
Parallel Batch-Dynamic k-Clique Counting

Laxman Dhulipala
MIT CSAIL

laxman@mit.edu

Quanquan C. Liu
MIT CSAIL

quanquan@mit.edu

Julian Shun
MIT CSAIL

jshun@mit.edu

Shangdi Yu
MIT CSAIL

shangdiy@mit.edu

Abstract
In this paper, we study new batch-dynamic algorithms

for the k-clique counting problem, which are dynamic algo-
rithms where the updates are batches of edge insertions and
deletions. We study this problem in the parallel setting, where
the goal is to obtain algorithms with low (polylogarithmic)
depth. Our first result is a new parallel batch-dynamic triangle
counting algorithm with O(∆

√
∆ +m) amortized work and

O(log∗(∆ +m)) depth with high probability, and O(∆ +m)
space for a batch of ∆ edge insertions or deletions. Our sec-
ond result is an algebraic algorithm based on parallel fast
matrix multiplication. Assuming that a parallel fast matrix
multiplication algorithm exists with parallel matrix multiplica-
tion constant ωp, the same algorithm solves dynamic k-clique

counting with O
(

min

(
∆m

(2k−1)ωp
3(ωp+1) , (∆ +m)

2(k+1)ωp
3(ωp+1)

))
amortized work and O(log(∆ + m)) depth with high prob-

ability, and O
(

(∆ +m)
2(k+1)ωp
3(ωp+1)

)
space. Using a recently

developed parallel k-clique counting algorithm, we also ob-
tain a simple batch-dynamic algorithm for k-clique counting
on graphs with arboricity α running in O(∆(m+ ∆)αk−4)
expected work and O(logk−2 n) depth with high probabil-
ity, and O(m + ∆) space. Finally, we present a multicore
CPU implementation of our parallel batch-dynamic triangle
counting algorithm. On a 72-core machine with two-way
hyper-threading, our implementation achieves 36.54–74.73x
parallel speedup, and in certain cases achieves significant
speedups over existing parallel algorithms for the problem,
which are not theoretically-efficient.

1 Introduction
Subgraph counting algorithms are fundamental graph

analysis tools, with numerous applications in network clas-
sification in domains including social network analysis and
bioinformatics. A particularly important type of subgraph
for these applications is the triangle, or 3-clique—three ver-
tices that are all mutually connected [New03]. Counting
the number of triangles is a basic and fundamental task that
is used in numerous social and network science measure-
ments [Gra77, WS98].

In this paper, we study the triangle counting problem and
its generalization to higher cliques from the perspective of

dynamic algorithms. A k-clique consists of k vertices and all(
k
2

)
possible edges among them (for applications of k-cliques,

see, e.g., [HR05]). As many real-world graphs change rapidly
in real-time, it is crucial to design dynamic algorithms that
efficiently maintain k-cliques upon updates, since the cost of
re-computation from scratch can be prohibitive. Furthermore,
due to the fact that dynamic updates can occur at a rapid
rate in practice, it is increasingly important to design batch-
dynamic algorithms which can take arbitrarily large batches
of updates (edge insertions or deletions) as their input. Finally,
since the batches, and corresponding update complexity can
be large, it is also desirable to use parallelism to speed-
up maintenance and design algorithms that map to modern
parallel architectures.

Due to the broad applicability of k-clique counting in
practice and the fact that k-clique counting is a fundamental
theoretical problem of its own right, there has been a large
body of prior work on the problem. Theoretically, the fastest
static algorithm for arbitrary graphs uses fast matrix multipli-
cation, and counts 3` cliques in O(n`ω) time where ω is the
matrix multiplication exponent [NP85]. Considerable effort
has also been devoted to efficient combinatorial algorithms.
Chiba and Nishizeki [CN85] show how to compute k-cliques
in O(αk−2m) work, where m is the number of edges in the
graph and α is the arboricity of the graph. This algorithm was
recently parallelized by Danisch et al. [DBS18a] (although
not in polylogarithmic depth). Worst-case optimal join al-
gorithms can perform k-clique counting in O(mk/2) work
as a special case [NPRR18, ALT+17]. Alon, Yuster, and
Zwick [AYZ97] design an algorithm for triangle counting
in the sequential model, based on fast matrix multiplication.
Eisenbrand and Grandoni [EG04] then extend this result to
k-clique counting based on fast matrix multiplication. Vas-
silevska designs a space-efficient combinatorial algorithm
for k-clique counting [Vas09]. Finocchi et al. give clique
counting algorithms for MapReduce [FFF15]. Jain and Se-
shadri provide probabilistic algorithms for estimating clique
counts [JS17]. The k-clique problem is also a classical prob-
lem in parameterized-complexity, and is known to be W [1]-
complete [DF95].

The problem of maintaining k-cliques under dynamic
updates began more recently. Eppstein et al. [ES09, EGST12]

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



design sequential dynamic algorithms for maintaining size-
3 subgraphs in O(h) amortized time and O(mh) space and
size-4 subgraphs inO(h2) amortized time andO(mh2) space,
where h is the h-index of the graph (h = O(

√
m)). Ammar

et al. extend the worst-case optimal join algorithms to the
parallel and dynamic setting [AMSJ18]. However, their
update time is not better than the static worst-case optimal
join algorithm. Recently, Kara et al. [KNN+19] present
a sequential dynamic algorithm for maintaining triangles
in O(

√
m) amortized time and O(m) space. Dvorak and

Tuma [DT13] present a dynamic algorithm that maintains
k-cliques as a special case in O(αk−2 log n) amortized time
and O(αk−2m) space by using low out-degree orientations
for graphs with arboricity α.
Designing Parallel Batch-Dynamic Algorithms. Tradi-
tional dynamic algorithms receive and apply updates one
at a time. However, in the parallel batch-dynamic setting,
the algorithm receives batches of updates one after the other,
where each batch contains a mix of edge insertions and dele-
tions. Unlike traditional dynamic algorithms, a parallel batch-
dynamic algorithm can apply all of the updates together, and
also take advantage of parallelism while processing the batch.
We note that the edges inside of a batch may also be ordered
(e.g., by a timestamp). If there are duplicate edge insertions
within a batch, or an insertion of an edge followed by its
deletion, a batch-dynamic algorithm can easily remove such
redundant or nullifying updates.

The key challenge is to design the algorithm so that up-
dates can be processed in parallel while ensuring low work
and depth bounds. The only existing parallel batch-dynamic
algorithms for k-clique counting are triangle counting algo-
rithms by Ediger et al. [EJRB10] and Makkar et al. [MBG17],
which take linear work per update in the worst case. The algo-
rithms in this paper make use of efficient data structures such
as parallel hash tables, which let us perform parallel batches
of edge insertions and deletions with better work and (poly-
logarithmic) depth bounds. To the best of our knowledge, no
prior work has designed dynamic algorithms for the problem
that support parallel batch updates with non-trivial theoretical
guarantees.

Theoretically-efficient parallel dynamic (and batch-
dynamic) algorithms have been designed for a variety
of other graph problems, including minimum spanning
tree [KPR18, FL94, DF94], Euler tour trees [TDB19],
connectivity [STTW18, AABD19, FL94], tree contrac-
tion [RT94, AAW17], and depth-first search [Kha17]. Very
recently, parallel dynamic algorithms were also designed for
the Massively Parallel Computation (MPC) setting [ILMP19,
DDK+20].
Summary of Our Contributions. In this paper, we design
parallel algorithms in the batch-dynamic setting, where the
algorithm receives a batch of ∆ ≥ 1 edge updates that can
be processed in parallel. Our focus is on parallel batch-

dynamic algorithms that admit strong theoretical bounds
on their work and have polylogarithmic depth with high
probability. Note that although our work bounds may be
amortized, our depth will be polylogarithmic with high
probability, leading to efficient RNC algorithms. As a special
case of our results, we obtain algorithms for parallelizing
single updates (∆ = 1). We first design a parallel batch-
dynamic triangle counting algorithm based on the sequential
algorithm of Kara et al. [KNN+19]. For triangle counting,
we obtain an algorithm that takes O(∆

√
∆ +m) amortized

work and O(log∗(∆ +m)) depth w.h.p.1 assuming a fetch-
and-add instruction that runs in O(1) work and depth, and
runs in O(∆ +m) space. The work of our parallel algorithm
matches that of the sequential algorithm of performing one
update at a time (i.e., it is work-efficient), and we can perform
all updates in parallel with low depth.

We then present a new parallel batch-dynamic algorithm
based on fast matrix multiplication. Using the best currently
known parallel matrix multiplication [Wil12, LG14], our
algorithm dynamically maintains the number of k-cliques
in O

(
min

(
∆m0.469k−0.235, (∆ +m)0.469k+0.469

))
amor-

tized work w.h.p. per batch of ∆ updates where m is de-
fined as the maximum number of edges in the graph be-
fore and after all updates in the batch are applied. Our ap-
proach is based on the algorithm of [AYZ97, EG04, NP85],
and maintains triples of k/3-cliques that together form k-
cliques. The depth is O(log(∆ + m)) w.h.p. and the space
is O

(
(∆ +m)0.469k+0.469

)
. Our results also imply an amor-

tized time bound of O
(
m0.469k−0.235) per update for dense

graphs in the sequential setting. Of potential independent
interest, we present the first proof of logarithmic depth in the
parallelization of any tensor-based fast matrix multiplication
algorithms. We also give a simple batch-dynamic k-clique
listing algorithm, based on enumerating smaller cliques and
intersecting them with edges in the batch. The algorithm runs
in O(∆(m + ∆)αk−4) expected work, O(logk−2 n) depth
w.h.p., and O(m+ ∆) space.

