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ABSTRACT
Graph reordering is a powerful technique to increase the lo-
cality of the representations of graphs, which can be helpful
in several applications. We study how the technique can be
used to improve compression of graphs and inverted indexes.

We extend the recent theoretical model of Chierichetti et al.
(KDD 2009) for graph compression, and show how it can be
employed for compression-friendly reordering of social net-
works and web graphs and for assigning document identi-
fiers in inverted indexes. We design and implement a novel
theoretically sound reordering algorithm that is based on
recursive graph bisection.

Our experiments show a significant improvement of the
compression rate of graph and indexes over existing heuris-
tics. The new method is relatively simple and allows efficient
parallel and distributed implementations, which is demon-
strated on graphs with billions of vertices and hundreds of
billions of edges.

1. INTRODUCTION
Many real-world systems and applications use in-memory

representation of indexes for serving adjacency information
in a graph. A popular example is social networks in which
the list of friends is stored for every user. Another example is
an inverted index for a collection of documents that stores,
for every term, the list of documents where the term occurs.
Maintaining these indexes requires a compact, yet efficient,
representation of graphs.

How to represent and compress such information? Many
techniques for graph and index compression have been stud-
ied in the literature [23,37]. Most techniques first sort vertex
identifiers in an adjacency list, and then replace the identi-
fiers (except the first) with differences between consecutive
ones. The resulting gaps are encoded using some integer
compression algorithm. Note that using gaps instead of orig-
inal identifiers decreases the values needed to be compressed
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and results in a higher compression ratio. We stress that the
success of applying a particular encoding algorithm strongly
depends on the distribution of gaps in an adjacency list: a se-
quence of small and regular gaps is more compressible than
a sequence of large and random ones.

This observation has motivated the approach of assigning
identifiers in a way that optimizes compression. Graph re-
ordering has been successfully applied for social networks [7,
12]. In that scenario, placing similar social actors nearby in
the resulting order yields a significant compression improve-
ment. Similarly, lexicographic locality is utilized for com-
pressing the Web graph: when pages are ordered by URL,
proximal pages have similar sets of neighbors, which re-
sults in an increased compression ratio of the graph, when
compared with the compression obtained using the original
graph [8,28]. In the context of index compression, the corre-
sponding approach is called the document identifier assign-
ment problem. Prior work shows that for many collections,
index compression can be significantly improved by assign-
ing close identifiers to similar documents [5, 6, 14,31,33].

In this paper, we study the problem of finding the best
“compression-friendly” order for a graph or an inverted in-
dex. While graph reordering and document identifier assign-
ment are often studied independently, we propose a unified
model that generalizes both of the problems. Although a
number of heuristics for the problems exists, none of them
provides any guarantees on the resulting quality. In con-
trast, our algorithm is inspired by a theoretical approach
with provable guarantees on the final quality, and it is de-
signed to directly optimize the resulting compression ratio.
Our main contributions are the following.
• We analyze and extend the formal model of graph com-

pression suggested in [12]; the new model is suitable
for both graph reordering and document identifier as-
signment problems. We show that the underlying op-
timization problem is NP-hard (thus, resolving an open
question stated in [12]), and suggest an efficient ap-
proach for solving the problem, which is based on ap-
proximation algorithms for graph reordering.
• Based on the theoretical result, we develop a practical

algorithm for constructing compression-friendly vertex
orders. The algorithm uses recursive graph bisection as
a subroutine and tries to optimize a desired objective
at every recursion step. Our objective corresponds to
the size of the graph compressed using delta-encoding.
The algorithm is surprisingly simple, which allows for
efficient parallel and distributed implementations.
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• Finally, we perform an extensive set of experiments on
a collection of large real-world graphs, including social
networks, web graphs, and search indexes. The exper-
iments indicate that our new method outperforms the
state-of-the-art graph reordering techniques, improv-
ing the resulting compression ratio. Our implementa-
tion is highly scalable and is able to process a billion-
vertex graph in a few hours.

The paper is organized as follows. We first discuss existing
approaches for graph reordering, assigning document iden-
tifiers, and the most popular encoding schemes for graph
and index representation (Section 2). Then we consider al-
gorithmic aspects of the underlying optimization problem.
We analyze the models for graph compression suggested by
Chierichetti et al. [12] and suggest our generalization in Sec-
tion 3.1. Next, in Section 3.2, we examine existing theoreti-
cal techniques for the graph reordering problem and use the
ideas to design a practical algorithm. A detailed description
of the algorithm along with the implementation details is
presented in Section 4, which is followed by experimental
Section 5. We conclude the paper with the most promising
future directions in Section 6.

2. RELATED WORK
There exists a rich literature on graph and index com-

pression, that can be roughly divided into three categories:
(1) structural approaches that find and merge repeating
graph patterns (e.g., cliques), (2) encoding adjacency data
represented by a list of integers given some vertex/document
order, and (3) finding a suitable order of graph vertices. Our
focus is on the ordering techniques. We discuss the existing
approaches for graph reordering, followed by an overview of
techniques for document identifier assignment. Since many
integer encoding algorithms can benefit from such a reorder-
ing, we also outline the most popular encoding schemes.

Graph Reordering.
Among the first approaches for compressing large-scale

graphs is a work by Boldi and Vigna [8], who compress web
graphs using a lexicographical order of the URLs. Their com-
pression method relies on two properties: locality (most links
lead to pages within the same host) and similarity (pages
on the same host often share the same links). Later Apos-
tolico and Drovandi [2] suggest one of the first ways to com-
press a graph assuming no a priori knowledge of the graph.
The technique is based on a breadth-first traversal of the
graph vertices and achieves a better compression rate using
an entropy-based encoding.

Chierichetti et al. [12] consider the theoretical aspect of
the reordering problem motivated by compressing social net-
works. They develop a simple but practical heuristic for the
problem, called shingle ordering. The heuristic is based on
obtaining a fingerprint of the neighbors of a vertex and po-
sitioning vertices with identical fingerprints close to each
other. If the fingerprint can capture locality and similarity
of the vertices, then it can be effective for compression. This
approach is also called minwise hashing and is originally ap-
plied by Broder [9] for finding duplicate web pages.

