
PaC-trees: Supporting Parallel and Compressed
Purely-Functional Collections

Laxman Dhulipala
University of Maryland

laxman@umd.edu

Guy Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu
UC Riverside

ygu@cs.ucr.edu

Yihan Sun
UC Riverside

yihans@cs.ucr.edu

Abstract
Many modern programming languages are shifting toward
a functional style for collection interfaces such as sets, maps,
and sequences. Functional interfaces offer many advantages,
including being safe for parallelism and providing simple and
lightweight snapshots. However, existing high-performance
functional interfaces such as PAM, which are based on bal-
anced purely-functional trees, incur large space overheads
for large-scale data analysis due to storing every element in
a separate node in a tree.
This paper presents PaC-trees, a purely-functional data

structure supporting functional interfaces for sets, maps, and
sequences that provides a significant reduction in space over
existing approaches. A PaC-tree is a balanced binary search
tree which blocks the leaves and compresses the blocks us-
ing arrays. We provide novel techniques for compressing
and uncompressing the blocks which yield practical parallel
functional algorithms for a broad set of operations on PaC-
trees such as union, intersection, filter, reduction, and range
queries which are both theoretically and practically efficient.

Using PaC-trees we designed CPAM, a C++ library that im-
plements the full functionality of PAM, while offering signifi-
cant extra functionality for compression. CPAM consistently
matches or outperforms PAM on a set of microbenchmarks
on sets, maps, and sequences while using about a quarter
of the space. On applications including inverted indices, 2D
range queries, and 1D interval queries, CPAM is competitive
with or faster than PAM, while using 2.1–7.8x less space.
For static and streaming graph processing, CPAM offers 1.6x
faster batch updates while using 1.3–2.6x less space than the
state-of-the-art graph processing system Aspen.

1 Introduction
Almost all modern programming languages include exten-
sive support for collections, such as sets, maps, and sequences
either as libraries or built-in data types. Support for such col-
lections has become the cornerstone of large-scale data pro-
cessing, as exemplified by systems such as Apache Spark [54].
Among the interfaces for collections, there has been a trend
towards a functional style, shying away from mutation (e.g.,

PLDI’22, June 20–24, 2022, San Diego, California, United States
2022.

Interval tree Range tree Wikipedia Friendster Twitter
0

2

4

6

8

10

12

14

16

S
iz

e
R

el
at

iv
e

to
S

m
al

le
st

0.
81

21

40
.3

3 8.
30

6

15
.4

3

10
.3

4

4.
08

3

14
.6

7.
59

8

3.
54

8

89
.6

9

31
.9

9

11
0.

6

73
.5

4

18
.5

3

9.
03

4

10
.7

4.
87

1

PaC-tree (CPAM)

PaC-tree-diff (CPAM)

P-tree (PAM)

Aspen

GBBS

Figure 1. Relative sizes of the interval tree, range tree, inverted in-
dex (Wikipedia corpus), and graph representations (Twitter, Friend-
ster) studied in this paper using PaC-trees from CPAM (using
𝐵 = 128) and other systems. Lower is better. The numbers shown
on top of the bars are the sizes of each representation in GiB. PaC-
tree-diff compresses integer keys using difference encoding. The
C-trees from Aspen [25] also support difference encoding. GBBS is
the static compressed graph representation from the Graph Based
Benchmark Suite [26] which uses difference encoding, and serves
as a baseline for the tree-based graph representations.

Spark is functional). Functional interfaces have several ad-
vantages over mutating ones, including being safe for paral-
lelism, allowing safe composition, permitting flexible imple-
mentations (e.g., using copies when helpful), and supporting
snapshots. Supporting snapshots is particularly useful in sce-
narios in which a stream of updates is being made to a col-
lection which is concurrently being analyzed [22, 25, 37, 42].

Recent work [52] has developed a purely functional library,
PAM, for representing sequences, ordered sets, ordered maps,
and augmented maps (defined in [52]) using balanced trees,
called P-trees. P-trees use path copying to perform updates,
supporting functional updates at a reasonably low cost (e.g.,
𝑂 (log𝑛) per point update). However they come at a cost of
high space usage—every element requires a node in the tree.
This is particularly problematic for large-scale data analysis,
since in large-systems memory is often the dominating cost.

In this paperwe presentParallel Compressed trees (PaC-
trees): a purely-functional data structure for supporting a
similar functionality as P-trees but with significant reduc-
tion in space—up to an order of magnitude (see Fig. 1). Our
approach is based on blocking the leaves and compressing
the blocks using arrays (see Fig. 4). We present innovative
techniques for compressing and uncompressing the blocks

1

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

Primitive Work Span
Se

qu
en

ce

Build 𝑂 (𝑛) 𝑂 (log𝑛)
Map 𝑂 (𝑛) 𝑂 (log𝑛)
Filter 𝑂 (𝑛) 𝑂 (log𝑛)
Reduce 𝑂 (𝑛) 𝑂 (log𝑛)
Take 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
𝑛-th 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
FindFirst 𝑂 (𝑘) 𝑂 (log𝑛)
Append† 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Reverse† 𝑂 (𝑛) 𝑂 (log𝑛)

Se
ta

nd
M
ap

Build 𝑂 (𝑛 log𝑛) 𝑂 (log𝑛)
Next/Previous 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Rank 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Range 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Insert 𝑂 (log𝑛 + 𝐵) 𝑂 (log𝑛)
Union 𝑂 (𝑚 log 𝑛

𝑚
+min(𝑚𝐵,𝑛)) 𝑂 (log𝑛 log𝑚)

Intersect 𝑂 (𝑚 log 𝑛
𝑚

+min(𝑚𝐵,𝑛)) 𝑂 (log𝑛 log𝑚)
Difference 𝑂 (𝑚 log 𝑛

𝑚
+min(𝑚𝐵,𝑛)) 𝑂 (log𝑛 log𝑚)

Table 1. Primitives from the Sequence, Set, and Map inter-
faces in CPAM, including the work and span bounds. Note
that primitives marked with † are specific to Sequences, and Set
and Map primitives cannot be applied to Sequences.𝑚,𝑛 are de-
fined to be the size of the smaller and larger sets, respectively. 𝐵 is
the block size (the size of a blocked leaf in a PaC-tree). We assume
a parallelizable encoding for the span bounds.

without needing to re-implement the full functionality of
P-trees. Importantly, in the paper we analyze the cost of all
the operations as a function of the block size 𝐵 as well as the
collection size. This is analyzed both in terms of the work
(runtime sequentially) and span (longest dependent path in
parallel). The costs for a sample of the supported functions
are given in Table 1. These costs can help the user decide
on a block size for their particular application—a parameter
that can be specified when creating a collection.
Using PaC-trees we have implemented CPAM: a C++ li-

brary which implements the full functionality of PAM, along
with significant extra functionality involving compression.
By default CPAM supports difference (or delta) encoding [43]
within the blocked leaves. In such an encoding, each element
is encoded based on the value of the previous element in
the collection. This can greatly reduce space when elements
that are close in the ordering of the collection are related.
For example, if a graph is numbered so that neighboring ver-
tices have similar indices, then the neighbors in a neighbor
list will have small differences. These small numbers can
then be encoded in a handful of bits each [49]. Similarly in
an inverted index where each word points to a sequence of
documents it appears in, if the documents are sorted, the dif-
ferences between adjacent document identifiers can be small.
This is especially true for common words, which take up
the bulk of the space. In the paper we bound the extra space
needed (due to the index using the tree structure) for PaC-
trees compared to a static representation of the data (i.e., an
array) directly using difference encoding (see Theorem 4.2).

reduce filter is sorted reverse find select subseq append
0

5

10

15

20

25

30

35

40

R
el

at
iv

e
P

er
fo

rm
an

ce

8
.6

5

1
5
.4

8.
87

1
9
.9

9
.9

1

8
.7

86
e−

4

0
.0

10
1

0.
01

11

2
5
.5

4
4
.1

2
4.

4

6
2
.8 39

.9

1.
47

5
e−

3

8
.3

82
e−

3

0
.0

10
7

7
.3

7
5
.2

7
.0

1

1
1
.5

4
.2

1

5
.4

31
e−

5

0
.2

94CPAM

PAM

ParallelSTL

Figure 2. Relative performance of sequence primitives in CPAM
(using 𝐵 = 128), PAM, and ParallelSTL [33] on a 72-core machine
with 2-way hyper-threading enabled. The numbers shown on top of
the bars are the parallel (144-thread) running times in milliseconds.
Lower is better. All benchmarks are run on sequences of length
108 containing 8-byte elements. For append, ParallelSTL takes
17.7 milliseconds on average (1594x larger than append in CPAM).
CPAM and PAM represent sequences using purely-functional trees,
whereas ParallelSTL uses arrays (hence static).

In our default blocked representation, the first element
of a block is represented uncompressed, and the rest of the
elements are compressed relative to the previous element. In
addition to delta-encoding, CPAM also supplies an interface
for the user to define their own form of compression for
each block. For example, they can quantize values, or use
other variable length codes when keys are known to be small.
CPAM uses a reference counting garbage collector to manage
the memory for both the internal nodes and the compressed
leaf nodes, which can be of variable size due to compression.
CPAM supports augmentation in which each tree node

maintains an aggregate of the values of its subtree (see more
details in Section 3). The aggregation function is declared as
part of the type of the tree. Augmentation is useful in many
applications, and indeed we use it in all of the applications
we describe later. PaC-trees store an augmented value per
internal node, and one for each block at the leaves. Storing
one value per block significantly reduces space relative to
P-trees in PAM, which store a value for every element.
To demonstrate the effectiveness of PaC-trees, and their

implementation in CPAM, we measure performance and
space usage on (1) a collection of microbenchmarks that
directly use some of the functions supported by the library,
and (2) a handful of real-world applications.
For the microbenchmarks, we compare the performance

of CPAM to PAM, and for sequences to the Intel implemen-
tation of the C++17 parallel STL library [33] (ParallelSTL).
ParallelSTL is a highly optimized library supporting only
sequences based on arrays. A summary of the results for se-
quences is given Fig. 2, and details including performance of
ordered maps, and augmented maps are given in Section 10.
Compared to PAM, CPAM achieves significantly better per-
formance due to the reduced memory footprint, and hence
reduced number of cache misses, while only requiring about
1/4-th as much space even without compression. Compared
to ParallelSTL, CPAM has similar performance on operations

2

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

that visit the whole sequence, like reduce, but is significantly
slower on nth since it requires𝑂 (log𝑛+𝐵) work as opposed
to𝑂 (1) for a random array access for ParallelSTL. On append
CPAM is significantly faster since it requires 𝑂 (log𝑛 + 𝐵)
work to join to trees instead of𝑂 (𝑛) required by ParallelSTL
to copy the input arrays into the output array.
We consider four applications: graphs, inverted indices,

2D range queries and 1D interval queries. For inverted in-
dices, 2D range query and 1D interval query, CPAM achieves
competitive performance to PAM while using 2.1x–7.8x less
space. For graph processing, we compare to an existing sys-
tem Aspen [25] that represents graphs using trees. CPAM
uses 1.3–2.6x less space compared to Aspen, and is almost
always faster than Aspen in all tested graph algorithms.

The main contributions of this paper are:
• A new functional data structure, PaC-trees, and associ-
ated parallel algorithms that support compression for se-
quences, sets, maps and augmented maps.

• Theoretical bounds on the costs (work and span) and the
space of the data structure and associated algorithms.

• An implementation of PaC-trees as a library, CPAM, sup-
porting the full functionality of PAM in addition to sup-
porting default and user defined compression schemes.1

• An experimental evaluation of the ideas and implementa-
tion on microbenchmarks and non-trivial applications.

2 Related Work
Our work extends P-trees and their C++ implementation in
PAM [52]. Our key contribution is the ability to compress
the trees achieving up to an order-of-magnitude reduction
in space. This is achieved while being able to present cost
bounds both in terms of time and space. These bounds are a
function of a block size the user can select.

B-trees [6] and their variants block not just the leaves but
all nodes of a tree, such that internal nodes can have a high
fan-out. They are widely used in practice, especially for disk
based data structures since nodes are on the scale of a page
on disk and can be retrieved efficiently. However they are
less relevant in the context of purely functional in-memory
trees. In particular, path copying requires that an update
copy all nodes on the path from the root to the leaf. If the
nodes are large (e.g. 128+ elements each, as in our leaves)
this copying would be very expensive both in terms of space
and time. Various work has suggested blocking the leaves
of a binary tree to represent sequences [1, 8, 16, 30, 38]. The
idea is to reduce the cost of operations such as append or
subsequence relative to array representations. As far as we
know, these ideas have never been applied to ordered sets

1We have made CPAM publicly available: https://github.com/ParAlg/CPAM.

3

1

0 2

7

5 9

4 6

0 1

prefix
4

2 7

5

3 9

tree

3

6

4 5 7 9

0 1 2

P-tree in PAM (regular BST)

C-tree in Aspen (Compressing nodes in BST)

2 5

0 1 3 4 7 96
B-tree (multi-way search tree)

PaC-tree (Compressing leaves in BST)

3’

7’

9’

8

2’ 5’

8 9’7’6’

4’

7’ 8 9’

3’

6

7’ 8 9’

Nodes copied:
𝑂(log 𝑛)

Nodes copied:
𝑂(𝐵 log𝐵 𝑛)

Nodes copied:
𝑂(𝐵 + log𝑛/𝐵)
(in expectation)

Nodes copied:
𝑂(𝐵 + log𝑛/𝐵)

(a)

(b)

(c)

(d)

6’

Figure 3. An illustration of (a) P-tree in PAM [11, 52] (regular
BST), (b) B-tree (multi-way search tree), (c) C-tree [25] in Aspen
(compressing all nodes in a BST) and (d) our PaC-tree (compressing
all leaves in a BST) in CPAM. The orange nodes show a tree with
keys 0-7 and 9. We then consider inserting a key 8. Blue nodes
are what we need to create (copy or new) due to path-copying.
Round nodes are tree nodes each storing a single key, and square
nodes are organized in blocks of size 𝑂 (𝐵) (expected for C-trees).
Let 𝑛 be the tree size, an insertion needs to copy 𝑂 (log𝑛) nodes
in P-tree, 𝑂 (𝐵 log𝐵 𝑛) in B-tree, and 𝑂 (𝐵 + log(𝑛/𝐵)) in C-tree (in
expectation) or PaC-tree.

or ordered maps.2 We also do not know of work that then
compresses within the blocks.
Aspen [25] is a system for graph processing, based on

purely functional trees and uses compression for the neigh-
bor lists. At a high-level, our goals are shared with Aspen
(e.g., non-mutating updates), but Aspen has several limita-
tions. Importantly it is only designed for graphs, supporting
only a small part of the functionality of CPAM. The tree
representation in Aspen is also very different. It randomly
selects elements from the collection to be heads. It then at-
taches a block of nodes to each head corresponding to the
keys between the head and the next head, and puts the heads
into a binary tree. PaC-trees do not require randomization,
and have stronger theoretical bounds for primitive opera-
tions such as union than the bounds provided by C-trees in
Aspen. We use CPAM to implement the full functionality of
Aspen and compare to Aspen in Section 10.5.

