can achieve high performance as well. Finally, we found GPUs

to be a cost-efficient option for connectivity algorithms compared

to CPUs, as long as the graph can fit in the GPU memory.

The fastest implementation is dependent on a given input graph,

and asGConn supports several hundred variants, trying all variants
to find the fastest one can be overwhelming. We provide some

guidelines below on how to choose an implementation with high

performance.

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

66

m/n ≤ 3

HB Cov ≤ 95%

Yes No

{No sampling, Union-Async or Union-Rem-CAS}

Yes No

{k-out sampling, Union-Async or Union-Rem-CAS} {HB sampling, G_ECL-CC}

Figure 12: A decision tree for the sophisticated dynamic
mechanism.

First, a practitioner can simply use the best variant overall based

on our experimental evaluation, which is to use Union-Async or
Union-Rem-CAS combined with k-out sampling. For our input

graphs, using this approach achieves performance that is within

20.8% on average of the performance of the fastest implementation

for each graph.

Amore sophisticated dynamic mechanism for selecting sampling

methods for a fixed finish method is as follows. First, we observed

that if the average degree in the graph is small enough, most edges

are inspected in the sampling phase, and an additional overhead

to access the edge array multiple times is incurred. Therefore, we

found that when the average degree is small, sampling is not a

worthwhile optimization. Second, we observed that one does not

need to consider BFS sampling, as it is always outperformed by

either k-out sampling or hook-based search (HB) sampling. From

Table 3, we see that whenHBCov (the percentage of vertices in the
largest connected component after HB sampling) is high enough,

HB sampling is always the best strategy. As shown in Figure 6,

in this case, HB sampling samples a minimal number of edges. A

rough lower bound of HB Cov can be obtained by applying the

first step of HB for a few edges, which is inexpensive, and then

using this value to choose between HB or k-out sampling.

Our study also provides insights on choosing finish methods that

complement a particular sampling method. First, we found that the

fastest finish method is always one of {Union-Async, Union-Rem-

CAS, or G_ECL-CC}. In the no-sampling setting, either Union-
Async orUnion-Rem-CAS is the fastest.G_ECL-CC performs fewer

on-the-fly compressions, which normally leads to more path tra-

versal (and thus more cache misses). On the other hand, when HB

sampling is used, which implies the input graph is very well con-

nected, G_ECL-CC is recommended as only a very few edges are

inspected by the union-find algorithms. In this case, G_ECL-CC
has the lowest overhead as it does not perform much on-the-fly

compression, which requires performing additional writes. On our

input graphs, using this strategy for choosing the sampling and

finish methods gives a slowdown of only 9.4% on average compared

to using the fastest implementation for each graph.

Figure 12 presents a decision tree for the strategy above. HB
Cov is the lower bound mentioned above, and Union-Async can be

substituted with Union-Rem-CAS as their performance is similar.

5 CONCLUSION
We have designed the GConn framework, which supports several

hundred efficient implementations on GPUs for static connectivity,

spanning forest, and incremental connectivity. To the best of our

knowledge, this paper provides the most comprehensive study of

different variants of connectivity algorithms on GPUs. Extensive

evaluations show that the best connectivity implementations in

GConn significantly outperform other state-of-the-art libraries and

implementations. For future work, we are interested in extending

our framework to the multi-GPU or distributed memory settings.

ACKNOWLEDGEMENTS
We thank the reviewers of this paper for their helpful feedback.

This research was supported by DOE Early Career Award #DE-

SC0018947, NSF CAREER Award #CCF-1845763, Google Faculty

Research Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-

plications Driving Architectures (ADA) Research Center, a JUMP

Center co-sponsored by SRC and DARPA.

REFERENCES
[1] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019.

Parallel Batch-Dynamic Graph Connectivity. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 381–392.

[2] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.

2018. Parallel graph connectivity in log diameter rounds. In IEEE Symposium on
Foundations of Computer Science (FOCS). 674–685.

[3] B. Awerbuch and Y. Shiloach. 1987. New Connectivity and MSF Algorithms

for Shuffle-Exchange Network and PRAM. IEEE Trans. Comput. C-36, 10 (1987),
1258–1263.

