
GeoGraph: A Framework for Graph Processing on Geometric Data

Yiqiu Wang

MIT CSAIL

yiqiuw@mit.edu

Shangdi Yu

MIT CSAIL

shangdiy@mit.edu

Laxman Dhulipala

MIT CSAIL

laxman@mit.edu

Yan Gu

UC Riverside

ygu@cs.ucr.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

Abstract

In many applications of graph processing, the input data is

often generated from an underlying geometric point data

set. However, existing high-performance graph processing

frameworks assume that the input data is given as a graph.

Therefore, to use these frameworks, the user must write or

use external programs based on computational geometry algo-

rithms to convert their point data set to a graph, which requires

more programming effort and can also lead to performance

degradation.

In this paper, we present our ongoing work on the Geo-

Graph framework for shared-memory multicore machines,

which seamlessly supports routines for parallel geometric

graph construction and parallel graph processing within

the same environment. GeoGraph supports graph construc-

tion based on k-nearest neighbors, Delaunay triangulation,

and β-skeleton graphs. It can then pass these generated

graphs to over 25 graph algorithms. GeoGraph contains high-

performance parallel primitives and algorithms implemented

in C++, and includes a Python interface. We present four ex-

amples of using GeoGraph, and some experimental results

showing good parallel speedups and improvements over the

Higra library. We conclude with a vision of future directions

for research in bridging graph and geometric data processing.

1 Introduction

Graphs are a fundamental way to represent relationships

in data, and have a variety of real-world applications. For

example, they are used in social network analysis, Internet

analysis, machine learning, bioinformatics, and transporta-

tion planning. Due to the massive sizes of graphs today,

analyzing graphs efficiently necessitates high-performance

parallel programs. However, writing such programs can

be challenging for non-experts in high-performance com-

puting. Fortunately, there exists a variety of programming

frameworks for efficient graph processing that reduce the

burden on the user by allowing them to write programs

using high-level functions, which the frameworks provide

highly-optimized parallel implementations for under the hood

(see [6, 7, 9, 16, 29, 32, 36, 41, 51, 66] for surveys of graph

processing frameworks).

As far as we know, existing high-performance graph pro-

cessing frameworks assume that the user provides input data

in the format of a graph. While the data that one wishes to

process is sometimes naturally provided in the form of a

graph (e.g., social networks and Internet graphs), oftentimes

the data is presented in the form of points in n-dimensional

space (we refer to this type of data as geometric data), without

any relationship information among the points. Although data

analysis can be performed on the points themselves, it may

be desirable to convert the geometric data into a graph and

take advantage of graph algorithms to uncover better insights

into the data. In particular, the graph would contain vertices

that correspond to the original points, with an edge appearing

between two vertices if their corresponding points are "simi-

lar enough". The output of the graph algorithms may then be

used for further processing with geometric algorithms.

The approach of converting the original data into a graph

is commonly used in machine learning to perform semi-

supervised learning [54]. Here the data points are associated

with feature vectors, and two data points are connected in the

graph if their features are similar enough based on a function

chosen for the application. One can then run a graph clustering

algorithm on this graph, and each resulting cluster will corre-

spond to objects that should have the same label in the original

data set [11, 25, 34, 37, 38]. This approach can potentially

produce higher-quality clusters than using a spatial clustering

algorithm on the original data [34, 43]. Transportation plan-

ning is another example where the approach of converting

data to a graph format is commonly used [4, 5, 14]. Here the

original points may correspond to physical locations, and the

edges between points are determined by route availability.

With most existing graph processing frameworks today, a

user who wishes to process data that is not given in graph

format is responsible for writing or using another tool to con-

vert their data into a graph format that is compatible with

38





2.1 Geometric Graph Construction

We now describe the geometric graph construction algorithms

that are currently provided by GeoGraph.

k-Nearest Neighbor Graphs. Our framework supports com-

puting the k-nearest neighbor (k-NN) graph of a point data

set. k-NN graphs have a variety of applications, such as graph

clustering [11, 25, 34, 37, 38], manifold learning [56], outlier

detection [31], and proximity search [13, 44, 49]. The k-NN

graph is a directed graph on a set of P points in a metric

space, such that P represents the vertex set, and a directed

edge exists from vertex p to vertex q if the distance between

p and q is among the k smallest distances from p to points in

P\{p}. We compute the k-NN by traversing a kd-tree, a bi-

nary tree data structure commonly used for k-NN queries [26].