2We note that the design of the chunked sequence datatype [1] could in
principle be extended to support sets, maps, and augmented maps, although
the implementation is specialized for ephemeral sequences.

3

https://github.com/ParAlg/CPAM

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

Fig. 3 compares P-trees from PAM, functional B-trees, C-
trees from Aspen, and PaC-trees. The comparison illustrates
how they differ when inserting a new key.

Like CPAM, the Apache Spark [54] system supports a func-
tional interface for collections. However it has significant
differences. Firstly it only supports unordered sets. Secondly
although it has a shared-memory parallel implementation, it
is primarily designed for a distributed setting. This means
its shared-memory implementation is not ideal.3

There is extensive research on concurrent tree data struc-
tures [3, 4, 18, 20, 28, 39, 44]. This work is mostly orthogonal
to our work. Such trees support a fraction of the functional-
ity of CPAM, typically just supporting linearizable inserts,
deletes, updates and finds. Some recent work support range
queries [5, 29], or arbitrary queries on a snapshot [53]. On the
other hand concurrent trees support asynchronous updates,
which PaC-trees do not—such updates are inherently non-
functional. To support multiple concurrent updates, PaC-
trees would require batching the update and applying as a
batch in parallel (fairly comparing concurrent and batched
structures like PaC-tree seems challenging for this reason).
We expect the use cases would be quite different.

Blandford and Blelloch developed tree structures for or-
dered sets that support compression [9]. They present space
bounds that are similar to ours, in terms of relating the space
of a difference encoded sequence to the space of the data
structure. However they support a small fraction of the func-
tionality described in our work.
Functional trees using path-copying date back to at least

the early 1990s [2], and in the sequential setting have been
studied by Kaplan and Tarjan [36] and Okasaki [47].

3 Preliminaries

Binary search trees. A binary search tree (BST) is either an
empty node, denoted as nil, or a node consisting of a left BST
𝑇𝐿 , a key 𝑘 (or with an associated value), and a right BST 𝑇𝑅 ,
denoted node(𝑇𝐿, 𝑘,𝑇𝑅), where 𝑘 is larger than all keys in𝑇𝐿
and smaller than all keys in 𝑇𝑅 . We use lc(𝑇) and rc(𝑇) to
extract the left and right subtrees of 𝑇 , respectively, and use
𝑘 (𝑇) to denote the key stored at 𝑇 ’s root. The size of a BST
𝑇 , or |𝑇 |, is the number of nodes in𝑇 . The weight of a BST𝑇 ,
or𝑤 (𝑇), is 1+ |𝑇 |. The height of a BST𝑇 , or ℎ(𝑇), is 0 for nil,
and max(ℎ(lc(𝑇)), ℎ(rc(𝑇))) + 1 otherwise. A tree node is a
leaf if it has no children, and a regular node otherwise. The
left (right) spine of a binary tree is the path of nodes from
the root to a nil node, always following the left (right) tree.

A weight-balanced tree, or BB[𝛼] trees [46] is a BST where
for every 𝑇 = node(𝑇𝐿, 𝑣,𝑇𝑅), 𝛼 ≤ 𝑤 (𝑇𝐿)

𝑤 (𝑇) ≤ 1 − 𝛼 . We omit

3Their shared-memory implementation is between 3.2–4.9x slower than
CPAM for a map, reduce, and group-by style example taken from their
user guide. For primitives such as map and reduce, their implementation
performs up to 2 orders of magnitude worse than CPAM (see Section 10.2)

the parameter 𝛼 with clear context. A weight-balanced tree
𝑇 has height at most log 1

1−𝛼
𝑤 (𝑇).

Parallelism. Our implementation of PaC-trees is based on
nested fork-join parallelism [23, 31, 35]. We analyze our al-
gorithms use work-span model based on binary-forking [12].
The work𝑊 of a parallel algorithm is the total number of
operations, while the span is the critical path length of its
computational DAG. We use 𝑠1 | | 𝑠2 to indicate that state-
ments 𝑠1 and 𝑠2 can run in parallel. Almost all algorithms use
divide-and-conquer to enable parallelism. Any computation
with𝑊 work and 𝑆 span will run in time 𝑇 < 𝑊

𝑃
+ 𝑆 on 𝑃

processors assuming shared memory and a greedy scheduler
[15, 19]. We use log𝑛 to denote log2 (𝑛+1) in the cost bounds.
Encoding schemes.We use Difference Encoding (DE) to
encode integer keys. Given a sorted set of keys, 𝐾 , the differ-
ence encoding scheme stores the differences between con-
secutive keys using an integer code, such as byte or 𝛾 codes.
We only consider byte codes in this paper since they are
cheap to encode and decode and do not waste much space
compared to using 𝛾 codes [49].
Functional data structures. PaC-trees are purely func-
tional data structures. In functional data structures values
are immutable, so updates must be made by copying parts
of the structure. For search trees, only the path to the up-
date location needs to be copied. Hence for balanced trees
of size 𝑛, single point updates such as inserts and deletes
involve copying 𝑂 (log𝑛) nodes (Fig. 3(a)). This also applies
to multi-point updates. For example, if a filter ends up
removing a single element, only 𝑂 (log𝑛) nodes need to be
copied. Functional trees can also easily support multiversion-
ing with low time and space overhead [7, 51]. Because the
data are immutable, any operation accesses the tree in an
isolated version. Updates can be applied in batches in parallel
and yield a new version. This enables all read-only queries to
be performed at the same time without being affected by on-
going (concurrent) updates. In addition to multiversioning,
functional data structures also allow for multiple histories.
Join-based algorithms. PaC-trees are implemented using
the join-based approach [11, 14, 32, 50–52] first implemented
in PAM [52]. In the framework, a variety of tree algorithms
are implemented based on two primitives, join and expose.4
Given a balancing scheme S, the join(𝑇𝐿, 𝑒,𝑇𝑅) function re-
turns a balanced tree 𝑇 satisfying S which has the same
in-order values as node(𝑇𝐿, 𝑒,𝑇𝑅). In other words, it concate-
nates𝑇𝐿 and𝑇𝑅 by an entry 𝑒 in the middle while preserving
the balancing invariants (see Fig. 7 as an example of joining
two PaC-trees). The expose(𝑇𝐿) function returns a triple
(𝑇𝐿, 𝑒,𝑇𝑅), where 𝑒 ∈ 𝑇 is an entry, 𝑇𝐿 and 𝑇𝑅 are two bi-
nary trees such that both 𝑇𝐿 and 𝑇𝑅 satisfy S, are balanced
with each other under S, and 𝑇𝐿 (𝑇𝑅) contains all keys in

4PAM did not explicitly use expose as a primitive, but only conceptually
treated it as a primitive.

4

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

𝑇 that go before (after) 𝑒 in 𝑇 ’s in-order value. It has been
shown that on weight-balance trees with 𝛼 ≤ 1 − 1/

√
2, a

join operation can be done in 𝑂
(
log 𝑛

𝑚

)
work [11], where

𝑛 = max(|𝑇𝐿 |, |𝑇𝑅 |) and𝑚 = min(|𝑇𝐿 |, |𝑇𝑅 |).
Based on join and expose, many parallel tree algorithms

can be expressed in a simple and elegant recursive style (see
Fig. 5, Fig. 6, and Fig. 10 for examples). We adopt the join-
based approach in our implementation, and in particular
carefully designed join and expose functions for PaC-trees.
This greatly simplifies the implementation and correctness
arguments of our algorithms. We give more details in Sec-
tions 5 and 6.
Augmentation. An augmented tree is a search tree where
each nodemaintains an aggregated value (called augmented
values) of all entries in its subtree. Typical examples would
be a weighted sum, minimum or maximum of values, where
we can obtain the augmented value in a node by combining
augmented values of the children and itself. This generalizes
to all associative operations. PaC-trees support generic user-
defined augmentation for any associative operations. An
example of PaC-tree with augmentation is shown in Fig. 4.

4 PaC-Trees
In this paper, we propose PaC-trees to support purely func-
tional collections, which support parallelism, determinism,
compression, augmentation, strong theoretical bounds, and
multi-versioning. PaC-trees are purely functional. The base
data structure of a PaC-tree is a weight-balanced BST. The
internal nodes remain binary so they are cheap to copy. The
leaves in a PaC-tree are organized in blocks of size 𝐵 to 2𝐵
for some parameter 𝐵. An illustration is shown in Fig. 3. If
the blocks grow too large, they are split, and if they become
too small they are merged with a neighboring node.

Definition 4.1 (PaC-tree). A PaC-tree PaC (𝛼, 𝐵, C), param-
eterized by the balancing factor 𝛼 , block size 𝐵, and encoding
scheme C satisfies the following invariants:
• (Weight Balance) For any tree node 𝑣 ∈ 𝑇 , 𝛼 ≤ 𝑤 (𝑣∗)

𝑤 (𝑣) ≤
1−𝛼 , where 𝛼 ≤ 1− 1√

2
is a constant, and 𝑣∗ is either lc(𝑣)

or rc(𝑣). Unless mentioned otherwise, we use 𝛼 = 0.29.
• (Blocked Leaves) If |𝑇 | ≥ 𝐵, each leaf 𝑢 ∈ 𝑇 maintains 𝐵
to 2𝐵 entries in an array (called a block) using the encoding
scheme C. Unless mentioned otherwise, we assume C
is empty, which means the entries are blocked without
additional compression of the entries.

When the context is clear, we omit 𝛼 , 𝐵 and C in the
definition and simply call it a PaC-tree. We call a leaf node
containing multiple entries in a PaC-tree a flat node, and
a node containing a single entry a regular node. We say a
PaC-tree (or a subtree) 𝑇 is a simplex tree if |𝑇 | < 𝐵, and
thus 𝑇 only contains regular nodes. We say a PaC-tree (or
a subtree) 𝑇 is a complex tree if 𝑇 contains both regular
nodes and flat nodes. We define the expanded version of

4 5 7 8

0 1 2

9

10 11 13 15

3 12

6 14

6

9

1

0 2

4

5

7

8

14

13 1511

10

𝐵 = 2, 𝛼 = 0.29

𝑇 =

Expanded version of 𝑇

aug = 120

aug = 36

aug = 3

aug = 9 aug = 15

aug = 30

aug = 21 aug = 42

aug = 75

3 12

Figure 4. (a). An illustration of a PaC-tree with keys {0, 1, . . . , 15},
and augmentation as sum of keys. All nodes are weight-balanced.
All leaves are blocked as arrays of size 𝐵 to 2𝐵. (b) The expanded
version of the PaC-tree in (a).

a PaC-tree 𝑇 (or a flat node 𝑣) to be a regular binary tree
(without flat nodes), where all flat nodes in𝑇 (or 𝑣 itself) are
fully expanded as perfectly-balanced binary trees. In Fig. 4,
we show an example of an expanded tree.

We now present the space bound of a PaC-tree. For integer
keys, we can use difference encoding to bound the space.

Theorem 4.2. The total space of a PaC-tree PaC(𝛼, 𝐵, C𝐷𝐸)
maintaining a set 𝐸 of integer keys is 𝑠 (𝐸) + 𝑂 (|𝐸 |/𝐵 + 𝐵),
where C𝐷𝐸 is difference encoding, and 𝑠 (𝐸) is the size needed
for 𝐸 using difference encoding.

Proof. The space needed for a PaC-tree includes the regular
nodes and the leaf nodes. First of all, when |𝐸 | < 𝐵, all entries
are maintained in a simplex tree, taking 𝑂 (𝐵) space. When
|𝐸 | ≥ 𝐵, there are 𝑂 (|𝐸 |/𝐵) regular nodes, each taking 𝑂 (1)
space for meta-data (pointers, size, etc.). The total space
used by regular nodes is 𝑂 (|𝐸 |/𝐵). All the leaf nodes are
organized in blocks. Let𝐴 be an array that stores all keys in 𝐸
using difference encoding. Comparing the total size of all the
blocks and𝐴, the only extra space is the first element of each
block (which cannot be compressed). There are 𝑂 (|𝐸 |/𝐵)
such blocks, and thus the extra space used is 𝑂 (|𝐸 |/𝐵). □

We note that this bound is deterministic, as opposed to
the bound for C-trees (which only holds in expectation).
Furthermore, using known facts about difference encoding
yields the following result, showing that PaC-trees yield a
compact parallel representation of ordered sets [9].

Corollary 4.3. Given any set from𝑈 = {0, . . . ,𝑚 − 1} with
|𝑆 | = 𝑛, the total space of a PaC-tree PaC(𝛼, 𝐵, C𝐷𝐸) maintain-
ing 𝑆 is 𝑂 (𝑛 log 𝑛+𝑚

𝑛
) bits for 𝐵 = Ω(log𝑛).

5 Algorithms
We now describe join-based algorithms on PaC-trees. To

enable a general ordered map interface, we implement PaC-
trees based on the PAM interface. PAM supports dozens of

5

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

1 fold(𝑇) {

2 flatten 𝑇 into array 𝐴

3 (encoding if needed)

4 return A; }

5 unfold(𝐴) {

6 /∗ return a perfectly balanced tree
7 from sorted array A ∗/ }

8 expose(𝑇) {

9 if (isflat(𝑇)) {

10 𝑇 ′ = unfold(𝑇);

11 return (lc(𝑇 ′), 𝑘 (𝑇 ′), rc(𝑇 ′)); }

12 else return (lc(𝑇), 𝑘 (𝑇), rc(𝑇));}
13 join(𝑇𝐿, 𝑘,𝑇𝑅) {

14 if (heavy(𝑇𝐿,𝑇𝑅))

15 return join_right(𝑇𝐿, 𝑘,𝑇𝑅);
16 if (heavy(𝑇𝑅,𝑇𝐿))

17 return join_left(𝑇𝐿, 𝑘,𝑇𝑅);
18 return node(𝑇𝐿, 𝑘,𝑇𝑅); }

19 /∗ join_left is symmetric ∗/
20 join_right(𝑇𝐿, 𝑘,𝑇𝑅) {

21 (𝑙, 𝑘 ′, 𝑐)=expose(𝑇𝐿);
22 if (balance(|𝑇𝐿 |, |𝑇𝑅 |)
23 return node(𝑇𝐿, 𝑘,𝑇𝑅));
24 𝑇 ′ = join_right(𝑐, 𝑘,𝑇𝑅);
25 (𝑙1, 𝑘1, 𝑟1) = expose(𝑇 ′);
26 if (balance(|𝑙 |, |𝑇 ′ |))
27 return node(𝑙, 𝑘 ′,𝑇 ′);
28 if ((balanced(|𝑙 |, |𝑙1 |)) and
29 (balanced(|𝑙 | + |𝑙1 |, 𝑟1)))
30 return rotateleft(node(𝑙, 𝑘 ′,𝑇 ′));
31 else return rotateleft(node(𝑙, 𝑘 ′,
32 rotateright(𝑇 ′))); }

33 join2(𝑇𝐿,𝑇𝑅) {

34 if (𝑇𝐿 = nil) return 𝑇𝑅;

35 (𝑇 ′
𝐿
,𝑚, _) = split(𝑇𝐿,last(𝑇𝐿));

36 return join(𝑇 ′
𝐿
,𝑚,𝑇𝑅); }

37 node(𝑙, 𝑘, 𝑟) {

38 /∗ create node 𝑥 with left subtree 𝑙 ,
39 root key 𝑘 and right subtree 𝑟 ∗/
40 if (|𝑥 | > 4𝐵) return 𝑥;

41 if (𝐵 ≤ |𝑥 | ≤ 2𝐵) return fold(𝑥);
42 else { // 2𝐵 < |𝑥 | ≤ 4𝐵
43 /∗ redistribute 𝑥 's both subtrees to
44 be flat nodes with |𝑥 |/2 entries ∗/
45 return 𝑥;}}

46 split(𝑇, 𝑘) {

47 if (|𝑇 | = 0) return (nil,nil,nil);
48 (𝐿,𝑚, 𝑅) = expose(𝑇);
49 if (𝑘 == 𝑘 (𝑚)) return (𝐿,m,𝑅);

50 if (𝑘 < 𝑘 (𝑚)) {

51 (𝐿𝐿, 𝑏, 𝐿𝑅) = split(𝐿, 𝑘);
52 return (𝐿𝐿, 𝑏, join(𝐿𝑅,𝑚, 𝑅));
53 } else {

54 (𝑅𝐿, 𝑏, 𝑅𝑅) = split(𝑅, 𝑘);
55 return (join(𝐿,𝑚, 𝑅𝐿), 𝑏, 𝑅𝑅); } }

Figure 5. Primitives on PaC-trees. All codes are functional (e.g. rotates copy nodes).