Boldi et al. [7] suggest a reordering algorithm, called Lay-
ered Label Propagation, to compress social networks. The
algorithm is built on a scalable graph clustering technique
by label propagation [27]. The idea is to assign a label for
every vertex of a graph based on the labels of its neighbors.

The process is executed in rounds until no more updates
take place. Since the standard label propagation described
in [27] tends to produce a giant cluster, the authors of [7]
construct a hierarchy of clusters. The vertices of the same
cluster are then placed together in the final order.

The three-step multiscale paradigm is often employed for
the graph ordering problems. First, a sequence of coarsened
graphs, each approximating the original graph but having a
smaller size, is created. Then the problem is solved on the
coarsest level by an exhaustive search. Finally, the process
is reverted by an uncoarsening procedure so that a solution
for every graph in the sequence is based on the solution for
a previous smaller graph. Safro and Temkin [30] employ the
algebraic multigrid methodology in which the sequence of
coarsened graphs is constructed using a projection of graph
Laplacians into a lower-dimensional space.

Spectral methods have also been successfully applied to
graph ordering problems [19]. Sequencing the vertices is done
by sorting them according to corresponding elements of the
second smallest eigenvector of graph Laplacian (also called
the Fiedler vector). It is known that the order yields the best
non-trivial solution to a relaxation of the quadratic graph
ordering problem, and hence, it is a good heuristic for com-
puting linear arrangements.

Recently Lim et al. [22] present another technique, called
SlashBurn. Their method constructs a permutation of graph
vertices so that its adjacency matrix is comprised of a few
nonzero blocks. Such dense blocks are easier to encode, which
is beneficial for compression.

In our experiments, we compare our new algorithm with
all of the methods, which are either easy to implement, or
come with the source code provided by the authors.

Document Identifier Assignment.
Several papers study how to assign document identifiers in

a document collection for better compression of an inverted
index. A popular idea is to perform a clustering on the collec-
tion and assign close identifiers to similar documents. Shieh
et al. [31] propose a reassignment heuristic motivated by the
maximum travelling salesman problem (TSP). The heuristic
computes a pairwise similarity between every pairs of doc-
uments (proportional to the number of shared terms), and
then finds the longest path traversing the documents in the
graph. An alternative algorithm calculating cosine similari-
ties between documents is suggested by Blandford and Blel-
loch [6]. Both methods are computationally expensive and
are limited to fairly small datasets. The similarity-based ap-
proach is later improved by Blanco and Barreiro [5] and by
Ding et al. [14], who make it scalable by reducing the size
of the similarity graph, respectively through dimensionality
reduction and locality sensitive hashing.

The approach by Silvestri [33] simply sorts the collection
of web pages by their URLs and then assigns document iden-
tifiers according to the order. The method performs very well
in practice and is highly scalable but it does not generalize to
document collections that do not have URL-like identifiers.

Encoding Schemes.
Our algorithm is not tailored specifically for an encod-

ing scheme; any method that can take advantage of lists
with higher local density (clustering) should benefit from
the reordering. For our experiment we choose a few encod-
ing schemes that represent the state-of-the-art.
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Most graph compression schemes build on delta-encoding,
that is, sorting the adjacency lists (posting lists in the in-
verted indexes case) so that the gaps between consecutive
elements are positive, and then encoding these gaps using
a variable-length integer code. The WebGraph framework
adds the ability to copy portions of the adjacency lists from
other vertices, and has special cases for runs of consecutive
integers. Introduced in 2004 by Boldi and Vigna [8], it is still
widely used to compress web graphs and social networks.

Inverted indexes are usually compressed with more spe-
cialized techniques in order to enable fast skipping, which en-
ables efficient list intersection. We perform our experiments
with Partitioned Elias-Fano and Binary Interpolative Cod-
ing. The former, introduced by Ottaviano and Venturini [25],
provides one of the best compromise between decoding speed
and compression ratio. The latter, introduced by Moffat and
Stuiver [24], has the highest compression ratio in the litera-
ture, with the trade-off of slower decoding by several times.
Both techniques directly encode monotone lists, without go-
ing through delta-encoding.

3. ALGORITHMIC ASPECTS
Graph reordering is a combinatorial optimization problem

with a goal to find a linear layout of an input graph so that
a certain objective function (referred to as a cost function or
just cost) is optimized. A linear layout of a graph G = (V,E)
with n = |V | vertices is a bijection π : V → {1, . . . , n}. A
layout is also called an order, an arrangement, or a number-
ing of the vertices. In practice it is desirable that “similar”
vertices of the graph are “close” in π. This leads to a number
of problems that we define next.

The minimum linear arrangement (MLA) problem is to
find a layout π so that∑

(u,v)∈E
|π(u)− π(v)|

is minimized. This is a classical NP-hard problem [17], which
is known to be APX-hard under Unique Games Conjecture [13],
that is, it is unlikely that an efficient approximation algo-
rithm exists. See [26] for a survey of results on MLA.

A closely related problem is minimum logarithmic arrange-
ment (MLogA) in which the goal is to minimize∑

(u,v)∈E
log |π(u)− π(v)|.

Here and in the following we denote log(x) = 1 + blog2(x)c,
that is, the number of bits needed to represent an integer x.
The problem is also NP-hard, and one can show that the op-
timal solutions of MLA and MLogA are different on some
graphs [12]. In practice a graph is represented as an ad-
jacency list using an encoding scheme; hence, the gaps in-
duced by consecutive neighbors of a vertex are important
for compression. For this reason, the minimum logarithmic
gap arrangement (MLogGapA) problem is introduced [12].
For a vertex v ∈ V of degree k and an order π, consider
the neighbors out(v) = (v1, . . . , vk) of v such that π(v1) <
· · · < π(vk). Then the cost compressing the list out(v) un-

der π is related to fπ(v, out(v)) =
∑k−1
i=1 log |π(vi+1)−π(vi)|.