Finally, we implement our new parallel batch-dynamic
triangle counting algorithm for multicore CPUs, and present
some experimental results on large graphs and with varying
batch sizes using a 72-core machine with two-way hyper-
threading. We found our parallel implementation to be
much faster than the multicore implementation of Ediger
et al. [EJRB10]. We also developed an optimized mul-
ticore implementation of the GPU algorithm by Makkar
et al. [MBG17]. We found that our new algorithm is up
to an order of magnitude faster than our CPU implemen-
tation of the Makkar et al. algorithm, and our new algo-
rithm achieves 36.54–74.73x parallel speedup on 72 cores
with hyper-threading. Our code is publicly available at
https://github.com/ParAlg/gbbs.

1We use “with high probability” (w.h.p.) to mean with probability at least
1− 1/nc for any constant c > 0.

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.

https://github.com/ParAlg/gbbs


2 Preliminaries
Given an undirected graph G = (V,E) with n vertices

andm edges, and an integer k, a k-clique is defined as a set of
k vertices v1, . . . , vk such that for all i 6= j, (vi, vj) ∈ E. The
k-clique count is the total number of k-cliques in the graph.
The dynamic k-clique problem maintains the number of k-
cliques in the graph upon edge insertions and deletions, given
individually or in a batch. The arboricity α of a graph is the
minimum number of forests that the edges can be partitioned
into and its value is between Ω(1) and O(

√
m) [CN85].

In this paper, we analyze algorithms in the work-depth
model, where the work of an algorithm is defined to be
the total number of operations done, and the depth is
defined to be the longest sequential dependence in the
computation (or the computation time given an infinite
number of processors) [Jaj92]. Our algorithms can run in the
PRAM model or the fork-join model with arbitrary forking.
We use the concurrent-read concurrent-write (CRCW) model,
where reads and writes to a memory location can happen
concurrently. We assume either that concurrent writes are
resolved arbitrarily, or are reduced together (i.e., fetch-and-
add PRAM).

We use the following primitives throughout the paper.
Approximate compaction takes a set ofm objects in the range
[1, n] and allocates them unique IDs in the range [1, O(m)].
The primitive is useful for filtering (i.e., removing) out a set
of obsolete elements from an array of size n, and mapping
the remaining m elements to a sparse array of size O(m).
Approximate compaction can be implemented in O(n) work
andO(log∗ n) depth w.h.p. [GMV91]. We also use a parallel
hash table which supports n operations (insertions, deletions)
in O(n) work and O(log∗ n) depth w.h.p., and n lookup
operations in O(n) work and O(1) depth [GMV91].

Our algorithms in this paper make use of the widely used
atomic-add instruction. An atomic-add instruction takes a
memory location and atomically increments the value stored
at the location. In this paper, we assume that the atomic-
add instruction can be implemented in O(1) work and depth.
Our algorithms can also be implemented in a model without
atomic-add in the same work, a multiplicativeO(log n) factor
increase in the depth, and space proportional to the number
of atomic-adds done in parallel.

3 Parallel Batch-Dynamic Triangle Counting
In this section, we present our parallel batch-dynamic

triangle counting algorithm, which is based on the O(m)
space and O(

√
m) amortized update, sequential, dynamic

algorithm of Kara et al. [KNN+19]. Theorem 3.1 summarizes
the guarantees of our algorithm.

THEOREM 3.1. There exists a parallel batch-dynamic trian-
gle counting algorithm that requires O(∆(

√
∆ +m)) amor-

tized work and O(log∗(∆ +m)) depth with high probability,
and O(∆ +m) space for a batch of ∆ edge updates.

Our algorithm is work-efficient and achieves a signif-
icantly lower depth for a batch of updates than applying
the updates one at a time using the sequential algorithm
of [KNN+19]. We provide a detailed description of the fully
dynamic sequential algorithm of [KNN+19] in the full ver-
sion of our paper [DLSY20] for reference,2 and a brief high-
level overview of that algorithm in this section.
3.1 Sequential Algorithm Overview

Given a graph G = (V,E) with n = |V | vertices and
m = |E| edges, let M = 2m + 1, t1 =

√
M/2, and

t2 = 3
√
M/2. We classify a vertex as low-degree if its

degree is at most t1 and high-degree if its degree is at least
t2. Vertices with degree in between t1 and t2 can be classified
either way.
Data Structures. The algorithm partitions the edges into
four edge-stores HH, HL, LH, and LL based on a degree-
based partitioning of the vertices. HH stores all of the edges
(u, v), where both u and v are high-degree. HL stores edges
(u, v), where u is high-degree and v is low-degree. LH stores
the edges (u, v), where u is low-degree and v is high-degree.
Finally, LL stores edges (u, v), where both u and v are low-
degree.

The algorithm also maintains a wedge-store T (a wedge
is a triple of distinct vertices (x, y, z) where both (x, y) and
(y, z) are edges in E). For each pair of high-degree vertices
u and v, the wedge-store T stores the number of wedges
(u,w, v), where w is a low-degree vertex. T has the property
that given an edge insertion (resp. deletion) (u, v) where both
u and v are high-degree vertices, it returns the number of
wedges (u,w, v), where w is low-degree, that u and v are
part of in O(1) expected time. T is implemented via a hash
table indexed by pairs of high-degree vertices that stores the
number of wedges for each pair.

Finally, we have an array containing the degrees of each
vertex, D.
Initialization. Given a graph with m edges, the algorithm
first initializes the triangle count C using a static triangle
counting algorithm in O(αm) = O(m3/2) work and O(m)
space [Lat08]. TheHH,HL, LH, and LL tables are created
by scanning all edges in the input graph and inserting them
into the appropriate hash tables. T can be initialized by
iterating over edges (u,w) in HL and for each w, iterating
over all edges (w, v) in LH to find pairs of high-degree
vertices u and v, and then incrementing T (u, v).
The Kara et al. Algorithm [KNN+19]. Given an edge
insertion (u, v) (deletions are handled similarly, and for
simplicity assume that the edge does not already exist in
G), the update algorithm must identify all tuples (u,w, v)
where (u,w) and (v, w) already exist in G, since such triples
correspond to new triangles formed by the edge insertion.

2Kara et al. [KNN+19] described their algorithm for counting directed
3-cycles in relational databases, where each triangle edge is drawn from a
different relation, and we simplified it for the case of undirected graphs.

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



The algorithm proceeds by considering how a triangle’s edges
can reside in the data structures. For example, if all of u, v,
and w are high-degree, then the algorithm will enumerate
these triangles by checking HH and finding all neighbors
w of u that are also high-degree (there are at most O(

√
m)

such neighbors), checking if the (v, w) edge exists in constant
time. On the other hand, if u is low-degree, then checking
its O(

√
m) many neighbors suffices to enumerate all new

triangles. The interesting case is if both u and v are high-
degree, but w is low-degree, since there can be much more
than O(

√
m) such w’s. This case is handled using T , which

stores for a given (u, v) edge in HH all w such that (w, u)
and (w, v) both exist in LH.

Finally, the algorithm updates the data structures, first
inserting the new edge into the appropriate edge-store. The
algorithm updates T as follows. If u and v are both low-
degree or both high-degree, then no update is needed to T .
Otherwise, without loss of generality suppose u is low-degree
and v is high-degree. Then, the algorithm enumerates all
high-degree vertices w that are neighbors of u and increments
the value of (v, w) in T .
3.2 Parallel Batch-Dynamic Update Algorithm

We present a high-level overview of our parallel algo-
rithm in this section, and a more detailed description in
Section 3.3. We consider batches of ∆ edge insertions
and/or deletions. Let insert(u, v) represent the update cor-
responding to inserting an edge between vertices u and v,
and delete(u, v) represent deleting the edge between u and
v. We first preprocess the batch to account for updates that
nullify each other. For example, an insert(u, v) update fol-
lowed chronologically by a delete(u, v) update nullify each
other because the (u, v) edge that is inserted is immediately
deleted, resulting in no change to the graph. To process the
batch consisting of nullifying updates, we claim that the only
update that is not nullifying for any pair of vertices is the
chronologically last update in the batch for that edge. Since
all updates contain a timestamp, to account for nullifying
updates we first find all updates on the same edge by hash-
ing the updates by the edge that it is being performed on.
Then, we run the parallel maximum-finding algorithm given
in [Vis10] on each set of updates for each edge in parallel.
This maximum-finding algorithm then returns the update with
the largest timestamp (the most recent update) from the set
of updates for each edge. This set of returned updates then
composes a batch of non-nullifying updates.

Before we go into the details of our parallel batch-
dynamic triangle counting algorithm, we first describe some
challenges that must be solved in using Kara et al. [KNN+19]
for the parallel batch-dynamic setting.

Challenges. Because Kara et al. [KNN+19] only considers
one update at a time in their algorithm, they do not deal
with cases where a set of two or more updates creates a
new triangle. Since, in our setting, we must account for

batches of multiple updates, we encounter the following set
of challenges:
(1) We must be able to efficient find new triangles that are

created via two or more edge insertions.
(2) We must be able to handle insertions and deletions

simultaneously meaning that a triangle with one inserted
edge and one deleted edge should not be counted as a new
triangle.