1 from_sorted(A,n) {

2 if (𝑛 = 0) return nil;
3 if (𝑛 = 1) return node(nil,A[0],nil);
4 𝐿 = from_sorted(A,n/2) ||

5 𝑅 = from_sorted(A+n/2,n-n/2);

6 return node(L,A[n/2],R); }

7 build(A,n) {

8 parallel_sort(A,n);

9 return from_sorted(A,n); }

10 // keep a key in 𝑇 only when it satisfies 𝑓
11 filter(𝑇,𝑓) {

12 if (𝑇 == nil) return nil;
13 (𝐿,𝑘,𝑅) = expose(𝑇);
14 𝑇𝐿 = filter(𝐿,𝑓) ||

15 𝑇𝑅 = filter(𝑅,𝑓);

16 if (𝑓 (𝑘))
17 return join(𝑇𝐿,𝑘,𝑇𝑅);

18 else return join2(𝑇𝐿,𝑇𝑅); }

Figure 6. Examples of parallel algorithms on PaC-trees. “||” indicates calls that are made in parallel.

3

4 5 60 1 2

8

9 10 11 12 8, , 0 1 2 3 4

21

0

4

3

, ,(a) (b)
1

0 2

3
4 0 1 2 3 4

(d)
3

4 5 60 1 2

9 10 11 12⇒
expose

⇐
node

⇒
fold

⇐
unfold

⇒
expose

⇐
node

3

6

4 5 7 8

0 1 2

9
12

10 11 13 14
⇒
join

⇐
split(15)

16 17 19 20

18
15

3

6

4 5 7 8

0 1 2

9

10 11 13 14

12

16 17 19 20

15

6

4 5 7 8

0 1 2

9

10 11 13 14
16 17 18 19

15

⇒
join

⇐
split(15)

3

6

4 5 7 8

0 1 2

9

10 11

13

12

17 1918

16

18

(e)

(f)

(c)

0 1 2 3

4
6

5

⇓node

0 1 2 4 5 6

3 3 12

14 15

Figure 7. Illustration of primitives on PaC-trees. For Figures (a)–(d), 𝐵 = 3. For Figures (e)–(f), 𝐵 = 2. Fig. (a): the expose function on
a regular node and the node function to obtain a regular node when the output tree size is larger than 4𝐵. Fig. (b): the expose function on a
flat node and the node function to obtain a flat node when the output tree weight is between 𝐵 and 2𝐵. Fig. (c): the node function to obtain a
flat node when the output size is between 2𝐵 and 4𝐵. Fig. (d): fold and unfold functions. Fig. (e): join function on two regular nodes and
its corresponding split function. Fig. (f): join function on a regular node and a flat node and its corresponding split function.

operations on sequences, sets, maps, and augmented maps,
and it would require significant work to re-implement them
all. Instead, we carefully redesigned join and expose such

that all the other algorithms can remain the same as in PAM.
In particular, none of the other algorithms have to deal with
the blocked leaves or compression, which greatly simplifies

6

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

the algorithm design and correctness arguments. We found
that the overhead of this approach is not large, but for many
frequently-used operations, we design special base cases
for dealing with compressed nodes. These base cases can
improve the performance by up to 6x (see Section 8). Some
of the theoretical results also require special base cases (see
Section 6.1).
At a high-level, when exposing a flat node, the node is

automatically expanded (using unfold), and similarly when
join obtains a complex tree of size 𝐵 to 2𝐵, it is flattened
(fold). An illustration of unfold and fold is shown in Fig. 7.
We start with the join and expose algorithms. We then
present the union algorithm as an example to illustrate join-
based algorithms, and give the code for other functions in
Fig. 6 and Fig. 10. We focus on union as it is the core sub-
routine used in applications such as inserting or deleting
batches of vertices and edges in graphs, combining inner
trees when constructing range trees, and updating sets of
documents in an inverted index, among others.

Expose. This function returns the left subtree, root data and
the right subtree of a node𝑇 . For a regular node, this function
just reads the child pointers and the root. For a flat node, this
function first unfolds the tree into a perfectly balanced tree
and then reads the corresponding data.

Join. Recall that the join function takes two trees𝑇𝐿 and𝑇𝑅 ,
and a key 𝑘 (or a key-value) as input, and returns a balanced
tree concatenating entries in𝑇𝐿 , 𝑘 and𝑇𝑅 in order (see Fig. 7).
In other words, when trees are used for ordered sets or maps,
𝑘 should be larger than all keys in 𝑇𝐿 and smaller than all
keys in 𝑇𝑅 . Pseudocode for join is shown in Fig. 5.
The algorithm first compares the weights of 𝑇𝐿 and 𝑇𝑅 .

When balanced, they are directly connected by 𝑘 . The other
two cases are symmetric so WLOG we assume |𝑇𝐿 | > |𝑇𝑅 |.
In this case, the algorithm must attach 𝑇𝑅 in the right spine
of 𝑇𝐿 , which will be handled by join_right(𝑇𝐿, 𝑘,𝑇𝑅). This
algorithm first checks if𝑇𝐿 and𝑇𝑅 are balanced and connects
them if so. Otherwise, it recursively calls join_right on
rc(𝑇𝐿) and𝑇𝑅 , getting𝑇 ′. If we re-attach𝑇 ′ as𝑇𝐿’s right child,
we will get a “correct” output tree (modulo balance). We then
use a single or double rotation to rebalance if necessary. It is
known that either a single or double rotation can rebalance a
weight-balanced tree in this situation [11]. This guarantees
the weight balance invariant of PaC-trees.

To also guarantee the blocked leaves invariant, we add two
conditions when calling node to create a new node with its
left and right subtrees. Whenever a node with size 𝐵 to 2𝐵 is
created, we fold the tree into a flat node. Whenever a node
with size 2𝐵 to 4𝐵 is created, we extract the median of the
tree as the root to re-distribute its two subtrees, such that
both subtrees are flat nodes with (almost) the same size.

Lemma 5.1. The join function maintains the invariants of
PaC-trees.

Split. For a PaC-tree 𝑇 and key 𝑘 , split(𝑇, 𝑘) returns a
triple (𝑇𝐿, 𝑏,𝑇𝑅), where 𝑇𝐿 (𝑇𝑅) is a tree containing all keys
in 𝑇 that are less (greater) than 𝑘 , and 𝑏 the entry of key 𝑘
if 𝑘 ∈ 𝑇 (see Fig. 7). We first use expose(𝑇) to get its left
(right) subtrees lc(𝑇) (rc(𝑇)) and root key 𝑘 (𝑇), and compare
𝑘 with 𝑘 (𝑇). If 𝑘 = 𝑘 (𝑇), we simply return (lc(𝑇), 𝑘, rc(𝑇)).
Otherwise WLOG we assume 𝑘 is smaller. In that case, the
entire right subtree rc(𝑇) and the root 𝑘 (𝑇) belong to 𝑇𝑅 .
We then split lc(𝑇) by 𝑘 , getting (𝐿𝐿, 𝑏, 𝐿𝑅). By definition, all
keys smaller than 𝑘 should be in 𝐿𝐿 , and all keys larger than
𝑘 can be obtained by join(𝐿𝑅, 𝑘 (𝑇), rc(𝑇)).
Union. Using join and split, we can implement set algo-
rithms on two PaC-trees, such as union, intersection and
difference. We describe union as an example (the other
two are similar). This algorithm uses divide-and-conquer. At
each level of recursion, 𝑇1 is split by the root of 𝑇2, breaking
𝑇1 into two subsets with all keys smaller (larger) than 𝑘 (𝑇2),
denoted as 𝐿1 (𝑅1). Then two recursive calls to union are
made in parallel. One unions 𝐿(𝑇2) with 𝐿1 (all keys smaller
than 𝑘 (𝑇2)), returning 𝑇𝐿 , and the other one unions 𝑅(𝑇2)
with 𝑅1 (all keys larger than 𝑘 (𝑇2)), returning 𝑇𝑅 . Finally the
algorithm combines the results with join(𝑇𝐿, 𝑘 (𝑇2),𝑇𝑅).
Other algorithms.We present the pseudocode for the other
two set algorithms (intersection and difference) in Fig. 10.
We also show the code for three other useful functions,
multi_insert, map and reduce in Fig. 8. We note that these
algorithms are exactly the same as in PAM, by extracting out
the semantics of join and expose.

Importantly, all of our PaC-tree algorithms are theoreti-
cally efficient. We present the work-span bound in Table 1
and give a proof for union as an example in Section 6. Note
that Lemma 5.1 ensures the correctness of the other algo-
rithms, as their return values are always obtained by a join.

Theorem 5.2. All join-based algorithms on PaC-tree main-
tains the invariants of PaC-trees.

6 Theoretical Guarantees
In the following section we show work and span bounds for
operations on PaC-trees. We assume the encoding scheme
is empty, which means that to flatten or expand a block of
size 𝑛 costs 𝑂 (𝑛) work and 𝑂 (log𝑛) span. If the encoding
scheme is not parallelizable (e.g., for difference encoding),
the span bound of the algorithms will be affected. We present
more details in Section 6.2.

We start with the cost of the join and split algorithms.

Theorem 6.1. Consider a join algorithm on two PaC-trees
𝑇𝐿 ,𝑇𝑅 and an key𝑘 . Let𝑛 = max(|𝑇𝐿 |, |𝑇𝑅 |) and𝑚 = min(|𝑇𝐿 |, |𝑇𝑅 |).
If both𝑇𝐿 and𝑇𝑅 are complex trees, the algorithm takes𝑂

(
log 𝑛

𝑚

)
work and span. If both 𝑇𝐿 and 𝑇𝑅 are simplex trees, the algo-
rithm takes 𝑂 (𝐵) work and 𝑂 (log𝐵) span. Otherwise, the
algorithm takes 𝑂 (𝐵 + 𝑛/𝐵) work and 𝑂 (log𝑛) span.

7

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

1 m_ins_helper(𝑇,A,m) {

2 if (𝑇 == nil) return from_sorted(A,m);

3 if (𝑛 == 0) return 𝑇;

4 (𝐿,𝑘,𝑅) = expose(𝑇);

5 𝑠 = binary_search(A,m,k);

6 if (𝐴[𝑠] == k) 𝑏 = 1;

7 𝑇𝐿 = m_ins_helper(𝐿,A,s); ||

8 𝑇𝑅 = m_ins_helper(𝑅,A+s+b,m-s-b);

9 return join(𝑇𝐿,𝑘,𝑇𝑅); }

10 multi_insert(𝑇,A) {

11 𝐴′ = parallel_sort(A);

12 return m_ins_helper(𝑇,𝐴′,|𝐴|); }

13 // 𝑓 is an associative binary operation
14 // 𝐼 is the identity
15 reduce(𝑇,𝑓 ,𝐼) {

16 if (𝑇 is nil) return 𝐼;

17 (𝐿,𝑘,𝑅) = expose(𝑇);
18 𝑥 = reduce(𝐿,𝑓 ,𝐼)

19 || 𝑦 = reduce(𝑅,𝑓 ,𝐼);

20 return 𝑓 (𝑓 (𝑥, 𝑘), 𝑦);

21 // map each entry in 𝑇 using function 𝑓
22 map(𝑇,𝑓) {

23 if (𝑇 == nil) return nil;
24 (𝐿,𝑘,𝑅) = expose(𝑇);
25 𝑇𝐿 = map(𝐿,𝑓)

26 || 𝑇𝑅 = map(𝑅,𝑓);

27 return join(𝑇𝐿,𝑘,𝑇𝑅);

Figure 8. Some other algorithms on PaC-trees.