MLogGapA consists in finding an order π, which minimizes∑
v∈V

fπ(v, out(v)).

To the best of our knowledge, MLogA and MLogGapA are
introduced quite recently by Chierichetti et al. [12]. They
show that MLogA is NP-hard but left the computational
complexity of MLogGapA open. Since the latter problem
is arguably more important for applications, we address the
open question of complexity of the problem.

Theorem 1. MLogGapA is NP-hard.

Proof. We prove the theorem by using the hardness of
MLogA, which is known to be NP-hard [12]. Let G = (V,E)
be an instance of MLogA. We build a bipartite graph G′ =
(V ′, E′) by splitting every edge of E by a degree-2 vertex.
Formally, we add |E| new vertices so that V ′ = V ∪ U ,
where V = {v1, . . . , vn} and U = {u1, . . . , um}. For every
edge (a, b) ∈ E, we have two edges in E′, that is, (a, ui) and
(b, ui) for some 1 ≤ i ≤ m. Next we show that an optimal
solution for MLogGapA on G′ yields an optimal solution
for MLogA on G, which proves the claim of the theorem.

Let R be an optimal order of V ′ for MLogGapA. Ob-
serve that without loss of generality, the vertices of V and U
are separated in R, that is, R = (vi1 , . . . , vin , uj1 , . . . , ujm).
Otherwise, the vertices can be reordered so that the total
objective is not increased. To this end, we “move” all the
vertices of V to the left of R by preserving their relative
order. It is easy to see that the gaps between vertices of V
and the gaps between vertices of U can only decrease.

Now the cost of MLogGapA on G is∑
v∈V

fπu(v, out(v)) +
∑
u∈U

fπv (u, out(u)),

where πu = (uj1 , . . . , ujm) and πv = (vi1 , . . . , vin). Notice
that the second term of the sum depends only on the order
πv of the vertices in V , and it equals to the cost of MLogA
for graph G. Since R is optimal for MLogGapA, the order
πv = (vi1 , . . . , vin) is also optimal for MLogA.

Most of the previous works consider the MLogA problem
for graph compression, and the algorithms are not directly
suitable for index compression. Contrarily, an inverted in-
dex is generally represented by a directed graph (with edges
from terms to documents), which is not captured by the
MLogGapA problem, which is introduced for undirected
graphs. In the following, we suggest a model, which gener-
alizes both MLogA and MLogGapA and better expresses
graph and index compression.

3.1 Model for Graph and Index Compression
Intuitively, our new model is a bipartite graph comprising

of query and data vertices. A query vertex might correspond
to an actor in a social network or to a term in an inverted
index. Data vertices are an actor’s friends or documents con-
taining the term, respectively. The goal is to find a layout
of data vertices.

Formally, let G = (Q∪D, E) be an undirected unweighted
bipartite graph with disjoint sets of vertices Q and D. We
denote |D| = n and |E| = m. The goal is to find a permuta-
tion, π, of data vertices, D, so that the following objective
is minimized: ∑

q∈Q

degq −1∑
i=1

log(π(ui+1)− π(ui)),

where degq is the degree of query vertex q ∈ Q, and q’s
neighbors are {u1, . . . , udegq} with π(u1) < · · · < π(udegq ).
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Note that the objective is closely related to minimizing the
number of bits needed to store a graph or an index rep-
resented using the delta-encoding scheme. We call the op-
timization problem bipartite minimum logarithmic arrange-
ment (BiMLogA), and the corresponding cost averaged over
the number of gaps LogGap.

Note that BiMLogA is different from MLogGapA in
that the latter does not differentiate between data and query
vertices (that is, every vertex is query and data in MLogGapA),
which is unrealistic in some applications. It is easy to see that
the new problem generalizes both MLogA and MLogGapA:
to model MLogA, we add a query vertex for every edge of
the input graph, as in the proof of Theorem 1; to model
MLogGapA, we add a query for every vertex of the input
graph; see Figure 1. Moreover, the new approach can be
naturally applied for compressing directed graphs; to this
end, we only consider gaps induced by outgoing edges of a
vertex. Clearly, given an algorithm for BiMLogA, we can
easily solve both MLogA and MLogGapA. Therefore, we
focus on this new problem in the next sections.

2

1

3

4

(a) Original graph

21 3 4

12 13 23 34

(b) MLogA

21 3 4

1′ 2′ 3′ 4′

(c) MLogGapA

Figure 1: Modeling of MLogA and MLogGapA with a bi-
partite graph with query (red) and data (blue) vertices.

How can one solve the above ordering problems? Next we
discuss the existing theoretical approaches for solving graph
ordering problems. We focus on approximation algorithms,
that is, efficient algorithms for NP-hard problems that pro-
duce sub-optimal solutions with provable quality.

3.2 Approximation Algorithms
To the best of our knowledge, no approximation algo-

rithms exist for the new variants of the graph ordering prob-
lem. However, a simple observation shows that every algo-
rithm has approximation factor O(logn). Note that the cost
of a gap between u ∈ D and v ∈ D in BiMLogA cannot
exceed log n, as |π(v)− π(u)| ≤ n for every permutation π.
On the other hand, the cost of a gap is at least 1. Therefore,
an arbitrary order of vertices yields a solution with the cost,
which is at most log n times greater than the optimum.

In contrast, the well-studied MLA does not admit such
a simple approximation and requires more involved algo-
rithms. We observe that most of the existing algorithms for
MLA and related ordering problems employ the divide-and-
conquer approach; see Algorithm 1. Such algorithms parti-
tion the vertex set into two sets of roughly equal size, com-
pute recursively an order of each part, and “glue” the order-
ings of the parts together. The crucial part is graph bisection
or more generally balanced graph partitioning, if the graph
is split into more than two parts.