(3) We must account for over-counting of triangles due to
multiple updates occurring simultaneously.
For the rest of this section, we assume that ∆ ≤ m,

as otherwise we can re-initialize our data structure using
the static parallel triangle-counting algorithm [ST15]3 to get
the count in O(∆3/2) work, O(log∗∆) depth, and O(∆)
space (assuming atomic-add), which is within the bounds of
Theorem 3.1.
Parallel Initialization. Given a graph with m edges, we
initialize the triangle count C using a static parallel triangle
counting algorithm in O(αm) = O(m3/2) work, O(log∗m)
depth, and O(m) space [ST15], using atomic-add. We
initialize HH, HL, LH, and LL by scanning the edges in
parallel and inserting them into the appropriate parallel hash
tables. We initialize the degree array D by scanning the
vertices. Both steps take O(m) work and O(log∗m) depth
w.h.p. T can be initialized by iterating over edges (u,w) in
HL in parallel and for each w, iterating over all edges (w, v)
in LH in parallel to find pairs of high-degree vertices u and v,
and then incrementing T (u, v). The number of entries inHL
is O(m) and each w has O(

√
m) neighbors in LH, giving a

total of O(m3/2) work and O(log∗m) depth w.h.p. for the
hash table insertions. The amortized work per edge update is
O(
√
m).

Data Structure Modifications. We now describe additional
information that is stored inHH,HL,LH,LL, and T , which
is used by the batch-dynamic update algorithm:
(1) Every edge stored in HH, HL, LH, and LL stores an

associated state, indicating whether it is an old edge, a
new insertion or a new deletion, which correspond to the
values of 0, 1, and 2, respectively.

(2) T (u, v) stores a tuple with 5 values instead of a single
value for each index (u, v). Specifically, a 5-tuple entry of
T (u, v) = (t

(u,v)
1 , t

(u,v)
2 , t

(u,v)
3 , t

(u,v)
4 , t

(u,v)
5 ) represents

the following:
• t(u,v)1 represents the number of wedges with endpoints
u and v that include only old edges.
• t(u,v)2 and t

(u,v)
3 represent the number of wedges

with endpoints u and v containing one or two newly
inserted edges, respectively.
• t(u,v)4 and t(u,v)5 represent the number of wedges with

3The hashing-based version of the algorithm given in [ST15] can be
modified to obtain the stated bounds if it does not do ranking and when using
the O(log∗ n) depth w.h.p. parallel hash table and uses atomic-add.

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



endpoints u and v containing one or two newly deleted
edges, respectively. In other words, they are wedges
that do not exist anymore due to one or two edge
deletions.

Algorithm Overview. We first remove updates in the
batch that either insert edges already in the graph or delete
edges not in the graph by using approximate compaction
to filter. Next, we update the tables HH, HL, LH, and
LL with the new edge insertions. Recall that we must
update the tables with both (u, v) and (v, u) (and similarly
when we update these tables with edge deletions). We also
mark these edges as newly inserted. Next, we update D
with the new degrees of all vertices due to edge insertions.
Since the degrees of some vertices have now increased, for
low-degree vertices whose degree exceeds t2, in parallel,
we promote them to high-degree vertices, which involves
updating the tables HH, HL, LH, LL, and T . Next,
we update the tables HH, HL, LH, and LL with new
edge deletions, and mark these edges as newly deleted.
We then call the procedures update table insertions

and update table deletions, which update the wedge-
table T based on all new insertions and all new deletions,
respectively. At this point, our auxiliary data structures
contain both new triangles formed by edge insertions, and
triangles deleted due to edge deletions.

For each update in the batch, we then determine the
number of new triangles that are created by counting different
types of triangles that the edge appears in (based on the
number of other updates forming the triangle). We then
aggregate these per-update counts to update the overall
triangle count.

Now that the count is updated, the remaining steps of
the algorithm handle unmarking the edges and restoring the
data structures so that they can be used by the next batch. We
unmark all newly inserted edges from the tables, and delete
all edges marked as deletes in this batch. Finally, we handle
updating T , the wedge-table for all insertions and deletions
of edges incident to low-degree vertices. The last steps in our
algorithm are to update the degrees in response to the newly
inserted edges and the now truly deleted edges. Then, since
the degrees of some high-degree vertices may drop below t1
(and vice versa), we convert them to low-degree vertices and
update the tablesHH,HL, LH, LL, and T (and vice versa).
This step is called minor rebalancing. Finally, if the number
of edges in the graph becomes less than M/4 or greater than
M we reset the values of M , t1, and t2, and re-initialize all
of the data structures. This step is called major rebalancing.
Algorithm Description. A simplified version of our algo-
rithm is shown below. The following COUNT-TRIANGLE
procedure takes as input a batch of ∆ updates B and returns
the count of the updated number of triangles in the graph (as-
suming the initialization process has already been run on the
input graph and all associated data structures are up-to-date).

Algorithm 1 Simplified parallel batch-dynamic triangle
counting algorithm.

1: function COUNT-TRIANGLES(B)
2: parfor insert(u, v) ∈ B do
3: Update and label edges (u, v) and (v, u) inHH,

HL, LH, and LL as inserted edges.
4: parfor delete(u, v) ∈ B do
5: Update and label edges (u, v) and (v, u) inHH,

HL, LH, and LL as deleted edges.
6: parfor insert(u, v) ∈ B or delete(u, v) ∈ B do
7: Update T with (u, v). T records the number of

wedges that have 0, 1, or 2 edge updates.
8: parfor insert(u, v) ∈ B or delete(u, v) ∈ B do
9: Count the number of new triangles and deleted

triangles incident to edge (u, v), and account for
duplicates.

10: Rebalance data structures if necessary.

Small Example Batch Updates. Here we provide a small
example of processing a batch of updates. We assume that
no rebalancing occurs. Suppose we have a batch of updates
containing an edge insertion (u, v) with timestamp 3, an edge
deletion (w, x) with timestamp 1, and an edge deletion (u, v)
with timestamp 2. Since the edge insertion (u, v) has the
later timestamp, it is the update that remains. After removing
nullifying updates, the two updates that remain are insertion
of (u, v) and deletion of (w, x). The algorithm first looks in
D to find the degrees of u, v, w, and x in parallel. Suppose
u, v, and w are high-degree and x is low-degree. We need to
first update our data structures with the new edge updates. To
update the data structure, we first update the edge tableHH
with (u, v) marked as an edge insertion. Then, we update
the edge tablesHL and LH with (w, x) as an edge deletion.
Finally, we update the counts of wedges in T with (w, x)’s
deletion. Specifically, for each of x’s neighbors y in LH, we
update T (w, y) by incrementing t(w,y)

4 (since (x, y) is not a
new update).

After updating the data structures, we can count the
changes to the total number of triangles in the graph. All of
the following actions can be performed in parallel. Suppose
that u comes lexicographically before v. We count the number
of neighbors of u inHH and this will be the number of new
triangles containing three high-degree vertices. To avoid
overcounting, we do not count the number of high-degree
neighbors of v. Since we are counting the number of triangles
containing updates, we also do not count the number of high-
degree neighbors of w since (w, x) cannot be part of any
new triangles containing three high-degree vertices. Then, in
parallel, we count the number of neighbors of x in LL and
LH; this is the number of deleted triangles containing one
and two high-degree vertices, respectively. We use T to count
the number of triangles containing one low-degree vertex and

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



(u, v). To count the number of inserted triangles containing
(u, v) and a low-degree vertex, we look up t(u,v)1 in T and
add it to our final triangle count; all other stored count values
for (u, v) in T are 0 since there are no other new updates
incident to u or v.
3.3 Parallel Batch-Dynamic Triangle Counting De-
tailed Algorithm

The detailed pseudocode of our parallel batch-dynamic
triangle counting algorithm are shown below. Recall that the
update procedure for a set of ∆ ≤ m non-nullifying updates
is as follows (the subroutines used in the following steps are
described afterward).

Algorithm 2 Detailed parallel batch-dynamic triangle
counting procedure.

(1) Remove updates that insert edges already in the graph
or delete edges not in the graph as well as nullifying
updates using approximate compaction.

(2) Update tables HH, HL, LH, and LL with the new
edge insertions using insert(u, v) and insert(v, u).
Mark these edges as newly inserted by running
mark inserted edges(B) on the batch of updates B.

(3) Update tables HH, HL, LH, and LL with
new edge deletions using delete(u, v) and
delete(v, u). Mark these edges as newly deleted using
mark deleted edges(B) on B.

(4) Call update table insertions(B) for the set B of
all edge insertions insert(u,w), where either u or w
is low-degree and the other is high-degree.

(5) Call update table deletions(B) for the set B of all
edge deletions delete(u,w) where either u or w is low-
degree and the other is high-degree.

(6) For each update in the batch, determine the number
of new triangles that are created by counting 6 values.
Count the values using a 6-tuple, (c1, c2, c3, c4, c5, c6)
based on the number of other updates contained in a
triangle:
(a) For each edge insertion insert(u, v) resulting

in a triangle containing only one newly inserted
edge (and no deleted edges), increment c1 by
count triangles(1, 0, insert(u, v)).

(b) For each edge insertion insert(u, v) result-
ing in a triangle containing two newly inserted
edges (and no deleted edges), increment c2 by
count triangles(2, 0, insert(u, v)).

(c) For each edge insertion insert(u, v) re-
sulting in a triangle containing three
newly inserted edges, increment c3 by
count triangles(3, 0, insert(u, v)).

(d) For each edge deletion delete(u, v) re-
sulting in a deleted triangle with one
newly deleted edge, increment c4 by
count triangles(0, 1, delete(u, v)).

(e) For each edge deletion delete(u, v) re-
sulting in a deleted triangle with two
newly deleted edges, increment c5 by
count triangles(0, 2, delete(u, v)).

(f) For each edge deletion delete(u, v) re-
sulting in a deleted triangle with three
newly deleted edges, increment c6 by
count triangles(0, 3, delete(u, v)).

Let C be the previous count of the number of triangles.
Update C to be C + c1 + (1/2)c2 + (1/3)c3 − c4 −
(1/2)c5 − (1/3)c6, which becomes the new count.