1 join(𝑇𝐿, 𝑘,𝑇𝑅,expand=false) {

2 if (heavy(𝑇𝐿,𝑇𝑅)) return join_right(𝑇𝐿, 𝑘,𝑇𝑅,expand);

3 if (heavy(𝑇𝑅,𝑇𝐿)) return join_left(𝑇𝐿, 𝑘,𝑇𝑅,expand);

4 return node(𝑇𝐿, 𝑘,𝑇𝑅); }

5 join_right(𝑇𝐿, 𝑘,𝑇𝑅,expand=false) {

6 (𝑙, 𝑘 ′, 𝑐)=expose(𝑇𝐿);
7 if (balance(|𝑇𝐿 |, |𝑇𝑅 |)) return node(𝑇𝐿, 𝑘,𝑇𝑅,expand);

8 𝑇 ′ = join_right(𝑐, 𝑘,𝑇𝑅);
9 (𝑙1, 𝑘1, 𝑟1) = expose(𝑇 ′);
10 if (balanced(|𝑙 |, |𝑇 ′ |)) return node(𝑙, 𝑘 ′,𝑇 ′,expand);
11 if ((balanced(|𝑙 |, |𝑙1 |)) and (balanced(|𝑙 | + |𝑙1 |, 𝑟1)))
12 rotate_left(node(𝑙, 𝑘 ′,𝑇 ′));
13 else rotate_left(node(𝑙, 𝑘 ′,rotate_right(𝑇 ′))); }

14 join_left(𝑇𝐿, 𝑘,𝑇𝑅) { /∗ symmetric to join_right ∗/ }

15 node(𝑙, 𝑘, 𝑟,expand=false) {

16 let the left child of 𝑘 be 𝑙;

17 let the right child of 𝑘 be 𝑟;

18 if (expand) return 𝑘;

19 if (|𝑘 | > 4𝐵) return 𝑘;

20 if (𝐵 ≤ |𝑘 | ≤ 2𝐵) return fold(𝑘);
21 else { // 2𝐵 < |𝑘 | ≤ 4𝐵
22 /∗ redistribute 𝑘 's both subtrees to be flat nodes with |𝑘 |/2 entries ∗/
23 return 𝑘;} }

24 expose(𝑇) {

25 if (isregular(𝑇)) return (lc(𝑇), 𝑘 (𝑇), rc(𝑇));
26 else {

27 𝑇 ′ = unfold(𝑇);

28 return (lc(𝑇 ′), 𝑘 (𝑇 ′), rc(𝑇 ′)); } }

29 fold(𝑇) {

30 if (𝐵 ≤ 𝑤 (𝑇) ≤ 2𝐵) {

31 flatten 𝑇 into array 𝐴

32 (encoding if needed)

33 return A;

34 } else return 𝑇; }

35 unfold(𝐴) {

36 /∗ build a perfectly balanced tree 𝑇
37 from entries in (sorted) array A ∗/ }

38 refold(𝑇) {

39 if (𝑇 is not marked) return 𝑇;

40 if (𝐵 ≤ |𝑇 | ≤ 2𝐵) return fold(𝑇);
41 else {

42 (𝐿,𝑚, 𝑅) = expose(𝑇);
43 𝑇𝐿 = refold(𝐿) || 𝑇𝑅 = refold(𝑅);
44 return join(𝑇𝐿,𝑚,𝑇𝑅); }}

Figure 9. Some useful primitives for join-based algorithms on PaC-trees for more efficient set algorithms.

Proof. WLOG, let’s assume 𝑛 = |𝑇𝐿 | ≥ |𝑇𝑅 | =𝑚.
For two complex trees, we first prove that join never

decompresses a leaf. Note that the algorithm will follow the
right spine of the tree until finding a subtree 𝑡 in 𝑇𝐿 that is
balanced with 𝑇𝑅 , we will prove that there exist a regular
node 𝑡 that is balanced with𝑇𝑅 . This is because as a complex
tree, 𝑇𝑅 has size at least 2𝐵. Along the right spine of 𝑇𝐿 ,
the smallest complex subtree has size at most 4𝐵. For any
𝛼 ≤ 1/3, we must be able to find a complex subtree in 𝑇𝐿
that is balanced with 𝑇𝑅 . This proves that the total number
of tree nodes we need to visit on the right spine is𝑂

(
log 𝑛

𝑚

)
.

For two simplex trees, the work is no more than copying
both𝑇𝐿 and𝑇𝑅 and concatenating them, which is𝑂 (𝐵) work
and 𝑂 (log𝐵) span.
If 𝑇𝐿 is a complex tree and 𝑇𝑅 is a simplex tree, we need

to first follow the right spine to find a leaf node 𝑙 in 𝑇𝐿 ,
which takes 𝑂

(
log 𝑛

𝐵

)
time. Then it combines the leaf node

with𝑇𝑅 , which flattens both 𝑙 ant𝑇𝑅 , concatenates them, and
rebalance the result. This process takes no more than 𝑂 (𝐵)
work and 𝑂 (log𝐵) span. □

Theorem 6.2. Consider a split algorithm on a PaC-tree
𝑇 . If 𝑇 is a complex tree, the work and span of split are

8

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

1 splitLast(𝑇) {

2 (𝐿, 𝑘, 𝑅) = expose(𝑇);
3 if (𝑅 == nil) return (𝐿, 𝑘);

4 else {

5 (𝑇 ′, 𝑘 ′) = splitLast(𝑅);

6 return (join(𝐿, 𝑘,𝑇 ′), 𝑘 ′); } }

7 join2(𝑇𝐿,𝑇𝑅) {

8 if (𝑇𝐿 = nil) return 𝑇𝑅;

9 else {

10 (𝑇 ′
𝐿
, 𝑘) = splitLast(𝑇𝐿);

11 return join(𝑇 ′
𝐿
, 𝑘,𝑇𝑅); } }

Simple version used in implementation:

12 union(𝑇1,𝑇2) {

13 if (𝑇1 == nil) return 𝑇2;
14 if (𝑇2 == nil) return 𝑇1;
15 (𝐿2,𝑘2,𝑅2) = expose(𝑇2);
16 (𝐿1,𝑏,𝑅1) = split(𝑇1,𝑘2);
17 𝑇𝐿 = union(𝐿1,𝐿2)
18 || 𝑇𝑅 = union(𝑅1,𝑅2);
19 return join(𝑇𝐿,𝑘2,𝑇𝑅); }

20 intersect(𝑇1,𝑇2) {

21 if (𝑇1 == nil) return nil;
22 if (𝑇2 == nil) return nil;
23 (𝐿2,𝑘2,𝑅2) = expose(𝑇2);
24 (𝐿1,𝑏,𝑅1) = split(𝑇1,𝑘2);
25 𝑇𝐿 = intersect(𝐿1,𝐿2)
26 || 𝑇𝑅 = intersect(𝑅1,𝑅2);
27 if (𝑏) return join(𝑇𝐿,𝑘2,𝑇𝑅);
28 else return join2(𝑇𝐿,𝑇𝑅); }

29 difference(𝑇1,𝑇2) {

30 if (𝑇1 == nil) return nil;
31 if (𝑇2 == nil) return 𝑇1;
32 (𝐿2,𝑘2,𝑅2) = expose(𝑇2);
33 (𝐿1,𝑏,𝑅1) = split(𝑇1,𝑘2);
34 𝑇𝐿 = difference(𝐿1,𝐿2)
35 || 𝑇𝑅 = difference(𝑅1,𝑅2);
36 return join2(𝑇𝐿,𝑇𝑅); }

Special base cases for tighter bound:

37 union_(𝑇1,𝑇2) {

38 if (𝑇1 == nil) return 𝑇2;
39 if (𝑇2 == nil) return 𝑇1;
40 if (isflat(𝑇1) or isflat(𝑇2)) {

41 return refold(union_base(𝑇1,𝑇2));}
42 (𝐿2,𝑘2,𝑅2) = expose(𝑇2);
43 (𝐿1,𝑏,𝑅1) = split(𝑇1,𝑘2);
44 𝑇𝐿 = union_(𝐿1,𝐿2) || 𝑇𝑅 = union_(𝑅1,𝑅2);
45 return join(𝑇𝐿,𝑘2,𝑇𝑅) }

46 union_base(𝑇1,𝑇2) {

47 if (𝑇1 == nil) return 𝑇2;
48 if (𝑇2 == nil) return 𝑇1;
49 if (isflat(𝑇1)) unfold(𝑇1);
50 if (isflat(𝑇2)) unfold(𝑇2);
51 (𝐿2,𝑘2,𝑅2) = expose(𝑇2);
52 (𝐿1,𝑏,𝑅1) = split(𝑇1,𝑘2,true);
53 𝑇𝐿 = union_base(𝐿1,𝐿2) || 𝑇𝑅 = union_base(𝑅1,𝑅2);
54 return join(𝑇𝐿,𝑘2,𝑇𝑅,true); }

Figure 10. Set algorithms on PaC-trees.

𝑂 (log |𝑇 |
𝐵

+ 𝐵) and 𝑂 (log |𝑇 |), respectively. If 𝑇 is an simplex
tree, the work and span of split is 𝑂 (log |𝑇 |).

Proof. For a simplex tree the cost directly follows the result
on P-trees [11]. For a complex tree, the only difference of
split on PaC-trees from split on PAM trees is the unfold
performed in expose and fold in join. It takes𝑂 (log |𝑇 |/𝐵)
steps to reach a leaf node. The unfold function in expose
(Line 48) is performed at most once. For all join calls, at
most one on each side can involve a simplex tree. So the total
overhead is at most 𝑂 (𝐵) in work and 𝑂 (log𝐵) in span. □

Based on these results, we now analyze the cost of the set
operations.

Theorem 6.3. Consider the union algorithm (and the closely
related intersection and difference algorithms) in Fig. 10
on two PaC-trees of sizes𝑚 and 𝑛 ≥ 𝑚. The work and span
for these algorithms are𝑂

(
𝑚 log 𝑛

𝑚
+𝑚𝐵

)
and𝑂 (log𝑛 log𝑚)

respectively.

To prove the theorem, we first present some definitions
and lemmas. First, note that all the work can be asymptoti-
cally bounded by the three categories below:

(1). split work: all work done by split (Line 16),
(2). join work: all work done by join (Line 19) or join2

in intersection and difference,
(3). expose work: all work done by expose (Line 15).
One observation is that the split work is identical among

the three set algorithms. This is because the three algorithms
behave the same on the way down the recursion when doing
splits, and only differ in what they do at the base case and
on the way up the recursion when building the output tree
(see the other two set algorithms in Fig. 10).

We use op to denote the set operation (one of union,
intersection or difference). In these algorithms, the tree
𝑇1 is split by the keys in 𝑇2. We call 𝑇1 the decomposed tree
and 𝑇2 the pivot tree, denoted as 𝑇𝑑 and 𝑇𝑝 respectively. Let
𝑚 = min(|𝑇𝑝 |, |𝑇𝑑 |) and 𝑛 = max(|𝑇𝑝 |, |𝑇𝑑 |).

Lemma 6.4. For each function call to op on trees 𝑃 ⊆ 𝑇𝑝 and
𝐷 ⊆ 𝑇𝑑 , the work done by join (or join2) is asymptotically
bounded by the work done by split.

Proof. Assume the return value is 𝑅.
First of all, the work of split is Θ(log |𝐷 | + 𝐵). Note that

the work of join (or join2) can be bounded by𝑂 (log |𝑅 |+𝐵).
9

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

Notice that difference returns the keys in 𝐷\𝑃 . Thus
for both intersection and difference we have 𝑅 ⊆ 𝐷 .
Therefore |𝑅 | ≤ |𝐷 |, which means the work done by join or
join2 is no more than the work done by split.
For union, first of all, we always call join instead of

join2. If |𝑃 | ≤ |𝐷 |, then |𝑅 | ≤ 2|𝐷 |. join costs work𝑂 (log |𝑅 |+
𝐵) = 𝑂 (log |𝑃 | + 𝐵), which is no more than Θ(log |𝐷 | + 𝐵).
Consider |𝑃 | > |𝐷 |. The subtrees lc(𝑃) and rc(𝑃), which

are used in the recursive calls, have size at least 𝛼 |𝑃 | and at
most (1 − 𝛼) |𝑃 |. After combining with a subset of elements
in 𝐷 (which has size smaller than |𝑃 |), the return value of
each recursive call should have size at least 𝛼 |𝑃 | and (2 −
𝛼) |𝑃 |. Denote these two trees from recursive calls as 𝑡𝑙 and 𝑡𝑟 ,
respectively. Note that𝛼 is a constant, so the difference of size
between 𝑡𝑙 and 𝑡𝑟 is also no more than a constant. WLOG
assume |𝑡𝑙 | ≥ |𝑡𝑟 |. In the following, we discuss different
cases of whether 𝑡𝑙 and 𝑡𝑟 are complex or simplex trees. We
will show that, in all cases, joining |𝑡𝑙 | and |𝑡𝑟 | has work
𝑂 (log |𝐷 | + 𝐵).

1. When both 𝑡𝑙 and 𝑡𝑟 are simplex trees. From Theo-
rem 6.1, join costs 𝑂 (𝐵) work.

2. When both 𝑡𝑙 and 𝑡𝑟 are complex trees. From Theo-
rem 6.1, join costs 𝑂 (log |𝑟𝑙 |

|𝑡𝑟 |) = 𝑂 (1) work.
3. When 𝑡𝑙 is a complex tree, but 𝑡𝑟 is a simplex tree. This

means that |𝑡𝑙 | > 𝐵 and |𝑡𝑟 | ≤ 𝐵. From Theorem 6.1,
join costs 𝑂

(
𝐵 + log |𝑡𝑙 |

𝐵

)
work. Note that, as stated

above, |𝑡𝑟 | ≥ 𝛼 |𝑃 |. Considering |𝑡𝑟 | ≤ 𝐵, we know that
|𝑃 | = 𝑂 (𝐵), which also indicates |𝑡𝑙 | = 𝑂 (𝐵). Plug this
into the work of join 𝑂

(
𝐵 + log |𝑡𝑙 |

𝐵

)
, we can get the

bound 𝑂 (𝐵).
In summary, in all cases the work of join or join2 is

asymptotically bounded by the corresponding split func-
tion. □

Next, we prove the bounds for split work and expose work,
respectively.

Lemma 6.5. The expose work is 𝑂 (min(𝑚𝐵,𝑛)).

Proof. expose costs Θ(𝐵) when the subtree is a flat node,
and 𝑂 (1) otherwise. At most 𝑂 (𝑚) nodes in 𝑇𝑝 will split
𝑇𝑑 , so the total cost is 𝑂 (𝑚𝐵). The cost is also no more than
𝑂 (𝑛) since each node is involved in at most one expose, after
which the flat node will be fulled expanded. In summary the
cost is 𝑂 (min(𝑚𝐵,𝑛)). □

Lemma 6.6. The total split work is 𝑂
(
𝑚 log 𝑛

𝑚
+𝑚𝐵

)
.

Proof. The total split work can be viewed as two parts: the
total work to done by split functions to traverse and split
non-flat nodes, and the work to expose and split the flat
nodes. Note that here “non-flat nodes” include both regular
nodes in complex trees, and all the nodes in expanded trees.

First of all, the total work to traverse and split all non-flat
nodes can be asymptotically bounded by the split work when

both𝑇𝑝 and𝑇𝑑 are considered to be fully expanded. This cost
is 𝑂

(
𝑚 log 𝑛

𝑚

)
from the result for P-trees [11].

We then consider all work done by split functions on flat
nodes. The only extra cost is the cost of unfold. Every node
in 𝑇𝑝 will be used at most once to split 𝑇𝑑 , which involves
at most one unfold function with cost𝑂 (𝐵). There can be at
most𝑂 (𝑚) nodes in𝑇𝑝 used to split𝑇𝑑 . Thus the total unfold
work in split is 𝑂 (𝑚𝐵).

Therefore in total the split work is 𝑂
(
𝑚 log 𝑛

𝑚
+𝑚𝐵

)
. □

We can now prove Theorem 6.3.