The first non-trivial approximation algorithm for MLA
follows the above approach. Hancen [18] proves that Algo-
rithm 1 yields an O(α logn)-approximation for MLA, where
α indicates how close is the solution of the first step (bi-
section of G) to the optimum. Later, Charikar et al. [11]
shows that a tighter analysis is possible, and the algorithm

Input: graph G

1. Find a bisection (G1, G2) of G;
2. Recursively find linear arrangements for G1 and G2;
3. Concatenate the resulting orderings;

Algorithm 1: Graph Reordering using Graph Bisection

is in fact O(α)-approximation for d-dimensional MLA. Cur-
rently, α = O(

√
logn) is the best known bound [3]. Sub-

sequently, the idea of Algorithm 1 is employed by Even et
al. [15], Rao and Richa [29], and Charikar et al. [10] for com-
posing approximation algorithms for MLA. The techniques
use the recursive divide-and-conquer approach and utilize a
spreading metric by solving a linear program with an expo-
nential number of constraints.

Inspired by the algorithms, we design a practical approach
for the BiMLogA problem. While solving a linear program
is not feasible for large graphs, we utilize recursive graph
partitioning in designing the algorithm. Next we describe
all the steps and provide implementation-specific details.

4. COMPRESSION-FRIENDLY GRAPH RE-
ORDERING

Assume that the input is an undirected bipartite graph
G = (Q∪D, E), and the goal is to compute an order of D. On
a high level, our algorithm is quite simple; see Algorithm 1.

The reordering method is based on the graph bisection
problem, which asks for a partition of graph vertices into two
sets of equal cardinality so as to minimize an objective func-
tion. Given an input graph G with |D| = n, we apply the bi-
section algorithm to obtain two disjoint sets V1, V2 ⊆ D with
|V1| = bn/2c and |V2| = dn/2e. We shall lay out V1 on the
set {1, . . . , bn/2c} and lay out V2 on the set {dn/2e, . . . , n}.
Thus, we have divided the problem into two problems of
half the size, and we recursively compute good layouts for
the graphs induced by V1 and V2, which we call G1 and G2,
respectively. Of course, when there is only one vertex in G,
the order is trivial.

How to bisect the vertices of the graph? We use a graph bi-
section method, similar to the popular Kernighan-Lin heuris-
tic [20]; see Algorithm 2. Initially we split D into two sets,
V1 and V2, and define a computational cost of the partition,
which indicates how “compression-friendly” the partition is.
Next we exchange pairs of vertices in V1 and V2 trying to
improve the cost. To this end we compute, for every vertex
v ∈ D, the move gain, that is, the difference of the cost af-
ter moving v from its current set to another one. Then the
vertices of V1 (V2) are sorted in the decreasing order of the
gains to produce list S1 (S2). Finally, we traverse the lists
S1 and S2 in the order and exchange the pairs of vertices,
if the sum of their move gains is positive. Note that unlike
classical graph bisection heuristics [16,20], we do not update
move gains after every swap. The process is repeated until
the convergence criterion is met (no swapped vertices) or
the maximum number of iterations is reached.

To initialize the bisection, we consider the following two
alternatives. A simple approach is to arbitrarily split D into
two equal-sized sets. Another approach is based on shingle
ordering (minwise hashing) suggested in [12]. To this end,
we order the vertices as described in [12] and assign the first
bn/2c vertices to V1 and the last dn/2e to V2.
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Input : graph G = (Q∪D, E)
Output: graphs G1 = (Q∪ V1, E1), G2 = (Q∪ V2, E2)

determine an initial partition of D into V1 and V2;
repeat

for v ∈ D do
gains[v]← ComputeMoveGain(v)

S1 ← sorted V1 in descending order of gains;
S2 ← sorted V2 in descending order of gains;
for v ∈ S1, u ∈ S2 do

if gains[v] + gains[u] > 0 then
exchange v and u in the sets;

else break;

until converged or iteration limit exceeded ;
return graphs induced by Q∪ V1 and Q∪ V2

Algorithm 2: Graph Bisection

Algorithm 2 tries to minimize the following objective func-
tion of the sets V1 and V2, which is motivated by BiMLogA.
For every vertex q ∈ Q, let deg1(q) = |{(q, v) : v ∈ V1}|, that
is, the number of adjacent vertices in set V1; define deg2(q)
similarly. Then the cost of the partition is∑
q∈Q

(
deg1(q) log(

n1

deg1(q) + 1
) + deg2(q) log(

n2

deg2(q) + 1
)

)
,

where n1 = |V1| and n2 = |V2|. The cost estimates the re-
quired number of bits needed to represent G using delta-
encoding. If the neighbors of q ∈ Q are uniformly distributed
in the final arrangement of V1 and V2, then the the average
gap between consecutive numbers in the q’s adjacency list is
gap1 := n1/(deg1(q) + 1) and gap2 := n2/(deg2(q) + 1) for
V1 and V2, respectively; see Figure 2. There are (deg1(q)−1)
gaps between vertices in V1 and (deg2(q)− 1) gaps between
vertices in V2. Hence, we need approximately (deg1(q) −
1) log(gap1) + (deg2(q) − 1) log(gap2) bits to compress the
within-group gaps. In addition, we have to account for the
average gap between the last vertex of V1 and the first vertex
of V2, which is (gap1 + gap2). Assuming that n1 = n2, we
have log(gap1 + gap2) = log(gap1) + log(gap2) + C, where
C is a constant with respect to the data vertex assignment,
and hence, it can be ignored in the optimization. Adding
this between-group contribution to the within-group contri-
butions gives the above expression.

q

V1 V2

{

gap1(q)

{

gap2(q)

Figure 2: Partitioning D into V1 and V2 for a query q ∈ Q
with deg1(q) = 3 and deg2(q) = 2.

Note that using the cost function, it is straightforward
to implement ComputeMoveGain(v) function from Algo-
rithm 2 by traversing all the edges (q, v) ∈ E for v ∈ D and
summing up the cost differences of moving v to another set.

Combining all the steps of Algorithm 1 and Algorithm 2,
we have the following claim.

Theorem 2. The algorithm produces a vertex order in
O(m logn+ n log2 n) time.