(7) Scan through updates again. For each update, if the
value stored inHH,HL, LH, and/or LL is 2 (a deleted
edge), remove this edge. If stored value is 1 (an inserted
edge), change the value to 0. For all updates where the
endpoints are both high-degree or both low-degree, we
are done. For each update (u,w) where either u or w
is low-degree (assume without loss of generality that w
is) and the other is high-degree, look for all high-degree
neighbors v of w and update T (u, v) by summing all c1,
c2,, and c3 of the tuple and subtracting c4 and c5.

(8) Update D with the new degrees.
(9) Perform minor rebalancing for all vertices v that ex-

ceed t2 in degree or fall under t1 in parallel using
minor rebalance(v). This makes a formerly low-
degree vertex high-degree (and vice versa) and updates
relevant structures.

(10) Perform major rebalancing if necessary (i.e., the total
number of edges in the graph is less than M/4 or greater
than M ). Major rebalancing re-initializes all structures.

Procedure mark inserted edges(B). We scan through
each of the insert(u, v) updates in B and mark (u, v) and
(v, u) as newly inserted edges in HH, HL, LH, and/or LL
by storing a value of 1 associated with the edge.
Procedure mark deleted edges(B). Because we removed
all nullifying updates before B is passed into the procedure,
none of the deletion updates in B should delete newly inserted
edges. For all edge deletions delete(u, v), we change the
values stored under (u, v) and (v, u) from 0 to 2 in the tables
HH,HL, LH, and/or LL.
Procedure update table insertions(B). For each
(u,w) ∈ B, assume without loss of generality that w is the
low-degree vertex and do the following. We first find all of
w’s neighbors, v, in LH in parallel. Then, we determine for
each neighbor v if (w, v) is new (marked as 1). If the edge
(w, v) is not new, then increment the second value stored in
the tuple with index T (u, v). If (w, v) is newly inserted, then
increment the third value stored in T (u, v). The first, fourth,
and fifth values stored in T (u, v) do not change in this step.
The first, second, and third values count the number of edge
insertions contained in the wedge keyed by (u, v). The first
value counts all wedges with endpoints u and v that do not

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



contain any edge update, the second count the number of
wedges containing one edge insertion, and the third counts
the number of wedges containing two edge insertions. Then,
intuitively, the first, second, and third values will tell us later
for edge insertion (u, v) between two high-degree vertices
whether newly created triangles containing (u, v) have one
(the only update being (u, v)), two, or three, respectively, new
edge insertions from the batch update. We do not update the
edge insertion counts of wedges which contain a mix of edge
insertion updates and edge deletion updates.
Procedure update table deletions(B). For each
(u,w) ∈ B, assume without loss of generality that w is the
low-degree vertex and do the following. We first find all of
w’s neighbors, v, in LH in parallel. Then, we determine for
each neighbor v if (w, v) is a newly deleted edge (marked as
2). If (w, v) is not a newly deleted edge, increment the fourth
value in the tuple stored in T (u, v) and decrement the first
value. Otherwise, if (w, v) is a newly deleted edge, increment
the fifth value of T (u, v) and decrement the first value. The
second and third values in T (u, v) do not change in this step.
For any key (u, v), the first, fourth, and fifth values gives the
number of wedges with endpoints u and v that contain zero,
one, or two edge deletions, respectively. Intuitively, the first,
fourth, and fifth values tell us later whether newly deleted
triangles have one (where the only edge deletion is (u, v)),
two, or three, respectively, new edge deletions from the batch
update.
Procedure count triangles(i, d, update). This proce-
dure returns the number of triangles containing the update
insert(u, v) or delete(u, v) and exactly i newly inserted
edges or exactly d newly deleted edges (the update itself
counts as one newly inserted edge or one newly deleted edge).
If at least one of u or v is low-degree, we search in the tables,
LH, and LL for neighbors of the low-degree vertex and the
number of marked edges per triangle: edges marked as 1 for
insertion updates and edges marked as 2 for deletion updates.
If both u and v are high-degree, we first look through all
high-degree vertices usingHH to see if any form a triangle
with both high-degree endpoints u and v of the update. This
allows us to find all newly updated triangles containing only
high-degree vertices. Then, we confirm the existence of a
triangle for each neighbor found in the tables by checking
for the third edge in HH, HL, LH, or LL. We return only
the counts containing the correct number of updates of the
correct type. To avoid double counting for each update we
do the following. Suppose all vertices are ordered lexico-
graphically in some order. For any edge which contains two
high-degree or two low-degree vertices, we search in LL,
HH, and LH for exactly one of the two endpoints, the one
that is lexicographically smaller.

Then, we return a tuple in T (u, v) based on the values of
i and d to determine the count of triangles containing u and v
and one low-degree vertex:

• Return the first value t(u,v)1 if either i = 1 or d = 1.
• Return the second value t(u,v)2 if i = 2.
• Return the third value t(u,v)3 if i = 3.
• Return the fourth value t(u,v)4 if d = 2.
• Return the fifth value t(u,v)5 if d = 3.

Note that we ignore all triangles that include more than
one insertion update and more than one deletion update.
Procedure minor rebalance(u). This procedure performs
a minor rebalance when either the degree of u decreases
below t1 or increases above t2. We move all edges in HH
and HL to LH and LL and vice versa. We also update T
with new pairs of vertices that became high-degree and delete
pairs that are no longer both high-degree.
3.4 Analysis

We prove the correctness of our algorithm in the fol-
lowing theorem. The proof is based on accounting for the
contributions of an edge to each triangle that it participates
in based on the number of other updated edges found in the
triangle.

THEOREM 3.2. Our parallel batch-dynamic algorithm main-
tains the number of triangles in the graph.

Proof. All triangles containing at least one low-degree vertex
can be found either in T or by searching through LH and LL.
All triangles containing all high-degree vertices can be found
by searchingHH. Suppose that an edge update insert(u, v)
(resp. delete(u, v)) is part of I(u,v) (resp. D(u,v)) triangles.
We need to add or subtract from the total count of triangles
I(u,v) or D(u,v), respectively. However, some of the triangles
will be counted twice or three times if they contain more
than one edge update. By dividing each triangle count by
the number of updated edges they contain, each triangle is
counted exactly once for the total count C.

Overall Bound. We now prove that our parallel batch-
dynamic algorithm runs inO(∆

√
∆ +m) work,O(log∗(∆+

m)) depth, and uses O(∆ + m) space. Henceforth, we
assume that our algorithm uses the atomic-add instruction (see
Section 2). Removing nullifying updates takes O(∆) total
work, O(log∗∆) depth w.h.p., and O(∆) space for hashing
and the find-maximum procedure outlined in Section 3.2.
In step (1), we perform table lookups for the updates into
D and in HH, HL, LH, or LL, followed by approximate
compaction to filter. The hash table lookups take O(∆)
work and O(log∗m) depth with high probability and O(m)
space. Approximate compaction [GMV91] takes O(∆)
work, O(log∗∆) depth, and O(∆) space. Steps (2), (3),
and (8) perform hash table insertions and updates on the
batch of O(∆) edges, which takes O(∆) amortized work and
O(log∗m) depth with high probability.

The next lemma shows that updating the tables based
on the edges in the update (steps (4) and (5)) can be done

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



in O(∆
√
m) work and O(log∗m) depth w.h.p., and O(m)

space.

LEMMA 3.1. update table insertions(B) and
update table deletions(B) on a batch B of size ∆
takes O(∆

√
m) work and O(log∗(∆ + m)) depth w.h.p.,

and O(∆ +m) space.

Proof. For each w, we find all of its high-degree neighbors
in LH and perform the increment or decrement in the
corresponding entry in T in parallel (at this point, the vertices
are still classified based on their original degrees). The total
number of new neighbors gained across all vertices is O(∆)
since there are ∆ updates. Therefore, across all updates,
this takes O(∆

√
m+ ∆) work and O(log∗ (∆ +m)) depth

w.h.p. due to hash table lookup and updates. Then, for all
high-degree neighbors found, we perform the increments or
decrements on the corresponding entries in T in parallel,
taking the same bounds. All vertices can be processed
in parallel, giving a total of O(∆

√
m + ∆) work and

O(log∗(∆ +m)) depth w.h.p.

The next lemma bounds the complexity of updating the
triangle count in step (6).

LEMMA 3.2. Updating the triangle count takes O(∆
√
m)

work and O(log∗(∆ + m)) depth w.h.p., and O(∆ + m)
space.

Proof. We initialize c1, . . . , c6 to 0. For each edge update
in B where both endpoints are high-degree, we perform
lookups in T andHH for the relevant values in parallel and
increment the appropriate ci. Finding all triangles containing
the edge update and containing only high-degree vertices
takesO(∆

√
m) work andO(log∗(∆+m)) depth w.h.p. This

is because there are O(
√
m) high-degree vertices in total, and

for each we check whether it appears in the HH table for
both endpoints of each update. Performing lookups in T
takes O(∆) work and O(log∗(∆ +m)) depth w.h.p.

For each update containing at least one endpoint with
low-degree, we perform lookups in the tablesHL, LH, and
LL to find all triangles containing the update and increment
the appropriate ci. This takes O(∆

√
m + ∆) work and

O(log∗(∆ + m)) depth w.h.p. Incrementing all ci’s for all
newly updated triangles takes O(∆) work and O(1) depth.
We then apply the equation in step (6) to update C, which
takes O(1) work and depth.

The following lemma bounds the cost for minor rebal-
ancing, where a low-degree vertex becomes high-degree or
vice versa (step (9)).

LEMMA 3.3. Minor rebalancing for edge updates takes
O(∆

√
m) amortized work andO(log∗(∆+m)) depth w.h.p.,

and O(∆ +m) space.