Proof. (Theorem 6.3) Combining Lemmas 6.4 to 6.6 proves the
work bound in Theorem 6.3. For the span, note that the algo-
rithms need𝑂 (log |𝑇𝑝 |/𝐵) rounds to reach a flat node, where
the flat node will be expanded, taking 𝑂 (log𝐵) span. Then
the algorithm keeps recursing until a nil node is reached,
which takes 𝑂 (log𝐵) rounds. In each of the recursive calls,
we need 𝑂 (log |𝑇𝑑 |) span to deal with split and join. In
total the span is 𝑂 (log𝑚 log𝑛). □

6.1 Set Algorithms with Better Work Bound
Note that the𝑂 (𝑚𝐵) term can be expensive when𝑚 is large.
In fact, we can show a tighter bound using a more efficient
(but more complicated) base case, which we present next. We
note that in our implementation, we use the version in Fig. 5,
which has good performance in practice. The main result in
this section is the theorem below, based on the algorithm
shown in Fig. 10 as union_.

Theorem6.7. There exist algorithms for union, intersection
and difference on two PaC-trees of sizes𝑚 and 𝑛 (𝑛 ≥ 𝑚)
with work𝑂

(
𝑚 log

𝑛

𝑚
+min(𝑛,𝑚𝐵)

)
and span𝑂 (log𝑛 log𝑚).

Algorithm. The general idea is to avoid folding and unfold-
ing simplex trees during the union algorithm. In particular,
we hope each flat node is folded and unfolded 𝑂 (1) times
during the entire union algorithm. To ensure this, we imple-
mented a special base case for the set algorithms. We show
the code for union in Fig. 10, the other two are similar. The
base case will explicitly determine if the current input is
a flat node. If any of them is, it will be expanded directly.
In the subsequent join, we will pass an extra parameter to
indicate that the tree is already expanded, and thus there is
no need to fold or unfold them again in this join algorithm.
This parameter is the last parameter of the join algorithm in
Fig. 9. It is set to false by default, which makes it exactly the
same as the version in Fig. 5. When it is set to true, the join
algorithm will never fold any node. Instead, at the end of
the base case, the entire result tree will be fixed using refold
(Line 41), which traverses the tree and folds any subtree of
size 𝐵 to 2𝐵 back to blocks.
Theoretical Cost.As the span bound is not affected, we will
only show the new proof for the work here. First, note that

10

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

total work for each of these algorithms can be considered as
several parts:

(1). all work done by unfold operations in the base cases,
including possibly those in split and join (or join2)
function calls, denoted as unfold work,

(2). all work done by refold operations, denoted as refold
work,

(3). all work done by split operations except for the
unfold work in base cases (already charged in (1).,
denoted as split work,

(4). all work done by join or join2 operations, denoted
as join work.

We note that all the rest of the cost can be asymptotically
bounded by the above four categories of work.
One observation is that the split work and unfold work

are identical among the three set algorithms. This is because
the three algorithms behave the same on the way down the
recursion when doing splits, and algorithms only differ
in what they do at the base case and on the way up the
recursion when they join back.

We start with some notation. We follow some the notation
used in [11]. Throughout the section, we use op to denote
the algorithm or function call on union, intersection or
difference, and use op_base to denote the corresponding
base case algorithm or function call (using the unfolded
version). In these three algorithms, the first tree (𝑇1) is split
by the keys in the second tree (𝑇2).We call𝑇1 thedecomposed
tree and𝑇2 the pivot tree, denoted as𝑇𝑑 and𝑇𝑝 respectively.
The returned tree of the algorithms is denoted as 𝑇𝑟 . We
use𝑚 = min(|𝑇𝑝 |, |𝑇𝑑 |) and 𝑛 = max(|𝑇𝑝 |, |𝑇𝑑 |). We denote
the subtree rooted at 𝑣 ∈ 𝑇𝑝 as 𝑇𝑝 (𝑣), and the tree of keys
from 𝑇𝑑 that 𝑣 is operated with as 𝑇𝑑 (𝑣) (i.e., op(𝑣,𝑇𝑑 (𝑣)) or
op_base(𝑣,𝑇𝑑 (𝑣)) is called at some point in the algorithm.
This essentially means that 𝑣 ’s subtree in 𝑇𝑝 is processed
with the tree 𝑇𝑑 (𝑣) in a recursive call. Note that 𝑇𝑑 (𝑣) may
not be a subtree in 𝑇𝑑 , but is a tree of keys as a subset of
𝑇𝑑 . We call such 𝑇𝑑 (𝑣) a subset tree of the decomposed tree
𝑇𝑑 . We say 𝑣 ∈ 𝑇𝑝 processes 𝑇𝑑 (𝑣). For 𝑣 ∈ 𝑇𝑝 , we refer to
|𝑇𝑑 (𝑣) | as its splitting size.

Lemma 6.8. The refold work can be asymptotically bounded
by the unfold work.

Proof. We note that during the process of tracking down
the tree, we will refold the subtree if and only at least a
subset of it was previously unfolded at some point in this
algorithm. Since refold costs 𝑂 (𝐵) work, it can be asymp-
totically bounded by the corresponding unfold function
invoked previously. □

Theorem 6.9. For each function call to op on trees𝑇𝑝 (𝑣) and
𝑇𝑑 (𝑣), the work done the join (or join2) is asymptotically
bounded by the work done by split.

Proof. In the following, we use 𝑃 and 𝐷 to denote 𝑇𝑝 (𝑣) and
𝑇𝑑 (𝑣), respectively, for simplicity. Assume the return value
is 𝑅. First of all, the work of split is Θ(log |𝐷 | + 𝐵).
For intersection or difference, the work of join (or

join2) is𝑂 (log |𝑅 | +𝐵). Notice that difference returns the
keys in 𝐷\𝑃 . Thus for both intersection and difference
we have 𝑅 ⊆ 𝐷 . Therefore |𝑅 | ≤ |𝐷 |, which means the work
done by join or join2 is no more than the work done by
split.
For union, first of all, we always call join instead of

join2. If |𝑃 | ≤ |𝐷 |, then |𝑅 | ≤ 2|𝐷 |. join costs work𝑂 (log |𝑅 |+
𝐵) = 𝑂 (log |𝑃 | + 𝐵), which is no more than Θ(log |𝐷 | + 𝐵).
Consider |𝑃 | > |𝐷 |. The subtrees lc(𝑃) and rc(𝑃), which

are used in the recursive calls, have size at least 𝛼 |𝑃 | and at
most (1 − 𝛼) |𝑃 |. After combining with a subset of elements
in 𝐷 (which has size smaller than |𝑃 |), the return value of
each recursive call should have size at least 𝛼 |𝑃 | and (2 −
𝛼) |𝑃 |. Denote these two trees from recursive calls as 𝑡𝑙 and
𝑡𝑟 , respectively. Note that 𝛼 is a constant, so the difference
of size between 𝑡𝑙 and 𝑡𝑟 is also a constant. WLOG assume
|𝑡𝑙 | ≥ |𝑡𝑟 |. In the following, we discuss different cases of
whether 𝑡𝑙 and 𝑡𝑟 are complex or simplex trees. We will show
that, in all cases, joining |𝑡𝑙 | and |𝑡𝑟 | has work𝑂 (log |𝐷 | +𝐵).

1. When both 𝑡𝑙 and 𝑡𝑟 are simplex trees. From Theo-
rem 6.1, join costs 𝑂 (𝐵) work.

2. When both 𝑡𝑙 and 𝑡𝑟 are complex trees. From Theo-
rem 6.1, join costs 𝑂 (log |𝑟𝑙 |

|𝑡𝑟 |) = 𝑂 (1) work.
3. When 𝑡𝑙 is a complex tree, but 𝑡𝑟 is a simplex tree. This

means that |𝑡𝑙 | > 𝐵 and |𝑡𝑟 | ≤ 𝐵. From Theorem 6.1,
join costs 𝑂

(
𝐵 + log |𝑡𝑙 |

𝐵

)
work. Note that, as stated

above, |𝑡𝑟 | ≥ 𝛼 |𝑃 |. Considering |𝑡𝑟 | ≤ 𝐵, we know that
|𝑃 | = 𝑂 (𝐵), which also indicates |𝑡𝑙 | = 𝑂 (𝐵). Plug this
into the work of join 𝑂

(
𝐵 + log |𝑡𝑙 |

𝐵

)
, we can get the

bound 𝑂 (𝐵).
In summary, in all cases, the work of join or join2 is

asymptotically bounded by the corresponding split func-
tion. □

From the above two lemmas, we have that the total work
of op is asymptotically bounded by the split work and unfold
work. Next, we prove the bounds for split work and unfold
work, respectively.

Lemma 6.10. The unfold work is 𝑂 (min(𝑚𝐵,𝑛)).

Proof. First, note that in our unfolded version of base cases,
any block needs to be unfold at most once. Each time the
algorithm hits a flat nodes, it unfold the entire subtree in
𝑂 (𝐵) time.

If |𝑇𝑝 | =𝑚, we note that there are at most𝑚/𝐵 flat nodes
in 𝑇𝑝 that needs to be unfolded, so the total work to unfold
𝑇𝑝 is 𝑂 (𝑚). Each of the 𝑂 (𝑚) entries in 𝑇𝑝 will cause an
unfold on at most one block in𝑇𝑑 . Therefore, the total work
to unfold 𝑇𝑑 is 𝑂 (𝑚𝐵). On the other hand, note that each

11

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

block in 𝑇𝑑 can be unfolded at most once, which also means
that the work of unfolding𝑇𝑑 is𝑂 (𝑛). In summary, the work
of all unfold functions is 𝑂 (min(𝑚𝐵,𝑛)).

If |𝑇𝑑 | =𝑚 and |𝑇𝑝 | = 𝑛, there will be at most 𝑂 (𝑚) nodes
in 𝑇𝑝 used to process a subset tree in 𝑇𝑑 . Since |𝑇𝑑 | =𝑚, the
total work of unfolding 𝑇𝑑 is at most 𝑂 (𝑚). Based on the
same argument as above, the total work of unfolding 𝑇𝑝 is
𝑂 (𝑚𝐵) because at most𝑂 (𝑚) unfold functions are invoked,
and is also 𝑂 (𝑛) because there are at most 𝑂 (𝑛) entries in
𝑇𝑝 . The total work is also 𝑂 (min(𝑚𝐵,𝑛)). □

Lemma 6.11 (Split work on expanded trees). The total split
work done on two expanded weight-balanced trees of sizes 𝑛
and𝑚 ≤ 𝑛 is 𝑂

(
𝑚 log 𝑛

𝑚

)
.

This directly follows [11].

Lemma6.12. The total splitwork is𝑂
(
𝑚 log 𝑛

𝑚
+min(𝑚𝐵,𝑛)

)
.

Proof. The total work for split functions can be viewed
as two parts: the total work to done by split functions to
traverse and split non-flat nodes, and the work to expose and
split the flat nodes. Note that here “non-flat nodes” include
both regular nodes in complex trees, and all the nodes in
expanded trees.
We first note that in the base cases, the split(·, ·, true)

function must be working on a expanded tree. As a result,
the total work to traverse and split all non-flat nodes can be
asymptotically bounded by the split work considering if both
𝑇𝑝 and 𝑇𝑑 are fully expanded. This cost can be computed by
Lemma 6.11, which is 𝑂

(
𝑚 log 𝑛

𝑚

)
.

We then consider all work done by the split functions on
flat nodes in the non-base cases.Wewill show it is𝑂 (min(𝑚𝐵,𝑛)).
Note that in each split, this happens at most once, costing
𝑂 (𝐵) work. If |𝑇𝑝 | = 𝑚, there can be 𝑂 (𝑚/𝐵) such split
function calls in the non-base cases, and thus the total non-
base case split work on flat nodes is 𝑂 (𝑚).
If |𝑇𝑝 | = 𝑛, we discuss in two cases. If 𝑛/𝐵 ≤ 𝑚, there are

𝑂 (𝑛/𝐵) regular nodes in 𝑇𝑝 , and thus there can be at most
𝑂 (𝑛/𝐵) split calls. Therefore the total work in this case is
𝑂 (𝑛), which is also 𝑂 (min(𝑚𝐵,𝑛)). If 𝑛/𝐵 > 𝑚, there are at
most𝑂 (𝑚) such split function calls, since there are only𝑚
nodes in𝑇𝑑 . In this case, the total work of this part is𝑂 (𝑚𝐵),
which is also 𝑂 (min(𝑚𝐵,𝑛)). □

6.2 Non-parallelizable Encoding Schemes
Asmentioned at the beginning of this section, if the encoding
scheme is not parallelizable, when we deal with a flat node,
we have to deal with it sequentially and this can affect the
span bound of our algorithms. Again we will use the set
algorithms as examples.

Theorem 6.13. Consider the union algorithm (and similar
intersection and difference algorithms) in Fig. 5 on two
PaC-trees of sizes 𝑚 and 𝑛 ≥ 𝑚 using encoding scheme C.
When C takes𝑂 (𝐵) work and span to compress and decompress

a block of size 𝐵, the span for these set algorithms is 𝑂 (𝐵 +
log𝑛′(𝐵 + log𝑚′/𝐵)), where 𝑛′ is the pivot tree size, and𝑚′

is the decomposed tree size.

Proof. The algorithms need 𝑂 (log |𝑇𝑝 |/𝐵 rounds to reach a
flat node, where the flat node will be expanded, taking 𝑂 (𝐵)
span. Note that this 𝑂 (𝐵) additional span is taken only once
for each flat node, and they are all at the leaf level of 𝑇𝑝 .
As a result, they do not add up and can be charged only
once in the span. Then the algorithm keeps recursing until
a nil node is reached, which is 𝑂 (log𝐵) rounds. The total
number of rounds of recursive calls is still𝑂 (log𝑛′). In each
of the recursive calls, we need 𝑂 (𝐵 + log𝑚′/𝐵) span to deal
with split and join. In total the span is 𝑂 (𝐵 + log𝑛′(𝐵 +
log𝑚′/𝐵)). □

7 Work Tradeoff between Updates and
Queries

In PaC-trees, we flatten and compress subtrees with size no
more than 2𝐵 where 𝐵 is a predefined parameter. This ap-
proach has several benefits: it is more space efficient, allows
for effective compression, and reduces the memory footprint
for updates and queries. The only disadvantage is that an
insert or delete now has work 𝑂 (𝐵 + log𝑛), while the P-tree
only uses 𝑂 (log𝑛) work. We now show an alternative solu-
tion for PaC-trees which are updated in-place such that the
amortized work for an update is only 𝑂 (log(𝑛/𝐵)), at a cost
of more work for queries (i.e., 𝑂 (𝐵 + log𝑛)).
The basic idea is to leave each leaf node unsorted. In ad-

dition, we can keep a linked list for all entries. As such, for
an update, we simply find the corresponding leaf node. For
an insertion, we add this entry to the end of the linked list
of this leaf tree node. For a deletion, we remove this node
from the linked list. For both cases, we update the counter
for leaf node size, and split or merge if necessary. This also
works for inserting or deleting a batch of entries. The only
difference is that it is easier to mark tomb entries for batch
deletions and physically delete the entries in the next leaf
split or merge, since deleting multiple nodes in a linked list
is hard (requiring list ranking), while marking tombs can be
done when all entries are kept in an array. Here we assume
we can locate an entry using its unique identifier, so we can
map the identifer to the position in the linked lists. For in-
stance, if the entries are vertices in a graph, then we can use
vertex labels as the identifiers for the entries.

