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Abstract

In many applications of graph processing, the input data is

often generated from an underlying geometric point data

set. However, existing high-performance graph processing

frameworks assume that the input data is given as a graph.

Therefore, to use these frameworks, the user must write or

use external programs based on computational geometry algo-

rithms to convert their point data set to a graph, which requires

more programming effort and can also lead to performance

degradation.

In this paper, we present our ongoing work on the Geo-

Graph framework for shared-memory multicore machines,

which seamlessly supports routines for parallel geometric

graph construction and parallel graph processing within

the same environment. GeoGraph supports graph construc-

tion based on k-nearest neighbors, Delaunay triangulation,

and β-skeleton graphs. It can then pass these generated

graphs to over 25 graph algorithms. GeoGraph contains high-

performance parallel primitives and algorithms implemented

in C++, and includes a Python interface. We present four ex-

amples of using GeoGraph, and some experimental results

showing good parallel speedups and improvements over the

Higra library. We conclude with a vision of future directions

for research in bridging graph and geometric data processing.

1 Introduction

Graphs are a fundamental way to represent relationships

in data, and have a variety of real-world applications. For

example, they are used in social network analysis, Internet

analysis, machine learning, bioinformatics, and transporta-

tion planning. Due to the massive sizes of graphs today,

analyzing graphs efficiently necessitates high-performance

parallel programs. However, writing such programs can

be challenging for non-experts in high-performance com-

puting. Fortunately, there exists a variety of programming

frameworks for efficient graph processing that reduce the

burden on the user by allowing them to write programs

using high-level functions, which the frameworks provide

highly-optimized parallel implementations for under the hood

(see [6, 7, 9, 16, 29, 32, 36, 41, 51, 66] for surveys of graph

processing frameworks).

As far as we know, existing high-performance graph pro-

cessing frameworks assume that the user provides input data

in the format of a graph. While the data that one wishes to

process is sometimes naturally provided in the form of a

graph (e.g., social networks and Internet graphs), oftentimes

the data is presented in the form of points in n-dimensional

space (we refer to this type of data as geometric data), without

any relationship information among the points. Although data

analysis can be performed on the points themselves, it may

be desirable to convert the geometric data into a graph and

take advantage of graph algorithms to uncover better insights

into the data. In particular, the graph would contain vertices

that correspond to the original points, with an edge appearing

between two vertices if their corresponding points are "simi-

lar enough". The output of the graph algorithms may then be

used for further processing with geometric algorithms.

The approach of converting the original data into a graph

is commonly used in machine learning to perform semi-

supervised learning [54]. Here the data points are associated

with feature vectors, and two data points are connected in the

graph if their features are similar enough based on a function

chosen for the application. One can then run a graph clustering

algorithm on this graph, and each resulting cluster will corre-

spond to objects that should have the same label in the original

data set [11, 25, 34, 37, 38]. This approach can potentially

produce higher-quality clusters than using a spatial clustering

algorithm on the original data [34, 43]. Transportation plan-

ning is another example where the approach of converting

data to a graph format is commonly used [4, 5, 14]. Here the

original points may correspond to physical locations, and the

edges between points are determined by route availability.

With most existing graph processing frameworks today, a

user who wishes to process data that is not given in graph

format is responsible for writing or using another tool to con-

vert their data into a graph format that is compatible with
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2.1 Geometric Graph Construction

We now describe the geometric graph construction algorithms

that are currently provided by GeoGraph.

k-Nearest Neighbor Graphs. Our framework supports com-

puting the k-nearest neighbor (k-NN) graph of a point data

set. k-NN graphs have a variety of applications, such as graph

clustering [11, 25, 34, 37, 38], manifold learning [56], outlier

detection [31], and proximity search [13, 44, 49]. The k-NN

graph is a directed graph on a set of P points in a metric

space, such that P represents the vertex set, and a directed

edge exists from vertex p to vertex q if the distance between

p and q is among the k smallest distances from p to points in

P\{p}. We compute the k-NN by traversing a kd-tree, a bi-

nary tree data structure commonly used for k-NN queries [26].

A kd-tree traversal to compute k-NNs will first visit subtrees

close to the input point, and prune farther tree nodes that can-

not possibly contain the k-NNs. We first construct a kd-tree,

then apply k-NN queries for all of the points in P, and finally

generate k-NN graph based on the query results. To build the

tree, we use a parallel splitting algorithm to split the points

across the two children subtrees, and recursively construct

each subtree in parallel. The queries are run in parallel in a

data-parallel fashion.

Spatial Network Graphs. Spatial network graphs are a class

of geometric graphs on which various graph metrics are often

computed [4, 5]. We discuss the spatial network graphs in

the context of point data sets in the Euclidean plane, which

usually arise from geographic coordinates. The Delaunay

graph is directed related to the Delaunay triangulation of a

point set [18], where each edge of the triangulation is treated

as an undirected edge with weight equal to the Euclidean

distance between the two endpoints. The Delaunay graph

is useful because its edges are a superset of that of other

graphs, such as the Euclidean minimum spanning tree and

β-skeleton graphs [35], both of which have a variety of real-

world applications [2, 33, 47, 48, 57, 60, 62, 65]. We use the

parallel incremental Delaunay triangulation implementation

from the Problem Based Benchmark Suite [52].