[4] David A. Bader and Guojing Cong. 2005. A fast, parallel spanning tree algorithm

for symmetric multiprocessors (SMPs). Journal of Parallel and Distrib. Comput.
65, 9 (2005), 994–1006.

[5] David A. Bader, Guojing Cong, and John Feo. 2005. On the Architectural Require-

ments for Efficient Execution of Graph Algorithms. In International Conference
on Parallel Processing (ICPP). 547–556.

[6] David A. Bader and Joseph JaJa. 1996. Parallel Algorithms for Image Histogram-

ming and Connected Components with an Experimental Study. J. Parallel Distrib.
Comput. 35, 2 (1996), 173–190.

[7] Dip Sankar Banerjee and Kishore Kothapalli. 2011. Hybrid Algorithms for List

Ranking and Graph Connected Components. In International Conference on High
Performance Computing (HiPC). 1–10.

[8] Albert-Laszlo Barabasi and Eric Bonabeau. 2003. Scale-Free Networks. Scientific
American (2003).

[9] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing

breadth-first search. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). Article 12, 12:1–12:10 pages.

[10] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark

Suite. CoRR abs/1508.03619 (2015). http://arxiv.org/abs/1508.03619

[11] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab

Mirrokni. 2019. Near-optimal massively parallel graph connectivity. In IEEE
Symposium on Foundations of Computer Science (FOCS). 1615–1636.

[12] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab

Mirrokni, and Warren Schudy. 2019. Massively Parallel Computation via Re-

mote Memory Access. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 59–68.

[13] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:

An Asynchronous Multi-GPU Programming Model for Irregular Computations.

In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 235–248.

[14] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.

Internally Deterministic Parallel Algorithms Can Be Fast. In ACM SIGPLAN
Symposium on Proceedings of Principles and Practice of Parallel Programming
(PPoPP). 181–192.

[15] Libor Bus and Pavel Tvrdik. 2001. A Parallel Algorithm for Connected Compo-

nents on Distributed Memory Machines. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 280–287.

[16] Federico Busato, Oded Green, Nicola Bombieri, and David A Bader. 2018. Hornet:

An efficient data structure for dynamic sparse graphs and matrices on GPUs. In

IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
[17] E.N. Caceres, F. Dehne, H. Mongelli, S.W. Song, and J.L. Szwarcfiter. 2004. A

Coarse-Grained Parallel Algorithm for Spanning Tree and Connected Compo-

nents. In Euro-Par.
[18] Bryan Catanzaro, Alexander Keller, and Michael Garland. 2014. A Decomposition

for In-Place Matrix Transposition. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP). 193–206.

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

67

http://arxiv.org/abs/1508.03619

[19] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

Recursive Model for Graph Mining. In SIAM International Conference on Data
Mining (SDM). 442–446.

[20] Francis Y. Chin, John Lam, and I-Ngo Chen. 1982. Efficient Parallel Algorithms

for Some Graph Problems. Commun. ACM 25, 9 (Sept. 1982), 659–665.

[21] Laukik Chitnis, Anish Das Sarma, Ashwin Machanavajjhala, and Vibhor Rastogi.

2013. Finding Connected Components in Map-Reduce in Logarithmic Rounds. In

IEEE International Conference on Data Engineering (ICDE). 50–61.
[22] K.W. Chong and T.W. Lam. 1995. Finding Connected Components in

O (logn log logn) Time on the EREW PRAM. Journal of Algorithms 18, 3 (1995),
378–402.

[23] Richard Cole and Uzi Vishkin. 1991. Approximate parallel scheduling. II. Appli-

cations to logarithmic-time optimal parallel graph algorithms. Information and
Computation 92, 1 (1991), 1–47.

[24] Guojing Cong and Paul Muzio. 2014. Fast Parallel Connected Components

Algorithms on GPUs. In Euro-Par. 153–164.
[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3. ed.). MIT Press.