This approach increases the lookup cost to 𝑂 (𝐵 + log𝑛)
since now we need to check all entries in a leaf node in the
worst case (the work for aug_range query is still𝑂 (𝐵+log𝑛)
since we only need to check two leaf nodes).

An additional change is the leaf node size. In the previous
algorithm, leaf nodes have sizes between 𝐵 and 2𝐵. In this
setting, we relax it to be 𝐵 and (2 + 3𝑐)𝐵 for any constant
𝑐 > 0. For instance, if 𝑐 = 0.1, then the leaf node size will be
between 𝐵 and 2.3𝐵. This change is needed to amortizing the

12

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

split and merge work for the updates. If 𝑐 = 0, we can have a
tree with all leaf nodes containing 𝐵 entries. If we delete any
entry, the associated leaf nodes will contain 𝐵 − 1 entries,
need to merge with a neighbor leaf and end up with having
2𝐵 − 1 nodes. Then if we insert two entries in this leaf, we
need to split again with 𝑂 (𝐵) work. To avoid this, we set a
padded region of size 𝑐𝐵 on both sides of the range—once
resized, the new leaf node contains (1 + 𝑐)𝐵 to (2 + 2𝑐)𝐵
entries. As such, we need to remove or insert another 𝑐𝐵
records to trigger the next resizing, so the amortized work
is 𝑂 (𝐵/𝑐𝐵) = 𝑂 (1) per update.

Theorem 7.1. A batch of 𝑚 insertions or deletions can be
processed using𝑂 (𝑚 log(𝑛/𝐵)) amortized work if the batch is
unsorted, or 𝑂 (𝑚 log(𝑛/𝐵𝑚)) amortized work if the batch is
sorted. The span is 𝑂 (log(𝑛/𝐵) log𝑚 + log𝐵) for both cases.

Proof. We first assume the update batch is unsorted. We
use the tree root to partition the batch, which takes 𝑂 (𝑚)
work and 𝑂 (log𝑚) span. Then we can recursively and in
parallel update the left part of the batch and the left subtree,
the right part of the batch and the right subtree. After they
both finish, we join the two trees with the tree root. The
base case is when the corresponding batch for the subtree
is empty, or the tree goes to a leaf node. We terminate for
the first case. For the second case, we update the leaf with
work proportional to the update array size (concatenation
for insertions, marking tombs for deletions). The update may
trigger a clean-up for the leaf array (split if the array size
is larger than (2 + 3𝑐)𝐵, merge if the size is smaller than 𝐵,
or pack if the tombs occupy over a constant fraction of the
array). Once a clean-up is triggered, the work is 𝑂 (𝐵) and
the span is 𝑂 (log𝐵), and as explained, the work is constant
amortized to each previous update to this leaf node.
Similar to the previous analysis, we can split the work

into the split work, the join work, and the base case work.
The base case work is constant per update. The split work
is 𝑂 (𝑚 log(𝑛/𝐵))—each tree level will partition the update
array and the total cost is 𝑂 (𝑚) per tree level. Since the
tree has size 𝑛 and𝑂 (log(𝑛/𝐵)) levels, the total split work is
𝑂 (𝑚 log(𝑛/𝐵)). The join work is logarithmic in the subtree
size, and at most𝑚 leaf nodes are modified, so the overall
work for join is 𝑂 (𝑚 log(𝑛/𝐵𝑚)), bounded by split work.
Putting all pieces together, the work is𝑂 (𝑚 log(𝑛/𝐵)) amor-
tized. The span is 𝑂 (log(𝑛/𝐵) log𝑚 + log𝐵)—𝑂 (log𝑚) for
split and join for 𝑂 (log(𝑛/𝐵)) levels, and 𝑂 (log𝐵) for the
base case.
If the update batch is sorted, the split becomes a binary

search with cost logarithmic in the current update array size.
In this case, the split work is bounded by the join work, so the
total work becomes 𝑂 (𝑚 log(𝑛/𝐵𝑚)) amortized. The span
remains unchanged. □

This new version of the PaC-tree may of interest when
updates are more frequent than queries, or the queries are

more costly. For instance, if the query is “reporting the top-𝑘
elements”, where 𝑘 can be large, the work for this query
is Ω(𝑘). In this case, we can use this alternative version of
the PaC-tree to reduce the update cost. Assume 𝑘 is static
throughout the algorithm, we can set 𝐵 = 𝑘 for the CPAM
tree. Based on Theorem 7.1, each update costs 𝑂 (log(𝑛/𝑘))
work. For a query, we only need to look into the first leaf
array which contains at least 𝑘 entries and at most (2 + 3𝑐)𝑘
entries. Then we can use the classic algorithm [34] to find the
𝑘-th element from this array, and pack those no larger than
it. Hence, this query takes 𝑂 (𝑘) work and 𝑂 (log𝑘 log log𝑘)
span, and the span can be optimized to 𝑂 (log𝑘) using the
deterministic sampling technique in [13]. This is much more
efficient than directly running the classic algorithm [34] with
𝑂 (𝑛) work, and better than keeping the entire search tree
(e.g., a P-tree) which has 𝑂 (log𝑛) work per update.

8 Implementation
In this section, we describe CPAM, our implementation of
PaC-trees. CPAM is built in C++, based on the PAM frame-
work [52]. Our implementation of sequence and map primi-
tives are mostly unchanged. Most of the changes are to intro-
duce flat nodes, to handle folding and unfolding in join, to
express the recursive functions using the expose primitive,
and in some cases to add optimized base cases.
Optimized Base Cases.We first implemented union as in
Fig. 5, which recursively calls expose to access the left and
right subtrees. Although simple and theoretically efficient, in
practice unfolding flat nodes into expanded trees and recurs-
ing on these trees requires additional memory allocations,
and potentially more cache-misses. We therefore designed
a new sequential base-case for union when |𝑇1 | + |𝑇2 | < 𝜅,
where𝜅 is a configurable base-case granularity. Our base-case
works by writing both𝑇𝐿 and𝑇𝑅 into a pre-allocated array𝐴
of size 𝜅 and merging them in-place to perform the union. It
then constructs a PaC-tree from the result in𝐴. Compared to
the original version of union that only uses expose, using
the special base-case with 𝜅 = 4𝐵 is 4.4x faster, and using
𝜅 = 8𝐵 is 6.7x faster (𝐵 = 128). We observed similar im-
provements for some other commonly-used primitives such
as filter, map_reduce, multi_insert, multi_delete, and
intersection. We use 𝜅 = 8𝐵 in our experiments. We use a
parallel granularity of 4𝐵, which is the threshold for forking
parallel tasks in algorithms such as filter and union.
Persistence andMemoryManagement.CPAMuses a ref-
erence counting garbage collector for memory management.
CPAM provides functional ordered maps, and thus by de-
fault does not modify the input trees. However, in certain
cases an application may wish to modify a tree in-place to
save memory, e.g., when updates and queries are separated.
Although one could deal with in-place and functional up-
dates separately, this is not attractive. Instead, we designed
a simple approach to handle both cases using the same code.

13

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

Our approach is to store an additional bit indicatingwhether
the supplied node is visible solely to the current function, or
whether the node has some external observer, and should
therefore be copied. We refer to these special pointers to tree
nodes with an additional bit for visibility as extra pointers.
When an extra pointer is copied, e.g., an algorithm like union
wishes to use it as part of the resulting tree, we copy this
node if the visibility bit is set or if the node has a reference
count more than 1, and otherwise we simply return the same
node. Similarly, when we expose an extra pointer pointing
to a regular node 𝑣 , we set the visibility bits on the children
either if the 𝑣 ’s visibility bit is set, or if 𝑣 has a reference
count greater than 1. If 𝑣 was visible only to the caller, as an
optimization we return it as an additional result, allowing
the caller to potentially reuse this node. Our approach lets
us write simple algorithms which modify the tree in-place
when possible, and begin copying once it reaches subtree
that is visible to other observers.
Compression on Blocks. CPAM makes it easy to apply
user-specified encoding schemes. Our data structure is tem-
plated over a type representing a block encoding scheme
(no encoding by default). To add a new encoding scheme,
users provide a structure with methods that calculate the
encoded size for a block, encode the elements into a buffer,
and decode elements from an encoded buffer. This design
allows users to specify encoding schemes based on the un-
derlying data type or application, such as text compression.
For example, it is easy to add new types of difference coding,
e.g., using 𝛾-coding, which would obtain better space usage
at the expense of worse running time [49].

9 Applications
In this section we describe four applications that we im-
plement using CPAM. Our inverted index, and range and
interval tree applications are based on the implementations
from PAM [52]. Our graph processing application is based on
Aspen [25]. We focus on the key features of the applications
in the context of PaC-trees here.
Inverted Index. We implement a weighted inverted index,
similar to those used in search engines. The inverted index
maintains a top-level map from words to document lists
(𝐵 = 128). Each document list is a map from document id
to an importance score (𝐵 = 128). The document lists are
augmented to maintain the highest importance score. The in-
verted index supports standard AND/OR queries over words,
returning results by rank, and top-𝑘 (based on importance)
queries. The document ids are compressed using difference
encoding, requiring less than two bytes per document.
2D Range Tree. The two-dimensional range tree is a top-
level map from 𝑥-coordinate to 𝑦-coordinate (𝐵 = 128). The
tree is augmented so that every internal node stores all 𝑦-
coordinates in its subtree (this is itself a set represented
as a PaC-tree with 𝐵 = 16). Updates can add and delete

points, and queries can list of or count the points in a given
rectangular range. The range tree supports count queries in
𝑂 (log2 𝑛) time, which can be batched to run in parallel.
Interval Tree. The interval tree maintains intervals over
the number line, for example, representing the time of a TCP
connection, or the time a user is logged into some service.
A stabbing query can report all or any intervals that cross a
given point. The intervals are represented as an augmented
tree from left-coordinate to right-coordinate with 𝐵 = 32.
The augmentation maintains the maximum right-coordinate
in the subtree. This allows stabbing queries in time𝑂 (𝑘 log𝑛)
where 𝑘 is the number of intervals requested or returned
(whichever is less). Intervals can be inserted or deleted in
𝑂 (log𝑛) time and can be batched to run in parallel.
Graph Processing. Graphs are represented as a two-level
structure similar to the inverted index, with a top-level aug-
mented tree (the vertex tree) from vertices to edge lists (𝐵 =

64). Each edge list is a map from neighbor-id to an edge-
weight (or empty when unweighted) called an edge tree
(𝐵 = 64). The augmentation on the vertex tree maintains the
total number of edges in the graph. We focus on unweighted
graphs in this paper but note that our implementation also
supports weights. As with inverted indices, using difference
encoding allows us to store an edge using just 2–3 bytes on
average including the bytes used for regular nodes.
On top of this representation, we implement graph al-

gorithms using the Ligra interface [48], including breadth-
first search, maximal independent set, and single-source be-
tweenness centrality. Our implementations are based on
the ones in Aspen and GBBS [26, 27]. We design parallel
batch-updates for our representation, which are applicable
in graph-streaming and batch-dynamic graph algorithms.

10 Experiments
Experimental Setup. We run experiments on a 72-core
Dell PowerEdge R930 (with two-way hyper-threading) with
4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with
a 4800MHz bus and 45MB L3 cache) and 1TB of main mem-
ory. Our programs use a work-stealing scheduler for paral-
lelism [10]. We use numactl -i all to balance the memory
allocations across the sockets for parallel executions. Unless
otherwise mentioned, all of the reported numbers are run
on 72 cores with hyper-threading.
Overview of Results We show the following experimental
results in this section.
• PaC-trees are competitive with PAM for microbenchmarks
(Section 10.1) and applications including inverted indices
(Section 10.3) and 2D range queries and 1D interval queries
(Section 10.4) while using 2.1x–7.8x less space.

• Varying the block size 𝐵 for an PaC-tree trades off off
performance for space efficiency (Section 10.1). For even
a modest value of 𝐵 = 128, PaC-trees use only 1% more
space than a (static) compressed array.

14

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

• For graph processing and streaming, CPAM uses 1.3–2.6x
less space compared to Aspen, and is almost always faster
than Aspen in all tested graph algorithms (Section 10.5).

10.1 PaC-Tree Performance
We begin by studying the performance and space of PaC-
trees on a set of microbenchmarks and compare with P-trees
from PAM. All experiments in this section use maps and
augmented maps where the keys and values are both 64-bit
integers. Unless otherwise mentioned PaC-trees use 𝐵 = 128.
Microbenchmark Performance. Table 2 shows the results
on PaC-trees, PaC-trees with difference-encoding (DE), and
P-trees for a representative subset of the map and sequence
primitives. The speedups for both types of PaC-trees range
from 28.7–101x and are largest for the version using DE
due to additional work for difference encoding. In absolute
running time, PaC-trees with DE are usually slower than
PaC-trees due to compression and decompression costs, but
the overhead is mostly within 10%.

In most of the primitives tested, PaC-trees are faster than
P-trees while also using 2.5x less space. For example, PaC-
trees are 1.68x faster than P-trees in union on two trees of
sizes 108. We note that in this case, the union processes the
entirety of both input trees, and so the more cache-friendly
processing of blocks in PaC-trees results in lower time. How-
ever, if sizes of the two trees are different, the work for union
only depends on the smaller size. In this case, since the cost
of union using PaC-trees has an additional𝑂 (𝑚𝐵) term com-
pared with P-trees, PaC-trees are 5.5x slower than P-trees.
However, we expect better performance for smaller block
sizes (𝐵 < 128), which we discuss next.
Effect of Varying 𝐵 on Performance. Fig. 12 shows the
results of varying the block size 𝐵, on the performance of
various operations. Most operations obtain speedups as 𝐵 is
increased up until 𝐵 = 16. For the sequential operations, such
as find and range, we see a steady increase in the running
time for 𝐵 > 16 and see a similar trend for Union-Imbal,
which takes the union of trees with 108 and 105 elements.
This slowdown with increasing 𝐵 is due to the extra 𝑂 (𝑚𝐵)
term in the work of union. For the smallest block size (𝐵 = 1),
our running time matches that of P-trees on this operation.
Space Usage. For 𝐵 = 128, PaC-trees obtain a 2.48x reduc-
tion in space usage compared to using P-trees, and a further
1.73x reduction in space usage by using difference encoding.
The 108 pairs stored in the experiments require 1.6GB of
memory to represent as a single flat array, which is also a
lower bound for the space usage of a search tree structure. To
understand how close PaC-trees come to this lower bound,
we study the space usage of unaugmented maps using PaC-
trees as a function of the block size 𝐵 (Fig. 13). Using 𝐵 = 32,
PaC-trees are only 1.05x larger than the lower bound and
using 𝐵 = 128, it is just 1.01x larger than the lower bound.
For 𝐵 = 128, just 1.1% of the allocated memory is used for

regular nodes and metadata in the flat nodes. These savings
are obtained without using any additional encoding. Apply-
ing difference encoding improves the space by 1.77x over
the unencoded trees and the array lower bound, and is only
1.03x larger than the space used to difference encode all of
the keys in a single array, leaving the values uncompressed,
which is a lower bound for a search tree structure using
difference encoding for such input.