The β-skeleton is defined for a point set P in the Euclidean

plane, where each point in P is a vertex of the graph. There

is an undirected edge between a pair of points p and q if for

any other point r, the angle prq is smaller than a threshold

derived from parameter β. The β-skeleton shares the same

vertex set as the Delaunay graph, but only contains a subset

of the Delaunay edges [60]. We use the kd-tree to construct

the β-skeleton graph efficiently in parallel. Specifically, for

each edge of the Delaunay graph in parallel, we determine

whether to keep the edge by checking whether there exists a

third point in a region defined by the edge and the parameter

β. The check can be reduced to several range searches in a

kd-tree. The β-skeleton generalizes other well known spatial

network graphs, such as the Gabriel graph and the relative

neighborhood graph [33, 35].

2.2 Parallel Graph Processing

In this section, we present our approach to parallel graph

processing of geometric data sets in GeoGraph, which builds

on the algorithms and data structures from the Graph Based

Benchmark Suite (GBBS) for parallel graph processing [19,

21]. In what follows, we describe some of the key features of

GeoGraph in the context of parallel graph processing.

Representing and Building Geometric Graphs. GeoGraph

supports two graph representations, namely the compressed

sparse row (CSR) and edge/coordinate list (COO) formats. In

CSR, we are given two arrays, I and A, where the incident

edges of a vertex v are stored in {A[I[v]], . . . ,A[I[v+1]−1]}.

In COO, we are given an array of pairs (u,v) corresponding

to edge endpoints. Our framework supports weighted graphs,

where edge weights are interleaved with the neighbors of the

vertex in the CSR format, and stored as the third entry in each

edge tuple in the COO format.

When generating geometric graphs, we typically do not

know the number of edges that will be present in the graph,

or the number of edges that will be incident to each vertex

before running the generation algorithm, and thus generating

geometric graphs directly in a CSR format is difficult. Instead,

we first generate the (weighted) edge list corresponding to

the graph in COO format, and then supply this edge list to a

procedure which builds a (weighted) graph in the CSR format.

There are two main advantages to representing the graph

in CSR format. First, representing the graph in this format

enables us to apply lossless compression techniques from

the Ligra+ framework [53], which are provided in GBBS.

Second, representing the graph in CSR format is crucial in

many parallel graph algorithms that perform random access

to the edges incident to arbitrary vertices.

Applying Graph Algorithms to Geometric Graphs. GBBS

provides fast and theoretically-efficient parallel solutions to

over 25 important graph problems, ranging from basic prob-

lems such as connectivity and breadth-first search, to more

challenging and computationally difficult problems such as

k-truss, k-clique counting [50], minimum spanning forest,

strong connectivity, and biconnectivity, among others [19, 21].

These algorithms are implemented using high-level primitives,

such as functions over subsets of vertices and edges, and oper-

ations on parallel priority queues. GBBS provides optimized

multicore implementations of these primitives under the hood.

We describe some natural examples of running GBBS algo-

rithms on geometrically-derived graphs in Section 3.

2.3 Python API

In this section, we now give an overview of the Python

API in GeoGraph, which is illustrated in Figure 2. There

are two main components of the API: the first component
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the interaction between geometric data processing and graph

processing, and further stems the need for a unified frame-

work.

The graph construction methods that are currently sup-

ported in GeoGraph work well for low-dimensional data sets.

We believe that there is a significant potential for future work

on designing efficient graph construction algorithms for high-

dimensional data sets, such as approximate k-NN graph con-

struction, which has applications to data mining and informa-

tion retrieval [10, 15, 22, 27, 39, 55]. Studying how different

graph construction methods affect the quality of the down-

stream tasks is an important research direction.

Another interesting challenge is to design efficient visu-

alization techniques which present both the input point set

and geometric graph realizations of it, and illustrate algorithm

outputs on both. We envision future systems to support visu-

alization techniques that are parallel and scale to large data

sets.

Due to the rapid changes in real-world data, future systems

should also consider the setting where the input data set re-

ceives batches of updates (point insertions, deletions, or mod-

ifications). These systems would then update the associated

graph, which could be dynamically represented using an effi-

cient parallel batch-dynamic graph data structure (e.g., [20]).

Finally, due to the large variety of computing resources avail-

able today with different performance characteristics, it is

crucial for future systems to support efficient processing on

different types of hardware, including multicore CPUs, GPUs,

distributed clusters, disks, and domain-specific accelerators.

We envision a future with portable high-performance sys-

tems that can seamlessly bridge geometric data processing

and graph processing on both static and dynamic data. Such

systems will provide novel, interpretable, and high-quality

insights into the structure of geometric data sets using graph

processing, while using parallel algorithms that run in near-

linear work in the sparsity of the input graph, thus potentially

achieving significant speedups over existing quadratic-work

point set clustering and analysis methods.
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