Proof. There are dlogne levels of recursion. Each call
of graph bisection requires computing move gains and sort-
ing of n elements. The former can be done in O(m) steps,
while the latter requires O(n logn) steps. Summing over all
subproblems, we get the claim of the theorem.

4.1 Implementation
Due to the simplicity of the algorithm, it can be efficiently

implemented in parallel or distributed manner. For the for-
mer, we notice that two different recursive calls of Algo-
rithm 1 are independent, and thus, can be executed in par-
allel. Analogously, a single bisection procedure can easily be
parallelized, as each of its steps computes independent val-
ues for every vertex, and a parallel implementation of sorting
can be used. In our implementation, we employ the fork-join
computation model in which small enough graphs are pro-
cessed sequentially, while larger graphs which occur on the
first few levels of recursion are solved in parallel manner.

Our distributed implementation relies on the vertex-centric
programming model and runs in the Giraph framework1.
In Giraph, a computation is split into supersteps that con-
sists of processing steps: (i) a vertex executes a user-defined
function based on local vertex data and on data from adja-
cent vertices, (ii) the resulting output is sent along outgoing
edges. Supersteps end with a synchronization barrier, which
guarantees that messages sent in a given superstep are re-
ceived at the beginning of the next superstep. The whole
computation is executed iteratively for a certain number of
rounds, or until a convergence property is met.

Algorithm 2 is implemented in the vertex-centric model
with a simple modification. The first two supersteps com-
pute move gains for all data vertices. To this end, every
query vertex calculates the differences of the cost function
when its neighbor moves from a set to another one. Then,
every data vertex sums up the differences over its query
neighbors. Given the move gains, we exchange the vertices
as follows. Instead of sorting the move gains, we construct,
for both sets, an approximate histogram of the gain values.
Since the size of the histograms is small enough, we collect
the data on a dedicated host, and decide how many vertices
from each bin should exchange its set. On the last superstep,
this information is propagated over all data vertices and the
corresponding swaps take effect.

5. EXPERIMENTS
We design our experiments to answer two primary ques-

tions: (i) How well does our algorithm compress graphs and
indexes in comparison with existing techniques? (ii) How do
various parameters of the algorithm contribute to the solu-
tion, and what are the best parameters?

5.1 Dataset
For our experiments, we use several publicly available web

graphs, social networks, and inverted document indexes; see
Table 1. In addition, we run evaluation on two large sub-
graphs of the Facebook friendship graph and a sample of
the Facebook search index. These private datasets serve to
demonstrate scalability of our approach. We do not release

1http://giraph.apache.org
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the datasets and our source code due to corporate restric-
tions. Before running the tests, all the graphs are made un-
weighted and converted to bipartite graphs as described in
Section 3.1. Our dataset is as follows.
• Enron represents an email communication network; data

is available at https://snap.stanford.edu/data.
• AS-Oregon is an Autonomous Systems peering infor-

mation inferred from Oregon route-views in 2001; data
is available at https://snap.stanford.edu/data.
• FB-NewOrlean contains a list of all of the user-to-user

links from the Facebook New Orleans network; the
data was crawled and anonymized in 2009 [36].
• web-Google represents web pages with hyperlinks be-

tween them. The data was released in 2002 by Google;
data is available at https://snap.stanford.edu/data.
• LiveJournal is an undirected version of the public so-

cial graph (snapshot from 2006) containing 4.8 million
vertices and 42.9 million edges [35].
• Twitter is a public graph of tweets, with about 41

million vertices (twitter accounts) and 2.4 billion edges
(denoting followership) [21].
• Gov2 is an inverted index built on the TREC 2004 Ter-

abyte Track test collection, consisting of 25 million .gov
sites crawled in early 2004.
• ClueWeb09 is an inverted index built on the ClueWeb

2009 TREC Category B test collection, consisting of
50 million English web pages crawled in 2009.
• FB-Posts-1B is an inverted index built on a sample

of one billion Facebook posts, containing the longest
posting lists. Since the posts have no hierarchical URLs,
the Natural order for this index is random.
• FB-300M and FB-1B are two subgraphs of the Facebook

friendship graph; the data was anonymized before pro-
cessing.

To build the inverted indexes for Gov2 and ClueWeb09,
the body text was extracted using Apache Tika2 and the
words lowercased and stemmed using the Porter2 stemmer;
no stopwords were removed. We consider only long posting
lists containing more than 4096 elements.

Graph |Q| |D| |E|
Enron 9,660 9,660 224,896
AS-Oregon 13,579 13,579 74,896
FB-NewOrlean 63,392 63,392 1,633,662
web-Google 356,648 356,648 5,186,648
LiveJournal 4,847,571 4,847,571 85,702,474
Twitter 41,652,230 41,652,230 2,405,026,092
Gov2 39,187 24,618,755 5,322,924,226
ClueWeb09 96,741 50,130,884 14,858,911,083
FB-Posts-1B 60× 103 1× 109 20× 109

FB-300M 300× 106 300× 106 90× 109

FB-1B 1× 109 1× 109 300× 109

Table 1: Basic properties of our dataset.

5.2 Techniques
We compare our new algorithm (referred to as BP) with

the following competitors.
• Natural is the most basic order defined for a graph.

For web graphs and document indexes, the order is the

2http://tika.apache.org

URL lexicographic ordering used in [8, 28]. For social
networks, the order is induced by the original adja-
cency matrix.
• BFS is given by the bread-first search graph traversal

algorithm as utilized in [2].
• Minhash is the lexicographic order of 10 minwise hashes

of the adjacency sets. The same approach with only 2
hashes is called double shingle in [12].
• TSP is a heuristic for document reordering suggested

by Shieh et al. [31], which is based on solving the max-
imum travelling salesman problem. We implemented
the variant of the algorithm that performs best in the
authors’ experiments. Since the algorithm is computa-
tionally expensive, we run it on small instances only.
The sparsification techniques presented in [5,14] would
allow us to scale to the larger graphs, but they are too
complex to re-implement faithfully.
• LLP represents an order computed by the Layered La-

bel Propagation algorithm [7].
• Spectral order is given by the second smallest eigen-

vector of the Laplacian matrix of the graph [19].
• Multiscale is an algorithm based on the multi-level al-

gebraic methodology suggested for solving MLogA [30].
• SlashBurn is a method for matrix reordering [22].