Using PaC-trees requires much lower space overhead for
augmentation compared to P-trees (Fig. 13). For P-trees,
adding 8 byte augmented values increases the size of the
maps by 20%, whereas PaC-trees (both with and without
difference encoding) using 𝐵 = 128 incurs only a 1% increase
in space for the augmented values. The savings comes from
only storing a single augmented value per flat node, which
only uses extra space proportional to 𝑛/𝐵 augmented values.

10.2 Comparison with Collections in Spark
We compared CPAMwith the shared-memory parallel imple-
mentation of Apache Spark on a simple benchmark drawn
from the Apache Spark tutorial. The benchmark first loads
the same Wikipedia corpus that we use for our inverted
index application (1,943,575,146 words in 8,125,326 docu-
ments). The first example then tokenizes the dataset into
words, and computes the longest word length. The second
example computes the most frequently occuring word by
using the reduceByKey primitive in Spark to group common
words and compute the mostly frequently occuring word us-
ing a reduce. We use in-memory caching for the intermediate
mapped dataset and report the fastest (cached) time.
For the first example, Spark takes 46.9 seconds for the

first (uncached) run, and the subsequent average (cached)
time is 21.5 seconds. Our CPAM implementation, where the
dominant cost is the memory-bound parsing step, requires
6.57 seconds on average (3.2x faster than the cached time).
On the second example, Spark takes 96.3 seconds for the first
run, and 72.5 seconds for the average cached time. For the
second example, the dominant cost for CPAM is the parallel
sort (we use a parallel sample-sort). The end-to-end time is
14.6 seconds, which is 4.9x faster than the Spark cached time.

We also tried evaluating the same set of sequence bench-
marks shown in Fig. 2 using Spark, but observed significantly
worse running times for all of the sequence primitives (up
to 2 orders of magnitude worse performance; e.g., reduce
on a 100M element sequence with 8-byte elements takes
2.07 seconds, whereas CPAM takes 0.00865 seconds). The
slowdown could be due to fixed parallelization overheads in
Spark, although their word counting example which we stud-
ied above performs reasonably well despite working over a
significantly larger dataset (nearly 2 billion words).

10.3 Inverted Index
Next, we study our performance on the inverted index appli-
cation. We run the application on documents derived from a

15

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

𝑛 𝑚
PaC-tree PaC-tree (Diff) P-tree (PAM)
𝑇1 𝑇144 Spd. 𝑇1 𝑇144 Spd. 𝑇1 𝑇144 Spd.

No augmentation

Size (GB) 108 — 1.61 — — 0.926 — — 4.00 — —
Build 108 — 5.55 0.186 29.8 5.71 0.180 31.7 5.94 0.221 26.8
Union 108 108 5.33 0.088 60.5 6.29 0.089 70.6 8.97 0.168 53.3
Union 108 105 1.09 0.021 51.9 1.28 0.022 58.1 0.206 0.0038 54.2
Intersect 108 108 4.35 0.065 66.9 5.68 0.081 70.1 9.50 0.139 68.3
Difference 108 108 3.00 0.055 54.4 3.55 0.056 63.3 8.17 0.123 66.4
Map 108 108 0.859 0.037 22.9 1.14 0.023 49.5 1.32 0.091 14.5
Reduce 108 — 0.306 0.018 17.0 0.308 0.0092 33.4 1.60 0.034 47.0
Filter 108 — 0.997 0.028 35.6 1.24 0.018 68.8 1.90 0.0524 36.2
Find 108 108 103 1.17 88.0 125 1.23 101.6 105.5 1.05 100.4
Insert 108 106 0.829 — — 1.42 — — 0.773 — —
Multi-Insert 108 108 18.8 0.332 56.6 19.9 0.323 61.6 9.67 0.338 28.6
Range 108 106 11.5 0.318 36.1 13.1 0.226 57.9 3.77 0.0738 45.6

With augmentation

Size (GB) 108 — 1.63 — — 0.936 — — 4.80 — —
Build 108 — 5.66 0.197 28.7 5.84 0.186 31.3 6.48 0.246 26.3
Union 108 108 5.52 0.098 56.3 6.52 0.090 72.4 10.13 0.196 51.6
AugRange 108 107 12.3 0.331 37.1 13.9 0.234 59.4 4.80 0.082 58.5
AugFilter 108 — 12.2 0.333 36.6 13.6 0.234 58.1 4.95 0.081 61.1

Table 2. Microbenchmark results. We fix 𝐵 = 128 for PaC-trees. 𝑛 is the
tree size. For set functions and multi-insert,𝑚 ≤ 𝑛 is the size of the other
set (batch). For other functions,𝑚 is the number of queries tested. 𝑇1 is the
sequential running time. 𝑇144 is parallel running time using 72 cores (144
hyperthreads). Diff means difference encoding. We highlight the best parallel
running time (or size) per experiment in green and underlined.

DB YT RU LJ OK FS TW
0

2

4

6

8

10

12

14

16

S
iz

e
R

el
at

iv
e

to
S

m
al

le
st

0
.0

1
08

0
.0

2
88

3

0
.4

8
17

0
.2

3
96

0
.4

8
46

1
0
.7

4
.8

7
1

0.
0
13

01

0.
04

1
24

0
.6

83
2

0
.3

4
61

0
.7

2
72

1
4.

6

7
.5

9
8

0
.0

1
63

0
.0

5
30

1

0
.8

5
31

0
.4

50
7

0.
9
63

6

15
.4

3

1
0.

3
40
.0

3
37

2

0
.0

9
26

1

1
.8

3
3

0.
56

83

0.
8
52

2

1
8
.5

3

9
.0

3
4

0
.0

7
67

5

0
.2

2
91

2.
7
9

2
.7

7
1

7
.1

2
2

1
10
.6

7
3.

5
4

GBBS (Diff)

PaC-tree (Diff)

PaC-tree

Aspen

P-tree (PAM)

Figure 11. Relative space usage of different graph
representations. GBBS (Diff) is our static baseline com-
pressed graph representation. PaC-tree uses PaC-trees
for vertex and edge trees, and PaC-tree (Diff) difference
encodes both trees. Aspen uses P-trees for the vertex tree
and C-trees with difference encoding for edge trees. P-
tree (PAM) uses P-trees for the vertex and edge trees. The
values on top of each bar are the memory usage in GiB.

large Wikipedia dataset also used by PAM for a fair compar-
ison. The dataset is processed by removing all markup, con-
verting characters that are not alphanumeric to whitespace
and making all words case insensitive [52]. The processed
dataset contains 1.94 billion words over 8.13 million docu-
ments. Like PAM, our evaluation measures the performance
of (1) building an index over (words, doc_id, weight) triples
and (2) running queries that fetch the posting lists for two
words, compute the intersection of the lists, and select the
top 10 documents by weight.

Table 3 shows the results of the experiment. For building
the index, our implementation achieves 76x speedup and
our parallel running times are comparable with those of
PAM (at most 1.1x slower). For the queries, we observe that
the unencoded trees achieve essentially the same parallel
time as PAM, whereas the difference encoded trees are 1.18x
slower due to the higher cost of intersection operations in
our difference encoded implementation. The space usage
using PaC-trees is much smaller than that of PAM, being
3.84x smaller without encoding and 7.81x smaller using a
custom encoder that combines difference encoding for the
keys with byte-encoding for the integer values (weights).

10.4 Interval and Two-Dimensional Range Trees
We benchmark our interval and two-dimensional range trees
as in PAM [50]. We build our interval tree on 108 inter-
vals, and for queries run stabbing queries over 108 points

Library Space Method 𝑛 𝑚 𝑇1 𝑇144 Spd.

In
ve

rt
ed

In
de

x PaC-tree 8.29 Build 108 — 746 9.73 76.6
Query 108 108 341 4.46 76.4

PaC-tree (D) 4.07 Build 108 — 754 9.81 76.8
Query 108 108 367 5.32 68.9

P-tree (PAM) 31.9 Build 108 — 575 8.86 64.9
Query 108 108 313 4.48 69.8

In
te
rv
al PaC-tree 0.812 Build 108 — 10.9 0.179 60.8

Query 108 108 60.8 0.525 115.8

P-tree (PAM) 3.54 Build 108 — 11.6 0.271 42.8
Query 108 108 54.3 0.628 86.4

R
an

ge

PaC-tree 40.3
Build 108 — 164 2.71 60.7
Q-Sum 108 106 54.2 0.629 86.1
Q-All 108 103 7.20 0.266 27.0

P-tree (PAM) 89.6
Build 108 — 169 2.84 59.6
Q-Sum 108 106 60.7 0.735 82.5
Q-All 108 103 21.6 0.552 39.1

Table 3. Build and query times and space usage in GiB for
inverted index, interval tree, and range tree applications. 𝑇1
is the single-thread time, 𝑇144 is the 72-core time using hyper-
threading, and Spd. is the parallel speedup. The best parallel running
time (or size) is highlighted in green and underlined per experiment.

in parallel. We observe that both building and querying the
trees achieves good parallel speedup (60–115x). PaC-trees
are 1.51x faster than PAM in construction, and is 1.19x faster

16

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

Graph Vertices Edges Ours Aspen Aspen
Ours

DBLP (DB) 425,957 2,099,732 0.0130 0.03409 2.62x
YouTube (YT) 1,138,499 5,980,886 0.0412 0.0934 2.26x
USA-Road (RU) 23,947,348 57,708,624 0.683 1.843 2.69x
LiveJournal (LJ) 4,847,571 85,702,474 0.346 0.527 1.52x
com-Orkut (CO) 3,072,627 234,370,166 0.727 0.893 1.22x
Twitter (TW) 41,652,231 2,405,026,092 7.59 9.42 1.23x
Friendster (FS) 65,608,366 3,612,134,270 14.6 19.1 1.30x

Table 4. Statistics about tested graphs andmemory usage of
PaC-tree and Aspen in GiB.

for queries. Overall we find that PaC-trees enable better
performance than PAM while using 4.37x less space.

We build our range trees on 108 uniformly random points
in the plane between (0, 0) and (1𝑒8, 1𝑒8). We run two types
of queries: the first count the number of points in the range
(Q-Sum), and the second returns all points in the range. We
tuned the window sizes used in our queries to match the
settings evaluated by PAM (around 106 points returned per
query). Both PaC-trees and P-trees build the data structure
in a similar amount of time. PaC-trees achieve better per-
formance than P-trees for both queries, being 1.16x faster
for Q-Sum and 1.96x faster for Q-All queries, likely due to
requiring fewer cache-misses when processing the tree to
output the points within a given range. The range tree appli-
cation using PAM has previously been compared with range
trees in CGAL [45] and was shown to outperform it [50].

For space usage, PaC-trees result in 2.18x less space com-
pared to PAM. We note that 95% of the space used in PAM
is for the P-trees stored as augmented values in each node
(representing the union of the 𝑦-coordinates in the subtree).
The majority of our savings come from compressing the aug-
mented trees using PaC-trees which results in a 2.53x less
space for the inner trees, and 2.18x less space overall.

10.5 Graph Processing and Graph Streaming
Our last set of experiments study the performance of PaC-
trees for a set of standard benchmarks from the graph pro-
cessing and graph streaming literature. Our evaluation roughly
follows Aspen’s and we compare our performance and space
usage with that of Aspen and its C-tree implementation.
Graph Data. DBLP is co-authorship network based on re-
search papers in computer science. YouTube is a social net-
work graph based on YouTube. USA-Road (RO) is an undi-
rected road network from the DIMACS challenge [24]. Live-
Journal (LJ) is a directed graph of the LiveJournal social
network [17]. com-Orkut (CO) is an undirected graph of the
Orkut social network. Twitter (TW) is a directed graph of
the Twitter network [40]. Friendster (FR) is an undirected
graph describing friendships from a gaming network. The
DBLP, YouTube, and Friendster graphs are obtained from
the SNAP dataset [41]. We note that some of our inputs (like
the LiveJournal graph) are originally directed, and we sym-
metrize them before applying our algorithms to maintain

Aspen Ours

Graph FS FS Time No-FS FS FS
No-FS FS Time Aspen

Ours

B
FS

LiveJournal 21.7 3.82 19.8 17.5 1.13x 1.38 1.24x
com-Orkut 15.3 2.35 14.5 12.4 1.16x 1.12 1.23x
Twitter 138 37.8 125 112 1.11x 12.5 1.23x

M
IS

LiveJournal 55.3 3.82 72.0 45.7 1.57x 1.38 1.21x
com-Orkut 70.2 2.35 96.9 69.2 1.40x 1.12 1.01x
Twitter 1022 37.8 1190 971 1.22x 12.5 1.05x

B
C

LiveJournal 74.6 3.82 82.1 72.3 1.13x 1.38 1.03x
com-Orkut 76.3 2.35 88.6 78.2 1.13x 1.12 0.975x
Twitter 1150 37.8 2735 1030 2.65x 12.5 1.11x

Table 5. Parallel running times (in milliseconds) for Aspen
and our implementation. We show the algorithm performance
without flat snapshots (No-FS), with flat snapshots (FS), and the
time to computing the flat snapshot (FS Time).

consistency with prior work on Aspen [25] and GBBS [26]
that symmetrize graphs in their evaluations. Table 4 shows
information about our graph inputs, including the number
of vertices, edges, and space used.
We evaluate five graph representations including using

PAM, Aspen, PaC-tree with or without difference encoding,
and GBBS. Aspen uses C-trees as edge trees and leaves vertex
trees uncompressed using P-trees. GBBS is a state-of-the-art
static graph processing library which represents graphs as
static arrays using difference encoding, which serves as our
baseline of graph representation. Fig. 11 shows the relative
size of each graph format. We see that the smallest format
in all cases is PaC-tree (Diff), which applies PaC-trees with
difference encoding for both vertex and edge trees. Using this
format yields a space improvement of between 4–9.7x over
just using P-trees. For the graphs with high average-degree,
most of the savings come from using PaC-trees for the edge
trees. Adding difference encoding to both trees yields be-
tween 1.05–1.32x space improvement. PaC-trees are also
1.3–2.6x more space-efficient than Aspen. Note that C-trees
in Aspen are also difference encoded, so the main difference
between the two representations is that PaC-tree (Diff) also
uses PaC-trees to chunk the vertex tree, and that PaC-trees
employ a deterministic strategy for chunking. PaC-trees with
difference encoding achieves consistently lower space com-
pared with Aspen, ranging between 1.3x for Friendster, our
largest graph, to a maximum space improvement for 2.62x on
USA-Road, our sparsest graph. The space savings come from
chunking the vertex trees, which is not possible in Aspen,
since the C-tree implementation is specialized for edge trees.
GraphAlgorithmPerformance.We study the performance
of three fundamental graph kernels: breadth-first search
(BFS), single-source betweenness centrality (BC), and maxi-
mal independent set (MIS). Our implementations are based
on those in Aspen. We study performance using our most
space-efficient version (PaC-tree (Diff)). Following Aspen,
our implementation also supports the flat snapshot object,
which is an array storing all vertices in the current graph. The

17

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

100 101 102 103

Block Size (B)

0

10

20

30

40

R
un

ni
ng

ti
m

e
(s

ec
on

ds
)

Build

Filter

Insert

Range

Union

Union-Imbal

100 101 102 103

Block Size (B)

1

2

3

4

5

M
ap

S
iz

e
(N

um
.

by
te

s)

×109

Array

Array (Diff)

P-Tree

P-Tree-Aug

PaC-tree

PaC-tree-Aug

PaC-tree (Diff)

PaC-tree-Aug (Diff)

0 10 20 30 40 50

Elapsed Time (seconds)

10−4

10−3

10−2

10−1

O
p

er
at

io
n

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

BFS (Concurrent)

Update (Concurrent)

BFS (Solo)

Update (Solo)

Figure 12. Primitive running times
for PaC-trees vs. block size 𝐵. We
use 108 key-value pairs (8 bytes each).
Union, Intersection and Difference all
work on two trees with 108 elements.
Union-Imbal takes the union of trees
with 108 and 105 elements.