Proof. We describe the case of edge insertions, and the case
for edge deletions is similar. Using approximate compaction
to perform the filtering, we first find the set S of low-degree
vertices exceeding t2 in degree. This step takes O(∆) work
and O(log∗∆) depth w.h.p. For vertices in S, we then
delete the edges from their old hash tables and move the
edges to their new hash tables. The work for each vertex
is proportional to its current degree, giving a total work of
O(
∑

v∈S deg(v)) = O(∆
√
m+ ∆) w.h.p. since the original

degree of low-degree vertices is O(
√
m) and each edge in

the batch could have caused at most 2 such vertices to have
their degree increase by 1 (the w.h.p. is for parallel hash table
operations).

In addition to moving the edges into new hash tables,
we also have to update T with new pairs of vertices that
became high-degree and delete pairs of vertices that are no
longer both high-degree. To update these tables, we need
to find all new pairs of high-degree vertices. There are at
most O(∆

√
m+ ∆) such new pairs, which can be found by

filtering neighbors using approximate compaction of vertices
in S in O(∆

√
m+ ∆) work and O(log∗(∆ + m)) depth

w.h.p. For each pair (u, v), we check all neighbors of an
endpoint that just became high-degree and increment the
entry T (u, v) for each low-degree neighbor w found that has
edges (u,w) and (w, v). Low-degree neighbors have degree
O(
√
m+ ∆), and so the total work is O(∆(m + ∆)) and

depth is O(log∗(∆ + m)) w.h.p. using atomic-add. There
must have been Ω(

√
m) updates on a vertex before minor

rebalancing is triggered, and so the amortized work per update
is O(∆

√
m) and the depth is O(log∗m) w.h.p. The space for

filtering is O(m+ ∆).

We now finish showing Theorem 3.1. Lemma 3.2 shows
that our algorithm maintains the correct count of triangles.
Lemmas 3.1, 3.2, and 3.3 show that the cost of updating
tables to reflect the batch, updating the triangle counts, and
minor rebalancing is O(∆

√
m + ∆) amortized work and

O(log∗(∆ +m)) depth w.h.p., and O(∆ +m) space.
Step (7) can be done in O(∆

√
m) work and O(log∗m)

depth as follows. We scan through the batch B in parallel
and update the hash tables HH, HL, LH, and LL in O(∆)
work and O(log∗(∆ +m)) depth w.h.p. For all updates in B
containing one high-degree vertex and one low-degree vertex,
we update the table T in parallel by scanning the neighbors in
LH of the low-degree vertex. This step takes O(∆

√
m+ ∆)

work and O(log∗(∆ +m)) depth w.h.p. Major rebalancing
(step (10)) takes O((∆ +m)3/2) work and O(log∗(∆ +m))
depth by re-initializing the data structures. The rebalancing
happens every Ω(m) updates, and so the amortized work per
update is O(

√
∆ +m) and depth is O(log∗(∆ +m)) w.h.p.

Therefore, our update algorithm takes O(∆
√

∆ +m)
amortized work and O(log∗(∆ + m)) depth w.h.p., and
O(∆ + m) space overall using atomic-add as stated in
Theorem 3.1.

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



Bounds without Atomic-Add. Without the atomic-add
instruction, we can use a parallel reduction [Jaj92] to sum
over values when needed. This is work-efficient and takes
logarithmic depth, but uses space proportional to the number
of values summed over in parallel. For updates, this is
bounded by O(∆

√
m+ ∆), and for initialization and major

rebalancing, this is bounded by O(αm) [ST15]. This
would give an overall bound of O(∆(

√
∆ +m)) work and

O(log(∆ +m)) depth w.h.p., and O(αm+ ∆
√
m) space.

4 Dynamic k-Clique Counting via Fast Static
Parallel Algorithms

We present a very simple algorithm for dynamically
maintaining the number of k-cliques based on statically
enumerating smaller cliques in the graph, and intersecting the
enumerated cliques with the edge updates in the input batch.
The algorithm is space-efficient.

Our algorithm is based on a work-efficient parallel
algorithm for counting k-cliques in O(mαk−2) expected
work and O(logk−2 n) depth w.h.p. by Shi et al. [SDS20].
Using this algorithm, we show that updating the k-clique
count for a batch of ∆ updates can be done in O(∆(m +
∆)αk−4) expected work, O(logk−2 n) depth w.h.p., and
O(m + ∆) space. For ∆ ≥ m we simply call the static
algorithm, and for ∆ < m we use the static algorithm to
(i) enumerate all (k − 2)-cliques, and (ii) check whether
each (k − 2)-clique forms a k-clique with an edge in the
batch. This procedure outperforms re-computation using the
static parallel k-clique counting algorithm for ∆ = o(α2).
The full details of our algorithm can be found in the full
version [DLSY20] of this paper.

5 Dynamic k-Clique via Fast Matrix Multipli-
cation

In this section, we present our parallel batch-dynamic
algorithm for counting k-cliques based on fast matrix multipli-
cation in general graphs (which may be dense). Our algorithm
is inspired by the static triangle counting algorithm of Alon,
Yuster, and Zwick (AYZ) [AYZ97] and the static k-clique
counting algorithm of Eisenbrand and Grandoni [EG04]
that uses matrix multiplication-based triangle counting. We
present a new dynamic algorithm that obtains better bounds
than the simple algorithm based on static lower-clique enu-
meration in Section 4 for larger values of k.

We define the parallel matrix multiplication expo-
nent to be the smallest exponent ωp such that there ex-
ists a parallel matrix multiplication algorithm that multi-
plies two n × n matrices with O (nωp) work and O(log n)
depth, using O (nωp) space. We show that ωp = 2.373
in the full version of the paper [DLSY20]. Assuming a
parallel matrix multiplication exponent of ωp, our algo-
rithm handles batches of ∆ edge insertions/deletions us-

ing O

(
min

(
∆m

(2k−3)ωp
3(1+ωp) , (m+ ∆)

2kωp
3(1+ωp)

))
work and

O(logm) depth w.h.p., and O

(
(m+ ∆)

2kωp
3(1+ωp)

)
space

where m is the number of edges in the graph after apply-
ing the batch of updates. To the best of our knowledge, the
sequential (batch-dynamic) version of our algorithm also pro-
vides the best bounds for dynamic k-clique counting in the
sequential model for dense graphs for large constant values
of k (assuming we use the best currently known matrix multi-
plication algorithm) [DT13].

More formally, we obtain the following results:

THEOREM 5.1. Our fast matrix multiplication based
k-clique algorithm takes

O

(
min

(
∆m

2(k−1)ωp
3(ωp+1) , (∆ +m)

(2k+1)ωp
3(ωp+1)

))
work and

O(log(m + ∆)) depth w.h.p., and O
(

(∆ +m)
(2k+1)ωp
3(ωp+1)

)
space assuming a parallel matrix multiplication al-
gorithm with coefficient ωp when k mod 3 = 1, and

O

(
min

(
∆m

(2k−1)ωp
3(ωp+1) , (∆ +m)

2(k+1)ωp
3(ωp+1)

))
work and

O(log(m + ∆)) depth w.h.p., and O
(

(∆ +m)
2(k+1)ωp
3(ωp+1)

)
space when k mod 3 = 2.

COROLLARY 5.1. Provided the best known parallel ma-
trix multiplication exponent ωp = 2.373, we obtain a
parallel fast matrix multiplication k-clique algorithm that
takes O

(
min

(
∆m0.469k−0.469, (∆ +m)0.469k+0.235

))
work and O(logm) depth w.h.p., and
O
(
(∆ +m)0.469k+0.235

)
space when k mod 3 = 1,

and O
(
min

(
∆m0.469k−0.235, (∆ +m)0.469k+0.469

))
work

and O(logm) depth w.h.p., and O
(
(∆ +m)0.469k+0.469

)
space when k mod 3 = 2.

High-Level Approach and Techniques. For a given graph
G = (V,E), we create an auxiliary graphG′ = (V ′, E′) with
vertices and edges representing cliques of various sizes in G.
For a given k-clique problem, vertices in V ′ represent cliques
of size k/3 in G and edges (u, v) between vertices u, v ∈ V ′
represent cliques of size 2k/3 in G. Thus, a triangle in G′

represents a k-clique in G. Specifically, there exist exactly(
k

k/3

)(
2k/3
k/3

)
different triangles in G′ for each clique in G.

Given a batch of edge insertions and deletions to G,
we create a set of edge insertions and deletions to G′. An
edge is inserted in G′ when a new 2k/3-clique is created
in G and an edge is deleted in G′ when a 2k/3-clique is
destroyed in G. Suppose, for now, that we have a dynamic
algorithm for processing the edge insertions/deletions into
G′. Counting the number of triangles in G′ after processing
all edge insertions/deletions and dividing by

(
k

k/3

)(
2k/3
k

)
provides us with the exact number of cliques in G.

There are several challenges that we must deal with
when formulating our dynamic triangle counting algorithm

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



for counting the triangles in G′:
(1) We cannot simply count all the triangles in G′ after

inserting/deleting the new edges as this does not perform
better than a trivial static algorithm.

(2) Any trivial dynamization of the AYZ algorithm will not be
able to detect all new triangles inG′. Specifically, because
the AYZ algorithm counts all triangles containing a low-
degree vertex separately from all triangles containing
only high-degree vertices, if an edge update only occurs
between high-degree vertices, a trivial dynamization of
the algorithm will not be able to detect any triangle that the
two high-degree endpoints make with low-degree vertices.