5.3 Effect of BP parameters
BP has a number of parameters that can affect its quality

and performance. In the following we discuss some of the
parameters and explain our choice of their default values.

An important aspect of BP is how two sets, V1 and V2,
are initialized in Algorithm 2. Arguably the initialization
procedure might affect the quality of the final vertex order.
To verify the hypothesis, we implemented four initialization
techniques that bisect a given graph: Random, Natural, BFS,
and Minhash. The techniques order the data vertices, D, us-
ing the corresponding algorithm, and then split the order
into two sets of equal size. In the experiment, we intention-
ally consider only the simplest and most efficient bisection
techniques so as to keep the complexity of the BP algorithm
low. Figure 3 illustrates the effect of the initialization meth-
ods for graph bisection. Note that initialization plays a role
to some extent, and there is no consistent winner. BFS is
the best initialization for three of the graphs but does not
produce an improvement on the indexes. One explanation
is that the indexes contain high-degree query vertices, that
make the BFS order essentially random. Overall, the differ-
ence between the final results is not substantial, and even the
worst initialization yields better orders than the alternative
algorithms do. Therefore, we utilize the simplest approach,
Random, for graphs and Minhash for indexes as the default
technique for bisection initialization.

Is it always necessary to perform log n levels of recursion
to get a reasonable solution? Figure 4 shows the quality of
the resulting vertex order after a fixed number, i, of recur-
sion splits. For every i (that is, when there are 2i disjoint
sets), we stop the algorithm and measure the quality of the
order induced by the random assignment of vertices respect-
ing the partition. It turns out that graph bisection is benefi-
cial only when D contains more than a few tens of vertices.
In our implementation, we set (logn − 5) for the depth of
recursion, which slightly reduces the overall running time.
It might be possible to improve the final quality by finding
an optimal solution (e.g., using an exhaustive search or a
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a fixed depth of recursion. Note that the last few splits make
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linear program) for small subgraphs on the lowest levels of
the recursion. We leave the investigation for future research.

Figure 5 illustrates the speed of convergence of our opti-
mization procedure utilized for improving graph partitioning
in Algorithm 2. The two sets approach a locally optimal state
within a few iterations. The number of required iterations
increases, as the depth of recursion gets larger. Generally,
the number of moved vertices per iteration does not exceed
1% after 20 iterations, even for the deepest recursion levels.
Therefore, we use 20 as the default number of iterations in
all our experiments.

5.4 Compression ratio
Table 2 presents a comparison of various reordering meth-

ods on social networks and web graphs. We evaluate the
following measures: (i) the cost of the BiMLogA problem
(LogGap), (ii) the cost of the MLogA problem (the log-
arithmic difference averaged over the edges, Log), (iii) the
average number of bits per edge needed to encode the graph
with WebGraph [8] (referred to as BV). The results suggest
that BP yields the best compression on all but one instance,
providing an 5 − 20% improvement over the best alterna-
tive. An average gain over a non-reordered solution reaches
impressive 50%. The runner-up approaches, TSP, LLP, and
Multiscale, also significantly outperform the natural or-
der. However, their straightforward implementations are not
scalable for large graphs (none of them is able to process
Twitter within a few hours), while efficient implementations
are arguably more complicated than BP.
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Figure 5: The average percentage of moved vertices on an
iteration of Algorithm 2 for various levels of recursion. The
data is computed for LiveJournal.

(a) Natural (b) BFS (c) Minhash

(d) TSP (e) LLP (f) Spectral

(g) Multiscale (h) SlashBurn (i) BP

Figure 6: Adjacency matrices of FB-NewOrlean after applying
various reordering algorithms; nonzero elements are blue.

The computed results for FB-300M and FB-1B demonstrate
that the new reordering technique is beneficial for very large
graphs, too. Unfortunately, we were not able to calculate
the compression rate for the graphs, as WebGraph [8] does
not provide distributed implementation. However, the ex-
periment indicates that BP outperforms Natural by around
50% and outperforms Minhash by around 30%.

The compression ratio of inverted indexes is illustrated in
Table 3, where we evaluate the Partitioned Elias-Fano [25]
encoding and Binary Interpolative Coding [24] (respectively
PEF and BIC). Here the results are reported in average
bits per edge. Again, our new algorithm largely outperforms
existing approaches in terms of both LogGap cost and com-
pression rate. BP has a large impact on the indexes, achieving
a 22% and a 15% compression improvement over alterna-
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Graph Algorithm LogGap Log BV

Enron Natural 5.01 9.82 7.80
BFS 4.86 9.97 7.70
Minhash 4.91 10.12 7.68
TSP 3.95 9.46 6.58
LLP 3.96 8.55 6.51
Spectral 5.43 9.41 8.60
Multiscale 4.23 8.00 6.90
SlashBurn 5.11 10.18 8.05
BP 3.69 8.26 6.24

AS-Oregon Natural 7.88 12.06 13.34
BFS 4.71 11.06 7.97
Minhash 4.47 11.17 7.56
TSP 3.59 10.39 6.66
LLP 4.42 8.32 7.47
Spectral 5.64 9.53 8.76
Multiscale 4.53 7.23 7.31
SlashBurn 4.50 10.66 8.74
BP 3.15 9.21 6.25

FB-NewOrlean Natural 9.74 14.29 14.64
BFS 7.16 12.63 10.79
Minhash 7.06 12.57 10.62
TSP 5.62 11.61 8.96
LLP 5.37 9.41 8.54
Spectral 7.64 11.49 11.79
Multiscale 5.90 9.58 9.25
SlashBurn 8.37 13.06 12.65
BP 4.99 9.45 8.16

web-Google Natural 13.39 16.74 20.08
BFS 5.57 11.21 7.69
Minhash 5.65 13.14 6.87
TSP 3.28 7.99 4.77
LLP 3.75 6.70 5.13
Spectral 6.68 10.25 9.16
Multiscale 2.72 4.82 4.10
SlashBurn 8.02 14.46 10.29
BP 3.17 7.74 4.68