Figure 13. Size of PaC-trees (with or with-
out DE) as a function of block size 𝐵. We use
108 key-value pairs (8 bytes each). For augmented
maps (-Aug), augmented values are 8 bytes each.
The grey line shows the number of bytes to store
the 108 elements in an array and the purple line
shows the bytes used to store the difference en-
coded keys in a single array using byte encoding.

Figure 14. Performance of concurrent
updates and queries. The time series plot
illustrates running times when running BFS
queries with batch-insertions of edges con-
currently (Concurrent), and when queries
and updates are run individually (Solo) on
the LiveJournal graph.

102 104 106 108

Batch Size (num edges.)

105

106

107

108

109

T
hr

ou
gh

pu
t

(i
ns

er
ti

on
s/

se
co

nd
) friendster

livejournal

orkut

road

twitter

Figure 15. Edge insertion throughput (insertions per second) for
our graph update algorithms as a function of the number of edge
insertions in each batch. The throughput for batch deletions is
similar to that of insertions.

idea is that instead of accessing edges for a vertex through the
vertex tree (performing tree traversal), algorithms directly
access edge trees through the flat snapshot.

Table 5 shows performance results for three of our graph
datasets. Across all three kernels our implementations are
1.12x faster than Aspen’s implementations on average. We
observe that flat snapshots can be generated 2.09–3.02x faster
in CPAM due to PaC-trees requiring fewer cache-misses to
traverse than P-trees when creating flat snapshot array. We
note that the implementation of edgeMap and other primi-
tives from Ligra (including constants and other tuning pa-
rameters) are exactly the same in both CPAM and Aspen.
Aspen also difference encodes in its edge trees (represented
using C-trees). The performance improvements that we ob-
serve are therefore a result of PaC-trees providing faster flat
snapshots, and having better balance in chunk sizes com-
pared to the randomized approach used in C-trees.

GraphBatch-UpdateThroughput In this sectionwe study
the performance of our graph representation using PaC-trees
when performing updates in varying size batches. We focus
on algorithms for inserting and deleting batches of edges,
since inserting vertices (along with incident edges) can easily
be done using the edge insert primitive, and vertex deletions
simply use multi_delete on PaC-trees. Our experiment fol-
lows the methodology used in Aspen. To generate updates,
we sample directed edges from an rMAT generator [21] with
𝑎 = 0.5, 𝑏 = 𝑐 = 0.1, 𝑑 = 0.3. We use the same generator for
our concurrent update and query experiment in Section 10.5.
For a batch of size 𝐾 , we generate 𝐾 directed edge updates
from the stream (note that there can be duplicates) and re-
peatedly insert the edges and delete the edges from the batch,
reporting the median of three trials. We note that the times
we report include the time to sort and remove duplicates
from the batch.
Fig. 15 shows the throughput of batch edge insertions

(insertions per second) as a function of the batch size. We
note that the throughput for deletions are close to that of
insertions (within 10% across all graphs). To remove clutter,
we show results on the five largest graphs in our datasets.
We observe that the throughput of our graph representation
improves with increasing batch size; for the largest batch
size, the algorithm achieves a maximum throughput of be-
tween 719M edge insertions per second for the com-Orkut
graph, and a minimum of 527M edge insertions per second
for the Twitter graph. We compared these results with those
of Aspen on the same machine and find that we obtain 1.62x
higher throughput across the three graphs both systems con-
sider in this experiment, and an average throughput increase
of 1.65x across these graphs.

Concurrent Updates and Queries. Our last experiment
concurrent updates and queries on graphs. The experiment

18

PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections PLDI’22, June 20–24, 2022, San Diego, California, United States

performs 𝑛 undirected edge insertions drawn from the rMAT
generator described above. We use a batch size of 5 in the
updates (10 directed edges are inserted per batch). We then
spawn two parallel jobs, one performing the updates one
batch after the other, and the other performing BFS queries,
one after the other. Both the updates and queries are parallel
(i.e., they internally make use of parallelism).

Fig. 14 shows the result of the experiment. We find that
the concurrent queries are 1.85x slower on average than
the queries in isolation, and that the concurrent updates are
1.07x slower on average than updates in isolation. In the
concurrent setting, the average latency to make one of the
update batches visible is 100 microseconds, and the updates
achieve a throughput of 94,000 undirected edge updates per
second. We leave further optimizations and a more in depth
study of the graph setting for future work with our system.

11 Conclusion
We have presented PaC-tree, a deterministic compressed
ordered map data structure and an implementation of the
structure in a library CPAM. The important features of PaC-
trees and its implementation in CPAM include the following.
• It is purely functional allowing for persistent snapshots
while updates are being made, and safe for parallelism.

• It supports sequences, ordered sets, ordered maps, and
augmented maps, with a wide variety of functions on them.

• It provides theoretical bounds on work, span, and space.
• It achieves fast sequential time and gets up to 100x speedup
on 72 cores with 144 hyperthreads.

• It achieves memory usage that is close to a compressed
array and up to an order of magnitude smaller than PAM.

• It is internally memory manged using reference counting.
• It is backward compatible with PAM.
• It has been used to implement the full functionality of
Aspen while improving runtime and/or space.

For future work, we are interested in extending PaC-trees
to support higher-fanout internal nodes, similar to 𝐵-trees,
which would allow users to improve query latency at the
expense of increased work when performing updates. Other
future work includes applying PaC-trees to improve space
utilization in databases, and to improve the performance of
collection-based applications using non-volatile memory.

Acknowledgement
This work was supported by the National Science Founda-
tion grants CCF-1901381, CCF-1910030, CCF-1919223, CCF-
2103483, and CCF-2119352.

References
[1] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2014. The-

ory and Practice of Chunked Sequences. In European Symposium on
Algorithms (ESA).

[2] Stephen Adams. 1993. Efficient sets—a balancing act. Journal of
functional programming 3, 04 (1993).

[3] Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Anna Malova, and
Srivatsan Ravi. 2017. A concurrency-optimal binary search tree. In
European Conference on Parallel Processing (Euro-Par). Springer.

[4] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting
to the Root of Concurrent Binary Search Tree Performance. In USENIX
Annual Technical Conference.

[5] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-
Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi: A
key-value map for scalable real-time analytics. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[6] R. Bayer and E. M. McCreight. 1972. Organization and maintenance
of large ordered indexes. Acta Informatica 1, 3 (01 Sep 1972).

[7] Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert,
Yihan Sun, and Yuanhao Wei. 2021. Space and Time Bounded Multi-
version Garbage Collection. In International Symposium on Distributed
Computing (DISC). https://doi.org/10.4230/LIPIcs.DISC.2021.12

[8] Jean-Philippe Bernardy. 2008. The Haskell Yi package. http://hackage.
haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html.

[9] Daniel K. Blandford and Guy E. Blelloch. 2004. Compact Representa-
tions of Ordered Sets. In ACM-SIAM Symposium on Discrete Algorithms
(SODA).

[10] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-
layLib - A Toolkit for Parallel Algorithms on Shared-Memory Multi-
core Machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[11] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for
Parallel Ordered Sets. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

[12] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.
Optimal Parallel Algorithms in the Binary-Forking Model. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[13] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri.
2010. Low Depth Cache-Oblivious Algorithms. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[14] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel
Write-Efficient Algorithms and Data Structures for Computational
Geometry. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA).

[15] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multi-
threaded computations by work stealing. J. ACM 46, 5 (1999).

[16] Hans-J. Boehm, Russ Atkinson, and Michael Plass. 1995. Ropes: An
Alternative to Strings. Softw. Pract. Exper. 25, 12 (1995).

[17] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I:
Compression Techniques. In International World Wide Web Conference
(WWW).

[18] Anastasia Braginsky and Erez Petrank. 2012. A lock-free B+ tree.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[19] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic
Expressions. J. ACM 21, 2 (April 1974), 201–206.

[20] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A Practical Concurrent Binary Search Tree. In ACM Symposium
on Principles and Practice of Parallel Programming (PPOPP).

[21] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A Recursive Model for Graph Mining. In SIAM International
Conference on Data Mining (SDM).

[22] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012.
Kineograph: taking the pulse of a fast-changing and connected world.
In ACM European Conference on Computer Systems (EuroSys).

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms (3rd edition). MIT Press.

[24] Camil Demetrescu, Andrew Goldberg, and David Johnson.
2019. 9th DIMACS Implementation Challenge: Shortest Paths.

19

https://doi.org/10.4230/LIPIcs.DISC.2021.12
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html

PLDI’22, June 20–24, 2022, San Diego, California, United States Laxman Dhulipala, Guy Blelloch, Yan Gu, and Yihan Sun

http://www.dis.uniroma1.it/challenge9/.
[25] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-

latency graph streaming using compressed purely-functional trees. In
ACMConference on Programming Language Design and Implementation
(PLDI).

[26] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theo-
retically Efficient Parallel Graph Algorithms Can Be Fast and Scal-
able. ACM Transactions on Parallel Computing (TOPC) 8, 1 (2021).
https://doi.org/10.1145/3434393

[27] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian
Shun. 2020. The Graph Based Benchmark Suite (GBBS). In Intl. Work-
shop on Graph Data Management Experiences and Systems (GRADES).

[28] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In ACM Symposium on Princi-
ples of Distributed Computing (PODC).

[29] Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Per-
sistent non-blocking binary search trees supporting wait-free range
queries. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA).

[30] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2008.
Implicitly-threaded Parallelism in Manticore. In ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP).

[31] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The
implementation of the Cilk-5 multithreaded language. ACMConference
on Programming Language Design and Implementation (PLDI).

[32] Yan Gu, Yihan Sun, and Guy E. Blelloch. 2018. Algorithmic Building
Blocks for Asymmetric Memories. In European Symposium on Algo-
rithms (ESA).

[33] Switzerland International Organization for Standardization, Geneva.
2018. ISO/IEC TS 19570:2018: Programming Languages – Technical
Specification for C++ Extensions for Parallelism. https://www.iso.org/
standard/70588.html.

[34] J. JaJa. 1992. Introduction to Parallel Algorithms. Addison-Wesley
Professional.

[35] Java Fork-Join, Oracle Java Documentation [n.d.].
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.

[36] Haim Kaplan and Robert Endre Tarjan. 1996. Purely Functional Repre-
sentations of Catenable Sorted Lists. In ACM Symposium on Theory of
Computing (STOC).

[37] Alfons Kemper, Thomas Neumann, Jan Finis, Florian Funke, Viktor
Leis, Henrik Mühe, Tobias Mühlbauer, and Wolf Rödiger. 2013. Pro-
cessing in the Hybrid OLTP & OLAP Main-Memory Database System
HyPer. IEEE Data Eng. Bull. 36, 2 (2013).

[38] Edward A. Kmett. 2010. The Haskell Rope package.
[39] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation of

Binary Search Trees. ACM Trans. Database Syst. 5, 3 (1980).
[40] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a Social Network or a News Media?. In International
World Wide Web Conference (WWW).

[41] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[42] Peter Macko, Virendra J Marathe, Daniel WMargo, andMargo I Seltzer.
2015. LLAMA: Efficient graph analytics using large multiversioned
arrays. In IEEE International Conference on Data Engineering (ICDE).

[43] Colt McAnlis and Aleks Haekey. 2016. Understanding Compression.
O’Reilly Media, Inc.

[44] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free
Binary Search Trees. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP).

[45] Gabriele Neyer. 2017. dD Range and Segment Trees. In CGAL User
and Reference Manual (4.10 ed.). CGAL Editorial Board. http://doc.
cgal.org/4.10/Manual/packages.html

[46] Jürg Nievergelt and Edward M Reingold. 1973. Binary search trees of
bounded balance. SIAM J. on Computing 2, 1 (1973).

[47] Chris Okasaki. 1999. Purely functional data structures. Cambridge
University Press.

[48] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[49] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and
faster: Parallel processing of compressed graphs with Ligra+. In IEEE
Data Compression Conference (DCC).

[50] Yihan Sun and Guy E Blelloch. 2019. Parallel Range, Segment and
Rectangle Queries with Augmented Maps. In Algorithm Engineering
and Experiments (ALENEX).

[51] Yihan Sun, Guy E Blelloch, Wan Shen Lim, and Andrew Pavlo. 2019.
On supporting efficient snapshot isolation for hybrid workloads with
multi-versioned indexes. Proceedings of the VLDB Endowment (PVLDB)
13, 2 (2019).

[52] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. 2018. PAM: Parallel
Augmented Maps. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP).

[53] Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou,
Eric Ruppert, and Yihan Sun. 2021. Constant-time snapshots with
applications to concurrent data structures. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[54] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: a unified engine
for big data processing. Commun. ACM 59, 11 (2016).

20

https://doi.org/10.1145/3434393
https://www.iso.org/standard/70588.html
https://www.iso.org/standard/70588.html
http://snap.stanford.edu/data
http://doc.cgal.org/4.10/Manual/packages.html
http://doc.cgal.org/4.10/Manual/packages.html

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 PaC-Trees
	5 Algorithms
	6 Theoretical Guarantees
	6.1 Set Algorithms with Better Work Bound
	6.2 Non-parallelizable Encoding Schemes

	7 Work Tradeoff between Updates and Queries
	8 Implementation
	9 Applications
	10 Experiments
	10.1 PaC-Tree Performance
	10.2 Comparison with Collections in Spark
	10.3 Inverted Index
	10.4 Interval and Two-Dimensional Range Trees
	10.5 Graph Processing and Graph Streaming

	11 Conclusion
	References