[26] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Software 38, 1 (Nov. 2011), 1:1–1:25.
[27] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient

Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 393–404.

[28] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh

Sawlani, and Xiaorui Sun. 2020. Parallel Batch-Dynamic Graphs: Algorithms

and Lower Bounds. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
1300–1319.

[29] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt: A

framework for static and incremental parallel graph connectivity algorithms.

https://arxiv.org/abs/2008.03909

[30] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High performance

data structure for streaming graphs. In IEEE Conference on High Performance
Extreme Computing (HPEC). 1–5.

[31] Ehsan Elhamifar and Rene Vidal. 2013. Sparse subspace clustering: Algorithm,

theory, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35, 11 (2013), 2765–2781.

[32] Ahmed ElTantawy and Tor M Aamodt. 2018. Warp scheduling for fine-grained

synchronization. In IEEE International Symposium on High Performance Computer
Architecture (HPCA). 375–388.

[33] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-

based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-

ering Clusters in Large Spatial Databases with Noise. In International Conference
on Knowledge Discovery and Data Mining (KDD). 226–231.

[34] Hillel Gazit. 1991. An Optimal Randomized Parallel Algorithm for Finding

Connected Components in a Graph. SIAM J. Comput. 20, 6 (Dec. 1991), 1046–
1067.

[35] O. Green and D. A. Bader. 2016. cuSTINGER: Supporting dynamic graph al-

gorithms for GPUs. In IEEE High Performance Extreme Computing Conference
(HPEC). 1–6.

[36] John Greiner. 1994. A Comparison of Parallel Algorithms for Connected Compo-

nents. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
16–25.

[37] Shay Halperin and Uri Zwick. 1994. An Optimal Randomized Logarithmic Time

Connectivity algorithm for the EREW PRAM (Extended Abstract). In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA).

[38] S. Hambrusch and L. TeWinkel. 1988. A study of connected component labeling

algorithms on the MPP. In International Conference on Supercomputing (ICS).
477–483.

[39] Yujie Han and Robert A. Wagner. 1990. An Efficient and Fast Parallel-connected

Component Algorithm. J. ACM 37, 3 (July 1990), 626–642.

[40] K. A. Hawick, A. Leist, and D. P. Playne. 2010. Parallel Graph Component

Labelling with GPUs and CUDA. Parallel Comput. 36, 12 (Dec. 2010), 655–678.
[41] Caroline Haythornthwaite. 2005. Social networks and Internet connectivity

effects. Information, Community & Society 8, 2 (2005), 125–147.

[42] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. 1979. Computing Connected

Components on Parallel Computers. Commun. ACM 22, 8 (Aug. 1979), 461–464.

[43] Jeffrey Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and David Krieg-

man. 2003. Clustering appearances of objects under varying illumination con-

ditions. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Vol. 1.

[44] J. Holm, V. King, M. Thorup, O. Zamir, and U. Zwick. 2019. Random k -out
Subgraph Leaves onlyO (n/k) Inter-Component Edges. In IEEE Symposium on
Foundations of Computer Science (FOCS). 896–909.

[45] Changwan Hong, Laxman Dhulipala, and Julian Shun. 2020. Exploring the

Design Space of Static and Incremental Graph Connectivity Algorithms on GPUs.

http://arxiv.org/abs/2008.11839

[46] Tsan-Sheng Hsu, Vijaya Ramachandran, and Nathaniel Dean. 1997. Parallel

Implementation of Algorithms for Finding Connected Components in Graphs. In

Parallel Algorithms: 3rd DIMACS Implementation Challenge. 23–41.
[47] J. Iverson, C. Kamath, and G. Karypis. 2015. Evaluation of Connected-component

Labeling Algorithms for Distributed-memory Systems. Parallel Comput. 44, C
(May 2015), 53–68.

[48] Kazuo Iwama and Yahiko Kambayashi. 1994. A Simpler Parallel Algorithm for

Graph Connectivity. J. Algorithms 16, 2 (March 1994), 190–217.

[49] Jayadharini Jaiganesh and Martin Burtscher. 2018. A High-performance Con-

nected Components Implementation for GPUs. In International Symposium on
High-Performance Parallel and Distributed Computing (HPDC). 92–104.