(3) We must ensure that batches of updates can be efficiently
processed in parallel without overcounting.
To solve the first challenge, we dynamically count low-

degree and high-degree vertices in different ways. Let
` = k/3 and M = 2m + 1. For some value of 0 < t < 1,
we define low-degree vertices to be vertices that have degree
less than M t`/2 and high-degree vertices to have degree
greater than 3M t`/2. Vertices with degrees in the range
[M t`/2, 3M t`/2] can be classified as either low-degree or
high-degree. We analyze the specific value to use for t in the
full version of our paper [DLSY20]. We perform rebalancing
of the data structures as needed as they handle more updates.
For low-degree vertices, we only count the triangles that
include at least one newly inserted/deleted edge, at least one
of whose endpoints is low-degree. This means that we do
not need to count any pre-existing triangles that contain at
least one low-degree vertex. For the high-degree vertices,
because there is an upper bound on the maximum number of
such vertices in the graph, we update an adjacency matrix A
containing edges only between high-degree vertices. At the
end of all of the edge updates, computing A3 gives us a count
of all of the triangles that contain three high-degree vertices.

This procedure immediately then leads to our second
challenge. To solve this second challenge, we make the
observation (stated in Lemma 5.1 below, and proven in the
full version of our paper [DLSY20]) that if there exists an
edge update between two high-degree vertices that creates or
destroys a triangle that contains a low-degree vertex in G′,
then there must exist at least one new edge insertion/deletion
that creates or destroys a triangle representing the same
clique to that low-degree vertex in the same batch of updates
toG′. Thus, we can use one of those edge insertions/deletions
to determine the new clique that was created and, through this
method, find all triangles containing at least one low-degree
vertex and at least one new edge update. Some care must
be observed in implementing this procedure in order to not
increase the runtime or space usage; such details can be found
in the full version of our paper [DLSY20].

LEMMA 5.1. Given a graph G = (V,E), the corresponding
G′ = (V ′, E′), and for k > 3, suppose an edge insertion

Algorithm 3 Simplified parallel matrix multiplication k-
clique counting algorithm.

1: function COUNT-CLIQUES(B)
2: Update graph G′ with B by inserting new `- and 2`-cliques.
3: Find the batch of insertions (B′I ) and batch of deletions (B′D)

into G′.
4: Determine the final degrees of every vertex in G′ after

performing updates B′I and B′D .
5: δ ← threshold for low-degree vs. high-degree.
6: . The precise value of δ is defined in the full version of our

paper [DLSY20].
7: parfor insert(u, v) ∈ B′I , delete(u, v) ∈ B′D do
8: if either u or v is low-degree (degree ≤ δ) then
9: Enumerate all triangles containing (u, v). Let this

set be T .
10: By Lemma 5.1, find all possible triangles

representing the same triangle t ∈ T .
11: Correct for duplicate counting of triangles.
12: else
13: Update A (adjacency matrix for high-degree

vertices).
14: Compute A3. The diagonal provides the triangle counts for

all triangles containing only high-degree vertices.
15: Sum the counts of all triangles.
16: Correct for duplicate counting of cliques.

(resp. deletion) between two high-degree vertices in G′

creates a new triangle, (uH , wH , xL), in G′ which contains
a low-degree vertex xL. Let R(y) denote the set of vertices
in V represented by a vertex y ∈ V ′. Then, there exists a
new edge insertion (resp. deletion) in G′ that is incident
to xL and creates a new triangle (u′, w′, xL) such that
R(u′) ∪R(w′) = R(uH) ∪R(wH).

Incorporating Batching and Parallelism. When dealing
with a batch of updates containing both edge insertions and
deletions, we must be careful when vertices switch from being
high-degree to being low-degree and vice versa.

If we intersperse the edge insertions with the edge
deletions, then there is the possibility that a vertex switches
between low and high-degree multiple times in a single
batch. Thus, we batch all edge deletions together and
perform these updates first before handling the edge insertions.
After processing the batch of edge deletions, we must
subsequently move any high-degree vertices that become
low-degree to their correct data structures. After dealing
with the edge insertions, we must similarly move any low-
degree vertices that become high-degree to the correct data
structures. Finally, for triangles that contain more than one
edge update, we must account for potential double counting
by different updates happening in parallel. Such challenges
are described and dealt with in detail in the full version of our
paper [DLSY20]. A high-level description of the algorithm
is given in Algorithm 3.

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



Graph Dataset Num. Vertices Num. Edges

Orkut 3,072,627 234,370,166
Twitter 41,652,231 2,405,026,092
rMAT 16,384 121,362,232

Table 1: Graph inputs, including number of vertices and edges.

m unique edges m unique edges

2× 106 1,569,454 4× 108 55,395,676
2× 107 9,689,644 8× 108 74,698,492
1× 108 27,089,362 3.2× 109 121,362,232
2× 108 39,510,764

Table 2: Number of unique edges in the firstm edges from the rMAT
generator.

6 Experimental Results
Experimental Setup. Our experiments are performed on
a 72-core Dell PowerEdge R930 (with two-way hyper-
threading) with 4× 2.4GHz Intel 18-core E7-8867 v4 Xeon
processors (with a 4800MHz bus and 45MB L3 cache) and
1TB of main memory. Our programs use a work-stealing
scheduler that we implemented [BAD20]. The scheduler is
implemented similarly to Cilk for parallelism. Our programs
are compiled using g++ (version 7.3.0) with the -O3 flag.

Graph Data. Table 1 lists the graphs that we use. com-Orkut
is an undirected graph of the Orkut social network [LK14].
Twitter is a directed graph of the Twitter network [KLPM10].
We symmetrize the Twitter graph for our experiments. For
some of our experiments which ingest a stream of edge
updates, we sample edges from an rMAT generator [CZF04]
with a = 0.5, b = c = 0.1, d = 0.1 to perform the updates.
The update stream can have duplicate edges, and Table 2
reports the number of unique edges found in prefixes of
various sizes of the rMAT stream that we generate. The
unique edges in the full stream represents the rMAT graph
described in Table 1.
6.1 Our Implementation
Parallel Primitives. We implemented a multicore CPU ver-
sion of our algorithm using the Graph Based Benchmark Suite
(GBBS) [DBS18b], which includes a number of useful par-
allel primitives, including high-performance parallel sorting,
and primitives such as prefix sum, reduce, and filter [Jaj92].
In what follows, a filter takes an array A and a predicate
function f , and returns a new array containing a ∈ A for
which f(a) is true, in the same order that they appear in A.
Our implementations use the atomic compare-and-swap and
atomic-add instructions available on modern CPUs.

Implementation. For T , we used the concurrent linear
probing hash table by Shun and Blelloch [SB14]. For each
of the data structures HH, HL, LH, and LL, we created
an array of size n, storing (possibly null) pointers to hash
tables [SB14]. For an edge (u, v) in one of the data structures,
the value v will be stored in the hash table pointed to by
the u’th slot in the array. We also tried using hash tables
for both levels, but found it to be slower in practice. For

deletions, we used the folklore tombstone method. In this
method, when an element is deleted, we mark the slot in
the table as a tombstone, which is a special value. When
inserting, we can insert into a tombstone, but we have to first
check until seeing an empty slot to make sure that we are
not inserting a duplicate key. In the preprocessing phase of
the algorithm, instead of using approximate compaction, we
used filter. To find the last update for duplicate updates, we
use a parallel sample sort [SBF+12] to sort the edges first by
both endpoints, and then by timestamp. Then we use filter to
remove duplicate updates. When we initialize the dynamic
data structures, a vertex is considered high-degree if it has
degree greater than 2t1 and low-degree otherwise.

During minor rebalancing, a vertex only changes its
status if its degree drops below t1 or increases above t2
due to the batch update. In major rebalancing, we merge
our dynamic data structure and the updated edges into a
compressed sparse row (CSR) format graph and use the
static parallel triangle counting algorithm by Shun and
Tangwongsan [ST15] to recompute the triangle count. We
then build a new dynamic data structure from the CSR
graph. We also implement several natural optimizations
which improve performance. To reduce the overhead of using
hash tables, we use an array to store the neighbors of vertices
with degree less than a certain threshold (we used 128 in
our experiments). Moreover, we only keep a single entry for
(u, v) and (v, u) in the wedges table T .

Experiments. Table 3 report the parallel running times on
varying insertion and deletion batch sizes for our implemen-
tation of our new parallel batch-dynamic triangle counting
algorithm designed. For the two graphs based on static graph
inputs (Orkut and Twitter), we generate updates for the al-
gorithm by representing the edges of the graph as an array,
and randomly permuting them. The algorithm is then run
using batches of the specified size. For insertions, we start
with an empty graph and apply batches from the beginning
to the end of the permuted array. For deletions, we start
with the full graph and apply batches from the end to the
beginning of the permuted array. The table also reports the
running time for the GBBS implementation of the state-of-
the-art static triangle counting algorithm of Shun and Tang-
wongsan [ST15, DBS18b].