A kd-tree traversal to compute k-NNs will first visit subtrees

close to the input point, and prune farther tree nodes that can-

not possibly contain the k-NNs. We first construct a kd-tree,

then apply k-NN queries for all of the points in P, and finally

generate k-NN graph based on the query results. To build the

tree, we use a parallel splitting algorithm to split the points

across the two children subtrees, and recursively construct

each subtree in parallel. The queries are run in parallel in a

data-parallel fashion.

Spatial Network Graphs. Spatial network graphs are a class

of geometric graphs on which various graph metrics are often

computed [4, 5]. We discuss the spatial network graphs in

the context of point data sets in the Euclidean plane, which

usually arise from geographic coordinates. The Delaunay

graph is directed related to the Delaunay triangulation of a

point set [18], where each edge of the triangulation is treated

as an undirected edge with weight equal to the Euclidean

distance between the two endpoints. The Delaunay graph

is useful because its edges are a superset of that of other

graphs, such as the Euclidean minimum spanning tree and

β-skeleton graphs [35], both of which have a variety of real-

world applications [2, 33, 47, 48, 57, 60, 62, 65]. We use the

parallel incremental Delaunay triangulation implementation

from the Problem Based Benchmark Suite [52].

The β-skeleton is defined for a point set P in the Euclidean

plane, where each point in P is a vertex of the graph. There

is an undirected edge between a pair of points p and q if for

any other point r, the angle prq is smaller than a threshold

derived from parameter β. The β-skeleton shares the same

vertex set as the Delaunay graph, but only contains a subset

of the Delaunay edges [60]. We use the kd-tree to construct

the β-skeleton graph efficiently in parallel. Specifically, for

each edge of the Delaunay graph in parallel, we determine

whether to keep the edge by checking whether there exists a

third point in a region defined by the edge and the parameter

β. The check can be reduced to several range searches in a

kd-tree. The β-skeleton generalizes other well known spatial

network graphs, such as the Gabriel graph and the relative

neighborhood graph [33, 35].

2.2 Parallel Graph Processing

In this section, we present our approach to parallel graph

processing of geometric data sets in GeoGraph, which builds

on the algorithms and data structures from the Graph Based

Benchmark Suite (GBBS) for parallel graph processing [19,

21]. In what follows, we describe some of the key features of

GeoGraph in the context of parallel graph processing.

Representing and Building Geometric Graphs. GeoGraph

supports two graph representations, namely the compressed

sparse row (CSR) and edge/coordinate list (COO) formats. In

CSR, we are given two arrays, I and A, where the incident

edges of a vertex v are stored in {A[I[v]], . . . ,A[I[v+1]−1]}.

In COO, we are given an array of pairs (u,v) corresponding

to edge endpoints. Our framework supports weighted graphs,

where edge weights are interleaved with the neighbors of the

vertex in the CSR format, and stored as the third entry in each

edge tuple in the COO format.

When generating geometric graphs, we typically do not

know the number of edges that will be present in the graph,

or the number of edges that will be incident to each vertex

before running the generation algorithm, and thus generating

geometric graphs directly in a CSR format is difficult. Instead,

we first generate the (weighted) edge list corresponding to

the graph in COO format, and then supply this edge list to a

procedure which builds a (weighted) graph in the CSR format.

There are two main advantages to representing the graph

in CSR format. First, representing the graph in this format

enables us to apply lossless compression techniques from

the Ligra+ framework [53], which are provided in GBBS.

Second, representing the graph in CSR format is crucial in

many parallel graph algorithms that perform random access

to the edges incident to arbitrary vertices.

Applying Graph Algorithms to Geometric Graphs. GBBS

provides fast and theoretically-efficient parallel solutions to

over 25 important graph problems, ranging from basic prob-

lems such as connectivity and breadth-first search, to more

challenging and computationally difficult problems such as

k-truss, k-clique counting [50], minimum spanning forest,

strong connectivity, and biconnectivity, among others [19, 21].

These algorithms are implemented using high-level primitives,

such as functions over subsets of vertices and edges, and oper-

ations on parallel priority queues. GBBS provides optimized

multicore implementations of these primitives under the hood.

We describe some natural examples of running GBBS algo-

rithms on geometrically-derived graphs in Section 3.

2.3 Python API

In this section, we now give an overview of the Python

API in GeoGraph, which is illustrated in Figure 2. There

are two main components of the API: the first component

40









the interaction between geometric data processing and graph

processing, and further stems the need for a unified frame-

work.

The graph construction methods that are currently sup-

ported in GeoGraph work well for low-dimensional data sets.

We believe that there is a significant potential for future work

on designing efficient graph construction algorithms for high-

dimensional data sets, such as approximate k-NN graph con-

struction, which has applications to data mining and informa-

tion retrieval [10, 15, 22, 27, 39, 55]. Studying how different

graph construction methods affect the quality of the down-

stream tasks is an important research direction.