LiveJournal Natural 10.43 17.44 14.61
BFS 10.52 17.59 14.69
Minhash 10.79 17.76 15.07
LLP 7.46 12.25 11.12
BP 7.03 12.79 10.73

Twitter Natural 15.23 23.65 21.56
BFS 12.87 22.69 17.99
Minhash 10.43 21.98 14.76
BP 7.91 20.50 11.62

FB-300M Natural 17.65 25.34
Minhash 13.06 24.9
BP 8.39 18.13

FB-1B Natural 19.63 27.22
Minhash 14.60 26.89
BP 8.66 18.36

Table 2: Reordering results of various algorithms on graphs:
the costs of MLogA, BiMLogA, and the number of bits
per edge required by BV. The best results in every column
are highlighted. We present the results that completed the
computation within a few hours.

Index Algorithm LogGap PEF BIC

Gov2 Natural 2.12 3.12 2.52
BFS 2.07 3.00 2.44
Minhash 2.12 3.12 2.52
BP 1.81 2.44 1.95

ClueWeb09 Natural 2.91 4.99 4.05
BFS 2.91 4.99 4.06
Minhash 2.91 4.99 4.05
BP 2.55 4.34 3.50

FB-Posts-1B Natural 8.03 10.19 9.95
Minhash 3.41 4.96 4.24
BP 2.95 4.18 3.61

Table 3: Reordering results of various algorithms on inverted
indexes with highlighted best results.

tives; these gains are almost identical for PEF and BIC.
An interesting question is why does the new algorithm

perform best on most of the tested graphs. In Figure 7 we
analyze the number of gaps between consecutive numbers
of graph adjacency lists. It turns out that BP and LLP have
quite similar gap distributions, having notably more shorter
gaps than the alternative methods. Note that the number of
edges that the BV encoding is able to copy is related to the
number of consecutive integers in the adjacency lists; hence
short gaps strongly influences its performance. At the same
time, BP is slightly better at longer gaps, which is a reason
why the new algorithm yields a higher compression ratio.

We point out that the cost of BiMLogA, LogGap, is more
relevant for the compression rate than the cost of MLogA;
see Figure 8. The observation agrees with the previous evalu-
ation of Boldi et al. [7] and motivates our research on the for-
mer problem. The Pearson correlation coefficients between
the LogGap cost and the average number of bit per edge us-
ing BV, PEF, and BIC encoding schemes are 0.9853, 0.8487,
and 0.8436, respectively. While the high correlation between
LogGap and BV is observed earlier [8, 12], the relation be-
tween LogGap and PEF or BIC is a new phenomenon. A
possible explanation is that the schemes encode a sequence of
k integers in the range [1..n] using close to the information-
theoretic minimum of k(1 + blog2(n/k)c) bits [25], which
is equivalent to our optimization function utilized in Algo-
rithm 2. It might be possible to construct a better model
for the two encoding schemes, where the cost of the op-
timization problem has a higher correlation with the final
compression ratio. For example, this can be achieved by in-
creasing the weights of “short” gaps that generally require
more than log(gap) bits. We leave the question for future
investigation.

Figure 6 presents an alternative comparison of the impact
of the reordering algorithms on the FB-NewOrlean graph.
Note that only BP and LLP are able to find communities in
the graph (dense subgraphs), that can be compressed effi-
ciently. The recursive nature of BP is also clearly visible.

5.5 Running time
We created and tested two implementations of our algo-

rithm, parallel and distributed. The parallel version is im-
plemented in C++11 and compiled with the highest opti-
mization settings. The tests are performed on a machine
with Intel(R) Xeon(R) CPU E5-2660 @ 2.20GHz (32 cores)
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with 128GB RAM. Our algorithm is highly scalable; the
largest instances of our dataset, Gov2, ClueWeb09 and FB-

Posts-1B, are processed with BP within 29, 129, and 163
minutes, respectively. In contrast, even the simplest Min-

hash takes 14, 42, and 70 minutes for the indexes. Natural
and BFS also have comparable running times on the graphs.
Our largest graphs, Twitter and LiveJournal, require 149
and 3 minutes; all the smaller graphs are processed within a
few seconds. In comparison, the author’s implementation of
LLP with the default settings takes 23 minutes on LiveJour-

nal and is not able to process Twitter within a reasonable
time. The other alternative methods are less efficient; for in-
stance, Multiscale runs 12 minutes and TSP runs 3 minutes
on web-Google. The single-machine implementation of BP

is also memory-efficient, utilizing less than twice the space
required to store the graph edges.

The distributed version of BP is implemented in Java. We
run experiments using the distributed implementation only
on FB-300M and FB-1B graphs, using a cluster of a few tens of
machines. FB-300M is processed within 350 machine-hours,
while the computation on FB-1B takes around 2800 machine-
hours. In comparison, the running time of the Minhash al-
gorithm is 20 and 60 machine-hours on the same cluster
configuration, respectively. Despite the fact that our imple-
mentation is a part of a general graph partitioning frame-
work [1], which is not specifically optimized for the problem,
BP scales almost linearly with the size of the utilized cluster
and processes huge graphs within a few hours.

6. CONCLUSIONS AND FUTURE WORK
We presented a new theoretically sound algorithm for graph

reordering problem and experimentally proved that the re-
sulting vertex orders allow to compress graphs and indexes
more efficiently than the existing approaches. The method is
highly scalable, which is demonstrated via evaluation on sev-
eral graphs with billions of vertices and edges. While we see
impressive gains in the compression ratio, we believe there is
still much room for further improvement. In particular, our
graph bisection technique ignore the freedom of orienting
the decomposition tree. An interesting question is whether
a postprocessing step that “flips” left and right children of
tree nodes can be helpful. It is shown in [4] that there is
an O(n2.2)-time algorithm that computes an optimal tree
orientation for the MLA problem. Whether there exists a
similar algorithm for MLogA or BiMLogA, is open.