Across varying batch sizes, our algorithm achieves
throughputs between 1.05–16.2 million edges per second
for the Orkut graph, 0.935–5.46 million edges per second for
the Twitter graph, and 3.08–32.4 million edges per second for
the rMAT graph. We obtain much higher throughput for the
rMAT graph due to the large number of duplicate edges found
in this graph stream, as illustrated in Table 2. We observe that
in all cases, the average time for processing a batch is smaller
than the running time of the static algorithm. The maximum
speedup of our algorithm over the static algorithm is 22709×
for the rMAT graph with a deletion batch of size 2× 103, but

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



Batch Size
Algorithm Graph 2× 103 2× 104 2× 105 2× 106 m

Ours (INS)
Orkut 1.90e-3 4.76e-3 0.0235 0.168 –
Twitter 2.11e-3 7.10e-3 0.0430 0.366 –
rMAT 6.42e-4 2.09e-3 8.62e-3 0.0618 –

Makkar et al.
(INS)
[MBG17]

Orkut 9.76e-4 2.69e-3 0.0143 0.0830 –
Twitter time-out 0.0644 0.437 3.88 –
rMAT 1.98e-3 6.90e-3 0.012 0.0335 –

Ours (DEL)
Orkut 1.80e-3 4.37e-3 0.0189 0.124 –
Twitter 2.14e-3 7.76e-3 0.0486 0.385 –
rMAT 6.48e-4 2.23e-3 9.21e-3 0.0723 –

Makkar et al.
(DEL)
[MBG17]

Orkut 4.63e-4 1.46e-3 8.12e-3 0.0499 –
Twitter time-out 0.0597 0.401 3.64 –
rMAT 4.47e-4 1.81e-3 5.12e-3 0.027 –

Static [ST15]
Orkut – – – – 1.027
Twitter – – – – 32.1
rMAT – – – – 14.7

Table 3: Running times (seconds) for our parallel batch-dynamic
triangle counting algorithm and Makkar et al. [MBG17]’s algorithm
on 72 cores with hyper-threading. We apply the edges in each graph
as batches of edge insertions (INS) or deletions (DEL) of varying
sizes, ranging from 2× 103 to 2× 106, and report the average time
for each batch size. The update time of Makkar et al. algorithm
for Twitter batch size 2 × 103 is missing because the expriment
timed out. We also report the update time for the state-of-the-art
static triangle counting algorithm of Shun and Tangwongsan [ST15],
which processes a single batch of size m. Note that for the Twitter
and Orkut datasets, all of the edges are unique. However, for the
rMAT dataset, batches can have duplicate edges. For each batch size
of each dataset, we list the fastest time in bold.

1 2 4 8 16 32 72 144
Threads

0

2

4

6

Ba
tc

h 
Ru

nt
im

e 
(s

)

36.54x52.68x

orkut-DEL
orkut-INS

1 2 4 8 16 32 72 144
Threads

0

20

40

74.73x74.26x

twitter-DEL
twitter-INS

Figure 1: Running times of our parallel batch-dynamic triangle
counting algorithm with respect to thread count (the x-axis is in
log-scale) on the Orkut (average time across all batches) and Twitter
(running time for the 6th batch) graph for both insertion (red dashed
line) and deletion (blue solid line). “144” indicates 72 cores with
hyper-threading. The experiment is run with a batch size of 2× 106.
The parallel speedup on 144 threads over a single thread is displayed.

in general our algorithm achieves good speedups across the
entire range of batches that we evaluate.

Lastly, Figure 1 shows the parallel speedup of our
algorithm with varying thread-count on the Orkut and Twitter
graph, for a fixed batch size of 2 × 106. Our algorithm
achieves a maximum of 74.73× speedup using 72 cores with
hyper-threading for this experiment.
6.2 Comparison with Existing Algorithms
Comparison with Ediger et al. We compared our implemen-
tation with a shared-memory implementation of the Ediger
et al. algorithm [EJRB10], which is implemented as part of
the STINGER dynamic graph processing system [EMRB12].

Unfortunately, we found that their implementation is much
slower than ours due to bottlenecks in the update time for
the underlying dynamic graph data structure. We note that
recent work on streaming graph processing observed similar
results for using STINGER [DBS19]. To obtain a fair com-
parison, we chose to focus on implementing a more recent
GPU batch-dynamic triangle counting algorithm ourselves,
which we discuss next.
Comparison with Makkar et al. The Makkar et al. algo-
rithm [MBG17] is a state-of-the-art parallel batch-dynamic
triangle counting implementation designed for GPUs. To the
best of our knowledge, there is no multicore implementation
of this algorithm, and so in this paper we implement an op-
timized multicore version of their algorithm. The algorithm
works as follows. First, their algorithm separates the batch
of updates into batches for insertions and deletions. Then,
for each batch of updates, it creates an update graph, Ĝ, for
each batch consisting of only the updates within each batch.
Then, it merges the updates from each batch with the original
edges in the graph to create an updated graph for each of
the batches, G′. Note that this graph contains both the edges
previously in the graph, as well as the new edges.

The merging process to construct G′ first sorts the
batch to obtain sorted lists of neighbors to add/delete from
the adjacency lists of vertices in the graph. Then, the
algorithm performs a simple linear-work procedure to merge
each existing adjacency list with the sorted updates. In
particular, doing t edge updates on a vertex with degree
d takes O(d + t) work. Finally, the algorithm counts the
triangles by intersecting the adjacency lists of the endpoints
of each edge in the batch. For each edge (u, v), they intersect
G′(u) with G′(v), G′(u) with Ĝ(v), and Ĝ(u) with Ĝ(v).
The count of the number of triangles can be obtained from
the number of intersections obtained from each of these cases
using a simple inclusion-exclusion formula. They provide a
further optimization by only intersecting truncated adjacency
lists in some of the cases where a truncated adjacency list is
one where the list only contains vertices with IDs less than
the ID of the vertex that the adjacency list belongs to. Their
algorithm has a worst case work bound of O(n2).
Implementation. We developed a new multicore implemen-
tation of the Makkar et al. algorithm using the same parallel
primitives and framework described earlier for the implemen-
tation of our algorithm. We implemented several optimiza-
tions that improved performance. First, we handle vertices
with degree lower than 16 by storing their incident edges in a
special array of size 16n, and only allocate memory for ver-
tices with larger degree. Second, we note that their algorithm
does not specify how to handle redundant insertions that are
already present in the graph. We remove these edge updates
by modifying the merge algorithm that constructs G′ from G.
Specifically, during the merge, if we identify that a given edge
is already present in G, we mark it in the sorted sequence

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



2000000200000200002000
Batch Size (Twitter)

10 2

10 1

100

Av
er

ag
e 

Ba
tc

h 
Ti

m
e 

(s
)

DLSY

makkar

DLSY-INS
makkar-INS
DLSY-DEL
makkar-DEL

Figure 2: This figure plots the average insertion and deletion round
times for each batch size (log-log scale) on Twitter using 72 cores
with hyper-threading. The plot is in log-log scale. The lines for our
algorithm are solid (blue for insertion and red for deletion) while the
lines for Makkar et al. algorithm are dashed (green for insertion and
yellow for deletion). The update time of Makkar et al. algorithm for
Twitter batch size 2× 103 is missing because the experiment timed
out.

of batch updates that we are merging in. Removing these
marked updates to construct Ĝ without redundant updates is
done by using a parallel filter.

Performance Comparison. Table 3 shows the running times
of the Makkar et al. algorithm on batches of insertions and
deletions of different sizes. The data points for the Twitter
graph are also plotted in Figure 2. We observe that the Makkar
et al. algorithm is faster than our algorithm on the Orkut
graph, especially for large batches. On the other hand, for
the Twitter graph, our algorithm is consistently faster for
both insertions and deletions across all batch sizes. This
is because there are no vertices with very high degree in
the Orkut graph, and so the Makkar et al. algorithm does
less work in merging adjacency lists with updates, while the
Twitter graph has vertices with extremely high degree, which
are costly to merge. Both algorithms are significantly faster
than simply applying the static triangle counting algorithm
for the range of batch sizes that we considered.

Next, we evaluate the performance of insertion batches in
our algorithm and the Makkar et al. algorithm on the synthetic
rMAT graph with 3.2 billion generated edges (which have
duplicates). This synthetic experiment allows us to study
how both algorithms perform as the graph becomes more
dense. We evaluate the performance for different insertion
batch sizes. The experiment uses prefixes of the rMAT graph
(the number of unique edges per prefix is shown in Table 2)
to control the density of the graph. The vertex set in this
experiment is fixed, and thus a larger number of unique edges
corresponds to a denser graph.

Figure 3 plots the running time of both implementations
for varying batch sizes as a function of the graph density. We
observe that for small batch sizes, the performance of the
Makkar et al. algorithm degrades significantly as the graph
grows more dense and contains more high-degree vertices.
On the other hand, our algorithm’s performance generally

1.6
e6

9.7
e6

2.7
e7

4.0
e7

5.5
e7

7.5
e7

1.2
e8

# of Unique Edges

10 3

10 2

10 1

Av
er

ag
e 

Ba
tc

h 
Ti

m
e 

(s
) DLSY-2k

DLSY-20k
DLSY-200k
DLSY-2m
makkar-2k
makkar-20k
makkar-200k
makkar-2m

Figure 3: Comparison of the performance of our implementation
(DLSY, solid line) and Makkar et al. algorithm [MBG17] (makkar,
dotted line) for batches of insertions. The figure shows the average
batch time for different batch sizes on the rMAT graph with varying
prefixes of the generated edge stream to control density. The number
of unique edges in the prefix is shown on the x-axis. The number
of vertices is fixed at 16,384. The dark blue, red, green, and light
blue lines are for batches of size 2 × 103, 2 × 104, 2 × 105, and
2 × 106, respectively. We see that our new algorithm is faster for
small batches and on denser graphs.

does not degrade as the graph grows denser, across all batch
sizes. We also significantly outperform the Makkar et al.
algorithm for small batch sizes. Specifically, we obtain a
maximum speedup of 3.31× for a batch of size 2× 104. This
is because the overhead of updating of high-degree vertices in
the Makkar et al. algorithm becomes relatively higher, as work
proportional to the vertex degree must be done regardless of
the number of new incident edges.

7 Conclusion
In this paper, we have given new dynamic algorithms for

the k-clique problem. We study this fundamental problem in
the batch-dynamic setting, which is better suited for parallel
hardware that is widely available today, and enables dynamic
algorithms to scale to high-rate data streams. We have pre-
sented a work-efficient parallel batch-dynamic triangle count-
ing algorithm. We also gave a simple, enumeration-based
algorithm for maintaining the k-clique count. In addition,
we have presented a novel parallel batch-dynamic k-clique
counting algorithm based on fast matrix multiplication, which
is asymptotically faster than existing dynamic approaches on
dense graphs. Finally, we provide a multicore implementation
of our parallel batch-dynamic triangle counting algorithm and
compare it with state-of-the-art implementations that have
weaker theoretical guarantees, showing that our algorithm is
competitive in practice.