Another interesting challenge is to design efficient visu-

alization techniques which present both the input point set

and geometric graph realizations of it, and illustrate algorithm

outputs on both. We envision future systems to support visu-

alization techniques that are parallel and scale to large data

sets.

Due to the rapid changes in real-world data, future systems

should also consider the setting where the input data set re-

ceives batches of updates (point insertions, deletions, or mod-

ifications). These systems would then update the associated

graph, which could be dynamically represented using an effi-

cient parallel batch-dynamic graph data structure (e.g., [20]).

Finally, due to the large variety of computing resources avail-

able today with different performance characteristics, it is

crucial for future systems to support efficient processing on

different types of hardware, including multicore CPUs, GPUs,

distributed clusters, disks, and domain-specific accelerators.

We envision a future with portable high-performance sys-

tems that can seamlessly bridge geometric data processing

and graph processing on both static and dynamic data. Such

systems will provide novel, interpretable, and high-quality

insights into the structure of geometric data sets using graph

processing, while using parallel algorithms that run in near-

linear work in the sparsity of the input graph, thus potentially

achieving significant speedups over existing quadratic-work

point set clustering and analysis methods.

Acknowledgments

This research was supported by DOE Early Career Award

#DE-SC0018947, NSF CAREER Award #CCF-1845763,

Google Faculty Research Award, Google Research Scholar

Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-

plications Driving Architectures (ADA) Research Center, a

JUMP Center co-sponsored by SRC and DARPA.

References

[1] Pargeo, an open source library for parallel algorithms

in computational geometry. https://github.com/

wangyiqiu/pargeo, 2021.

[2] David J. Aldous and Julian Shun. Connected Spatial Net-

works over Random Points and a Route-Length Statistic.

Statistical Science, 25(3):275–288, 2010.

[3] Martin Aumüller, Erik Bernhardsson, and Alexander

Faithfull. ANN-benchmarks: A benchmarking tool for

approximate nearest neighbor algorithms. Information

Systems, 87:101374, 2020.

[4] Marc Barthelemy. Spatial networks. Physics Reports,

499(1-3):1–101, Feb 2011.

[5] Marc Barthelemy. Morphogenesis of Spatial Networks.

Jan 2018.

[6] Maciej Besta, Dimitri Stanojevic, Johannes

de Fine Licht, Tal Ben-Nun, and Torsten Hoefler.

Graph processing on FPGAs: Taxonomy, survey,

challenges. CoRR, abs/1903.06697, 2019.

[7] Siddharth Bhatia and Rajiv Kumar. Review of graph pro-

cessing frameworks. In IEEE International Conference

on Data Mining Workshops, pages 998–1005, 2018.

[8] Guy E. Blelloch, Daniel Anderson, and Laxman Dhuli-

pala. ParlayLib - a toolkit for parallel algorithms on

shared-memory multicore machines. In ACM Sympo-

sium on Parallelism in Algorithms and Architectures,

page 507–509, 2020.

[9] Angela Bonifati, George Fletcher, Jan Hidders, and

Alexandru Iosup. A Survey of Benchmarks for Graph-

Processing Systems, pages 163–186. 2018.

[10] Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal,

and François Taïani. Being prepared in a sparse world:

the case of KNN graph construction. In IEEE Interna-

tional Conference on Data Engineering, pages 241–252,

2016.

[11] Maria R. Brito, Edgar L. Chávez, Adolfo J. Quiroz, and

Joseph E. Yukich. Connectivity of the mutual k-nearest-

neighbor graph in clustering and outlier detection. Statis-

tics & Probability Letters, 35(1):33–42, 1997.

[12] Ricardo Campello, Davoud Moulavi, Arthur Zimek, and

Jörg Sander. Hierarchical density estimates for data

clustering, visualization, and outlier detection. ACM

Transactions on Knowledge Discovery from Data, pages

5:1–5:51, 2015.

[13] Edgar Chávez and Eric Sadit Tellez. Navigating

k-nearest neighbor graphs to solve nearest neighbor

searches. In Advances in Pattern Recognition, pages

270–280, 2010.

[14] Daniel Chemla, Frédéric Meunier, and Roberto Wolfler

Calvo. Bike sharing systems: Solving the static rebal-

ancing problem. Discrete Optimization, 10(2):120–146,

2013.

[15] Jie Chen, Haw-ren Fang, and Yousef Saad. Fast approxi-

mate kNN graph construction for high dimensional data

via recursive Lanczos bisection. Journal of Machine

Learning Research, 10(9), 2009.