While our primary motivation is compression, graph re-
ordering plays an important role in a number of applications.
In particular, various graph traversal algorithms can be ac-
celerated if the in-memory graph layout takes advantage of
the cache architecture. Improving vertex and edge locality
is important for fast node/link access operations, and thus
can be beneficial for generic graph algorithms and applica-
tions [32]. We are currently working on exploring this area
and investigating how reordering of graph vertices can im-
prove cache and memory utilization.

From the theoretical point of view, it is interesting to de-
vise better approximation algorithms for the MLogA and
BiMLogA problems. It is likely that relaxing the balance
condition of the bisection step yields a better approxima-
tion, similarly to the recursive algorithm for the MLA prob-
lem [34]. Finally, optimal algorithms for special cases of the
problem are also of interest, for example, ordering of certain
classes of graphs that occur in practical applications.
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[5] R. Blanco and Á. Barreiro. Document identifier
reassignment through dimensionality reduction. In
Adv. Inf. Retr., pages 375–387. 2005.

[6] D. Blandford and G. Blelloch. Index compression
through document reordering. In Data Compression
Conference, pages 342–351, 2002.

[7] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In World
Wide Web, pages 587–596, 2011.

[8] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In World Wide Web, pages
595–602, 2004.

[9] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences, pages 21–29, 1997.

[10] M. Charikar, M. T. Hajiaghayi, H. Karloff, and
S. Rao. l22 spreading metrics for vertex ordering
problems. Algorithmica, 56(4):577–604, 2010.

[11] M. Charikar, K. Makarychev, and Y. Makarychev. A
divide and conquer algorithm for d-dimensional
arrangement. In Symposium on Discrete Algorithms,
pages 541–546, 2007.

[12] F. Chierichetti, R. Kumar, S. Lattanzi,
M. Mitzenmacher, A. Panconesi, and P. Raghavan. On
compressing social networks. In Knowledge Discovery
and Data Mining, pages 219–228, 2009.

[13] N. R. Devanur, S. A. Khot, R. Saket, and N. K.
Vishnoi. Integrality gaps for sparsest cut and
minimum linear arrangement problems. In Symposium
on Theory of Computing, pages 537–546, 2006.

[14] S. Ding, J. Attenberg, and T. Suel. Scalable techniques
for document identifier assignment in inverted indexes.
In World Wide Web, pages 311–320, 2010.

[15] G. Even, J. S. Naor, S. Rao, and B. Schieber.
Divide-and-conquer approximation algorithms via
spreading metrics. Journal of the ACM,
47(4):585–616, 2000.

[16] C. M. Fiduccia and R. M. Mattheyses. A linear-time
heuristic for improving network partitions. In Design
Automation, pages 175–181, 1982.

[17] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

[18] M. D. Hansen. Approximation algorithms for
geometric embeddings in the plane with applications
to parallel processing problems. In Foundations of

Computer Science, pages 604–609, 1989.

[19] M. Juvan and B. Mohar. Optimal linear labelings and
eigenvalues of graphs. Discrete Applied Mathematics,
36(2):153–168, 1992.

[20] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell System
Technical Journal, 49(2):291–307, 1970.

[21] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In World
Wide Web, pages 591–600, 2010.

[22] Y. Lim, U. Kang, and C. Faloutsos. SlashBurn: Graph
compression and mining beyond caveman
communities. IEEE Transactions on Knowledge and
Data Engineering, 26(12):3077–3089, 2014.

[23] S. Maneth and F. Peternek. A survey on methods and
systems for graph compression. arXiv preprint
arXiv:1504.00616, 2015.

[24] A. Moffat and L. Stuiver. Binary interpolative coding
for effective index compression. Information Retrieval,
3(1), 2000.

[25] G. Ottaviano and R. Venturini. Partitioned Elias-Fano
indexes. In SIGIR, pages 273–282, 2014.

[26] J. Petit. Addenda to the survey of layout problems.
Bulletin of EATCS, 3(105), 2013.

[27] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Physical Review E,
76(3):036106, 2007.

[28] K. H. Randall, R. Stata, R. G. Wickremesinghe, and
J. L. Wiener. The link database: Fast access to graphs
of the web. In Data Compression Conference, pages
122–131, 2002.

[29] S. Rao and A. W. Richa. New approximation
techniques for some ordering problems. In Symposium
on Discrete Algorithms, pages 211–219, 1998.

[30] I. Safro and B. Temkin. Multiscale approach for the
network compression-friendly ordering. Journal of
Discrete Algorithms, 9(2):190–202, 2011.

[31] W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann, and C.-P.
Chung. Inverted file compression through document
identifier reassignment. Information Processing &
Management, 39(1):117–131, 2003.

[32] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and
faster: Parallel processing of compressed graphs with
Ligra+. In Data Compression Conference, pages
403–412, 2015.

[33] F. Silvestri. Sorting out the document identifier
assignment problem. In European Conference on IR
Research, pages 101–112. Springer, 2007.

[34] H. D. Simon and S.-H. Teng. How good is recursive
bisection? SIAM Journal on Scientific Computing,
18(5):1436–1445, 1997.

[35] J. Ugander and L. Backstrom. Balanced label
propagation for partitioning massive graphs. In Web
Search and Data Mining, pages 507–516, 2013.

[36] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi. On the evolution of user interaction in
Facebook. In Workshop on Social Networks, 2009.

[37] I. H. Witten, A. Moffat, and T. C. Bell. Managing
gigabytes: compressing and indexing documents and
images. Morgan Kaufmann, 1999.

1544


	Introduction
	Related Work
	Algorithmic Aspects
	Model for Graph and Index Compression
	Approximation Algorithms

	Compression-Friendly Graph Reordering
	Implementation

	Experiments
	Dataset
	Techniques
	Effect of BP parameters
	Compression ratio
	Running time

	Conclusions and Future Work
	Acknowledgments
	References