Acknowledgements. We thank Josh Alman, Nicole Wein,
and Virginia Vassilevska Williams for helpful discussions
on various aspects of our paper. We also thank anonymous
reviewers for their helpful suggestions. This research was sup-
ported by DOE Early Career Award #DE-SC0018947, NSF
CAREER Award #CCF-1845763, Google Faculty Research
Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-
plications Driving Architectures (ADA) Research Center, a

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



JUMP Center co-sponsored by SRC and DARPA.

References

[AABD19] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and
Laxman Dhulipala. Parallel batch-dynamic graph connectiv-
ity. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 381–392, 2019.

[AAW17] Umut A. Acar, Vitaly Aksenov, and Sam Westrick. Brief
announcement: Parallel dynamic tree contraction via self-
adjusting computation. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 275–277, 2017.

[ALT+17] Christopher R. Aberger, Andrew Lamb, Susan Tu, An-
dres Nötzli, Kunle Olukotun, and Christopher Ré. Empty-
Headed: A relational engine for graph processing. ACM Trans.
Database Syst., 42(4):20:1–20:44, 2017.

[AMSJ18] Khaled Ammar, Frank McSherry, Semih Salihoglu, and
Manas Joglekar. Distributed evaluation of subgraph queries
using worst-case optimal low-memory dataflows. Proc. VLDB
Endow., 11(6):691–704, February 2018.

[AYZ97] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17(3):209–223, Mar 1997.

[BAD20] Guy E. Blelloch, Daniel Anderson, and Laxman Dhuli-
pala. Brief announcement: ParlayLib – a toolkit for parallel
algorithms on shared-memory multicore machines. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 507–509, 2020.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and
subgraph listing algorithms. SIAM J. Comput., 14(1):210–223,
February 1985.

[CZF04] Deepayan Chakrabarti, Yiping Zhan, and Christos Falout-
sos. R-mat: A recursive model for graph mining. In SIAM
International Conference on Data Mining (SDM), pages 442–
446, 2004.

[DBS18a] Maximilien Danisch, Oana Balalau, and Mauro Sozio.
Listing k-cliques in sparse real-world graphs. In International
Conference on World Wide Web (WWW), pages 589–598, 2018.

[DBS18b] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.
Theoretically efficient parallel graph algorithms can be fast and
scalable. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 393–404, 2018.

[DBS19] Laxman Dhulipala, Guy E Blelloch, and Julian Shun.
Low-latency graph streaming using compressed purely-
functional trees. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages
918–934, 2019.

[DDK+20] Laxman Dhulipala, David Durfee, Janardhan Kulkarni,
Richard Peng, Saurabh Sawlani, and Xiaorui Sun. Parallel
batch-dynamic graphs: Algorithms and lower bounds. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1300–1319, 2020.

[DF94] Sajal K. Das and Paolo Ferragina. An o(n) work EREW
parallel algorithm for updating MST. In Annual European
Symposium on Algorithms (ESA), pages 331–342, 1994.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness I: Basic results. SIAM Journal
on Computing, 24(4):873–921, 1995.

[DLSY20] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and
Shangdi Yu. Parallel batch-dynamic k-clique counting. CoRR,
abs/2003.13585, 2020.

[DT13] Zdeněk Dvořák and Vojtěch Tůma. A dynamic data struc-
ture for counting subgraphs in sparse graphs. In Algorithms
and Data Structures, pages 304–315, 2013.

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the
complexity of fixed parameter clique and dominating set.
Theor. Comput. Sci., 326(1-3):57–67, October 2004.

[EGST12] David Eppstein, Michael T. Goodrich, Darren Strash,
and Lowell Trott. Extended dynamic subgraph statistics using
h-index parameterized data structures. Theoretical Computer
Science, 447:44 – 52, 2012.

[EJRB10] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader. Mas-
sive streaming data analytics: A case study with clustering
coefficients. In IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and PhD Forum (IPDPSW),
pages 1–8, 2010.

[EMRB12] David Ediger, Robert McColl, Jason Riedy, and
David A Bader. Stinger: High performance data structure
for streaming graphs. In IEEE Conference on High Perfor-
mance Extreme Computing (HPEC), pages 1–5, 2012.

[ES09] David Eppstein and Emma S. Spiro. The h-index of a
graph and its application to dynamic subgraph statistics. In
Algorithms and Data Structures (WADS), pages 278–289,
2009.

[FFF15] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco.
Clique counting in MapReduce: Algorithms and experiments.
J. Exp. Algorithmics, 20:1.7:1–1.7:20, October 2015.

[FL94] Paolo Ferragina and Fabrizio Luccio. Batch dynamic
algorithms for two graph problems. In Parallel Architectures
and Languages Europe (PARLE), pages 713–724, 1994.

[GMV91] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of
nearly constant time parallel algorithms. In IEEE Symposium
on Foundations of Computer Science (FOCS), pages 698–710,
1991.

[Gra77] Mark S Granovetter. The strength of weak ties. In Social
Networks, pages 347–367. Elsevier, 1977.

[HR05] Robert A. Hanneman and Mark Riddle. Introduction to
Social Network Methods. University of California, Riverside,
2005.

[ILMP19] Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni,
and Nikos Parotsidis. Dynamic algorithms for the massively
parallel computation model. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 49–58,
2019.

[Jaj92] J. Jaja. Introduction to Parallel Algorithms. Addison-
Wesley Professional, 1992.

[JS17] Shweta Jain and C. Seshadhri. A fast and provable method
for estimating clique counts using Turán’s theorem. In
International Conference on World Wide Web (WWW), pages
441–449, 2017.

[Kha17] Shahbaz Khan. Near optimal parallel algorithms for
dynamic DFS in undirected graphs. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
283–292, 2017.

[KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is twitter, a social network or a news media?

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.



pages 591–600, 2010.
[KNN+19] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan

Olteanu, and Haozhe Zhang. Counting triangles under updates
in worst-case optimal time. In International Conference on
Database Theory (ICDT), volume 127, pages 4:1–4:18, 2019.

[KPR18] Tsvi Kopelowitz, Ely Porat, and Yair Rosenmutter. Im-
proved worst-case deterministic parallel dynamic minimum
spanning forest. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 333–341, 2018.

[Lat08] Matthieu Latapy. Main-memory triangle computations for
very large (sparse (power-law)) graphs. Theor. Comput. Sci.,
407(1-3):458–473, 2008.

[LG14] François Le Gall. Powers of tensors and fast matrix
multiplication. In International Symposium on Symbolic and
Algebraic Computation (ISSAC), pages 296–303, 2014.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford
large network dataset collection. 2014.

[MBG17] D. Makkar, D. A. Bader, and O. Green. Exact and
parallel triangle counting in dynamic graphs. In IEEE
International Conference on High Performance Computing
(HiPC), pages 2–12, Dec 2017.

[New03] Mark EJ Newman. The structure and function of complex
networks. SIAM review, 45(2):167–256, 2003.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity
of the subgraph problem. Commentationes Mathematicae
Universitatis Carolinae, 026(2):415–419, 1985.

[NPRR18] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra.
Worst-case optimal join algorithms. J. ACM, 65(3):16:1–16:40,
March 2018.

[RT94] John H. Reif and Stephen R. Tate. Dynamic parallel
tree contraction (extended abstract). In ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages 114–121,
1994.

[SB14] Julian Shun and Guy E Blelloch. Phase-concurrent hash
tables for determinism. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 96–107, 2014.

[SBF+12] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman,
Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri,
and Kanat Tangwongsan. Brief announcement: the Problem
Based Benchmark Suite. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 68–70, 2012.

[SDS20] Jessica Shi, Laxman Dhulipala, and Julian Shun. Par-
allel clique counting and peeling algorithms. CoRR,
abs/2002.10047, 2020.

[ST15] Julian Shun and Kanat Tangwongsan. Multicore triangle
computations without tuning. In IEEE International Confer-
ence on Data Engineering (ICDE), pages 149–160, 2015.

[STTW18] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirtha-
pura, and Kun-Lung Wu. Work-efficient parallel union-find.
Concurrency and Computation: Practice and Experience,
30(4), 2018.

[TDB19] Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch.
Batch-parallel Euler tour trees. In Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 92–106, 2019.

[Vas09] Virginia Vassilevska. Efficient algorithms for clique
problems. Information Processing Letters, 109(4):254–257,
2009.

[Vis10] Uzi Vishkin. Thinking in parallel: Some basic data-parallel

algorithms and techniques. 2010.
[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster

than Coppersmith-Winograd. In ACM Symposium on Theory
of Computing Conference (STOC), pages 887–898, 2012.

[WS98] Duncan J Watts and Steven H Strogatz. Collective
dynamics of ‘small-world’ networks. Nature, 393(6684):440,
1998.

Copyright c© 2021 by SIAM
Copyright for this paper is retained by authors.


	Introduction
	Preliminaries
	Parallel Batch-Dynamic Triangle Counting
	Sequential Algorithm Overview
	Parallel Batch-Dynamic Update Algorithm
	Parallel Batch-Dynamic Triangle Counting Detailed Algorithm
	Analysis

	Dynamic k-Clique Counting via Fast Static Parallel Algorithms
	Dynamic k-Clique via Fast Matrix Multiplication
	Experimental Results
	Our Implementation
	Comparison with Existing Algorithms

	Conclusion