[50] C. Jain, P. Flick, T. Pan, O. Green, and S. Aluru. 2017. An Adaptive Parallel

Algorithm for Computing Connected Components. IEEE Transactions on Parallel
and Distributed Systems 28, 9 (2017), 2428–2439.

[51] Sanders Jason and Kandrot Edward. 2010. CUDA by example: an introduction to

general-purpose GPU programming. Addison-Wesley Professional (2010).
[52] Siddhartha V. Jayanti and Robert E. Tarjan. 2016. A Randomized Concurrent

Algorithm for Disjoint Set Union. In ACM Symposium on Principles of Distributed
Computing (PODC). 75–82.

[53] Siddhartha V. Jayanti, Robert E. Tarjan, and Enric Boix-Adserà. 2019. Randomized

Concurrent Set Union andGeneralizedWake-Up. InACMSymposium on Principles
of Distributed Computing (PODC). 187–196.

[54] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-

secting the NVIDIA Volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[55] Donald B Johnson and Panagiotis Metaxas. 1997. Connected Components in

O (log3/2 n) Parallel Time for the CREW PRAM. J. Comput. System Sci. 54, 2
(1997), 227–242.

[56] David R. Karger, Noam Nisan, and Michal Parnas. 1999. Fast Connected Com-

ponents Algorithms for the EREW PRAM. SIAM J. Comput. 28, 3 (Feb. 1999),

1021–1034.

[57] Raimondas Kiveris, Silvio Lattanzi, Vahab Mirrokni, Vibhor Rastogi, and Sergei

Vassilvitskii. 2014. Connected Components in MapReduce and Beyond. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SOCC). Article 18, 18:1–
18:13 pages.

[58] Vaclav Koubek and Jana Krsnakova. 1985. Parallel algorithms for connected

components in a graph. In Fundamentals of Computation Theory. 208–217.
[59] Clyde P. Kruskal, Larry Rudolph, andMarc Snir. 1990. Efficient parallel algorithms

for graph problems. Algorithmica 5, 1-4 (1990), 43–64.
[60] Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[61] Jianhua Li and Laleh Behjat. 2006. A connectivity based clustering algorithm

with application to VLSI circuit partitioning. IEEE Transactions on Circuits and
Systems II: Express Briefs 53, 5 (2006), 384–388.

[62] Sixue Liu and Robert E. Tarjan. 2019. Simple Concurrent Labeling Algorithms

for Connected Components. In Symposium on Simplicity in Algorithms (SOSA).
3:1–3:20.

[63] Kamesh Madduri and David A. Bader. 2009. Compact graph representations and

parallel connectivity algorithms for massive dynamic network analysis. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 1–11.

[64] R. McColl, O. Green, and D. A. Bader. 2013. A new parallel algorithm for con-

nected components in dynamic graphs. In IEEE International Conference on High
Performance Computing (HiPC). 246–255.

[65] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A Pattern Based Algo-

rithmic Autotuner for Graph Processing on GPUs. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). 201–213.

[66] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU

Graph Traversal. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP). 117–128.

[67] Dhruva Nath and S. N. Maheshwari. 1982. Parallel Algorithms for the Connected

Components and Minimal Spanning Tree Problems. Inf. Process. Lett. 14, 1 (1982),
7–11.

[68] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight

Infrastructure for Graph Analytics. In ACM Symposium on Operating Systems
Principles (SOSP). 456–471.

[69] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight

Infrastructure for Graph Analytics. In ACM Symposium on Operating Systems
Principles (SOSP). 456–471.

[70] Molly A O’Neil, Dan Tamir, and Martin Burtscher. 2011. A parallel GPU version

of the traveling salesman problem. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA). The
Steering Committee of The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), 348–353.

[71] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimization

of Graph Algorithms on GPUs. In ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
1–19.

[72] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. k. Liao, F. Manne, and A. Choudhary.

2012. A new scalable parallel DBSCAN algorithm using the disjoint-set data

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

68

https://arxiv.org/abs/2008.03909
http://arxiv.org/abs/2008.11839
http://snap.stanford.edu/data

structure. In ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). 62:1–62:11.

[73] Md. Mostofa Ali Patwary, Peder Refsnes, and Fredrik Manne. 2012. Multi-core

Spanning Forest Algorithms using the Disjoint-set Data Structure. In IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). 827–835.

[74] C. A. Phillips. 1989. Parallel Graph Contraction. InACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 148–157.

[75] J. H. Reif. 1985. Optimal Parallel Algorithms for Integer Sorting and Graph

Connectivity. TR-08-85, Harvard University (1985).

[76] Dipanjan Sengupta and Shuaiwen Leon Song. 2017. EvoGraph: On-the-Fly

Efficient Mining of Evolving Graphs on GPU. In High Performance Computing.
97–119.

[77] Yossi Shiloach and Uzi Vishkin. 1982. AnO (logn) Parallel Connectivity Algo-

rithm. J. Algorithms 3, 1 (1982), 57–67.
[78] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing

Framework for Shared Memory. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). 135–146.

[79] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A Simple and Prac-

tical Linear-Work Parallel Algorithm for Connectivity. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 143–153.

[80] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu.

2017. Work-efficient parallel union-find. Concurrency and Computation: Practice
and Experience 30, 4 (2017).

[81] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS

and Coloring-based Parallel Algorithms for Strongly Connected Components

and Related Problems. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 550–559.

[82] J. Soman, K. Kishore, and P. J. Narayanan. 2010. A fast GPU algorithm for graph

connectivity. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1–8.

[83] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Shortcut-

ting Label Propagation for Distributed Connected Components. In ACM Interna-
tional Conference on Web Search and Data Mining (WSDM). 540–546.

[84] I-Jui Sung, Juan Gómez-Luna, José María González-Linares, Nicolás Guil, and

Wen-Mei W Hwu. 2014. In-place transposition of rectangular matrices on ac-

celerators. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). 207–218.

[85] M. Sutton, T. Ben-Nun, and A. Barak. 2018. Optimizing Parallel Graph Connec-

tivity Computation via Subgraph Sampling. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 12–21.

[86] Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity

algorithm. SIAM J. Comput. 14, 4 (1985), 862–874.
[87] Uzi Vishkin. 1984. An optimal parallel connectivity algorithm. Discrete Applied

Mathematics 9, 2 (1984), 197–207.
[88] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D. Owens. 2016. Gunrock: A High-performance Graph Processing Library

on the GPU. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP).

[89] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan

Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and

John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Trans. Parallel
Comput. 4, 1, Article 3 (Aug. 2017), 3:1–3:49 pages.

[90] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2017. Efficient

structural graph clustering: an index-based approach. Proceedings of the VLDB
Endowment 11, 3 (2017), 243–255.

[91] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan:

a structural clustering algorithm for networks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 824–833.

[92] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. 2019. FastSV: A Distributed-

Memory Connected Component Algorithm with Fast Convergence. CoRR
abs/1910.05971 (2019). http://arxiv.org/abs/1910.05971

Session 1: Optimizations for GPUs PACT '20, October 3–7, 2020, Virtual Event, USA

69

http://arxiv.org/abs/1910.05971

	Abstract
	1 Introduction
	2 Notation, Preliminaries, and Prior Work
	3 GConn Overview
	3.1 Overview of ConnectIt
	3.2 GConn Framework
	3.3 Sampling Algorithms
	3.4 Finish Algorithms
	3.5 Iterative GPU Optimizations
	3.6 Incremental Connectivity Support

	4 Evaluation
	4.1 Static Parallel Connectivity without Sampling
	4.2 Static Parallel Connectivity with Sampling
	4.3 Comparison with State-of-the-art
	4.4 Incremental Parallel Graph Connectivity
	4.5 Evaluation on Titan Xp (Pascal)
	4.6 Performance analysis on CPUs vs. GPUs
	4.7 Takeaways and Guidelines

	5 Conclusion
	References