[16] Miguel E. Coimbra, Alexandre P. Francisco, and Luís

Veiga. An analysis of the graph processing landscape.

44



Journal of Big Data, 8(1):55, 2021.

[17] Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yan-

nis Mentekidis, Sumedh Ghaisas, and Shangtong Zhang.

mlpack 3: a fast, flexible machine learning library. Jour-

nal of Open Source Software, 3:726, 2018.

[18] Mark de Berg, Otfried Cheong, Marc van Kreveld, and

Mark Overmars. Computational Geometry: Algorithms

and Applications. Springer-Verlag, 2008.

[19] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.

Theoretically efficient parallel graph algorithms can be

fast and scalable. In ACM Symposium on Parallelism in

Algorithms and Architectures, pages 393–404, 2018.

[20] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.

Low-latency graph streaming using compressed purely-

functional trees. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages

918–934, 2019.

[21] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blel-

loch, and Julian Shun. The graph based benchmark suite

(GBBS). In Proceedings of the 3rd Joint International

Workshop on Graph Data Management Experiences &

Systems and Network Data Analytics, 2020.

[22] Wei Dong, Charikar Moses, and Kai Li. Efficient k-

nearest neighbor graph construction for generic simi-

larity measures. In International Conference on World

Wide Web, page 577–586, 2011.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-

aowei Xu. A density-based algorithm for discovering

clusters a density-based algorithm for discovering clus-

ters in large spatial databases with noise. In ACM

SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 226–231, 1996.

[24] Efi Fogel and Monique Teillaud. The computational

geometry algorithms library CGAL. ACM Commun.

Comput. Algebra, 49(1):10–12, June 2015.

[25] Pasi Franti, Olli Virmajoki, and Ville Hautamaki. Fast

agglomerative clustering using a k-nearest neighbor

graph. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28(11):1875–1881, 2006.

[26] Jerome H. Friedman, Jon Louis Bentley, and

Raphael Ari Finkel. An algorithm for finding best

matches in logarithmic expected time. ACM Trans-

actions on Mathematical Software, 3(3):209–226, 7

1976.

[27] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.

Fast approximate nearest neighbor search with the nav-

igating spreading-out graph. Proc. VLDB Endow.,

12(5):461–474, January 2019.

[28] John C. Gower and Gavin J. S. Ross. Minimum span-

ning trees and single linkage cluster analysis. Journal

of the Royal Statistical Society: Series C (Applied Statis-

tics), 18(1):54–64, 1969.

[29] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu,

Xin-Yu Chen, Xiao-Fei Liao, and Hai Jin. A survey on

graph processing accelerators: Challenges and opportu-

nities. Journal of Computer Science and Technology,

34(2):339–371, 2019.

[30] Charles R. Harris et al. Array programming with

NumPy. Nature, 585(7825):357–362, September 2020.

[31] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Out-

lier detection using k-nearest neighbour graph. In Inter-

national Conference on Pattern Recognition, volume 3,

pages 430–433, 2004.

[32] Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Cal-

heiros, and Rajkumar Buyya. Scalable graph processing

frameworks: A taxonomy and open challenges. ACM

Comput. Surv., 51(3), June 2018.

[33] Jerzy W. Jaromczyk and Godfried T. Toussaint. Relative

neighborhood graphs and their relatives. Proceedings

of the IEEE, 80(9):1502–1517, 1992.

[34] George Karypis, Eui-Hong Han, and Vipin Kumar.

Chameleon: Hierarchical clustering using dynamic mod-

eling. Computer, 32(8):68–75, 1999.

[35] David G. Kirkpatrick and John D. Radke. A framework

for computational morphology. In Computational Ge-

ometry, volume 2 of Machine Intelligence and Pattern

Recognition, pages 217–248. 1985.

[36] Ning Liu, Dong-sheng Li, Yi-ming Zhang, and Xiong-

lve Li. Large-scale graph processing systems: a survey.

Frontiers of Information Technology & Electronic Engi-

neering, 21(3):384–404, 2020.

[37] Małgorzata Lucińska and Sławomir T. Wierzchoń. Spec-

tral clustering based on k-nearest neighbor graph. In

Computer Information Systems and Industrial Manage-

ment, pages 254–265, 2012.

[38] Markus Maier, Matthias Hein, and Ulrike von Luxburg.

Optimal construction of k-nearest-neighbor graphs for

identifying noisy clusters. Theoretical Computer Sci-

ence, 410(19):1749–1764, 2009.

[39] Yury A. Malkov and Dmitry A. Yashunin. Efficient

and robust approximate nearest neighbor search using

hierarchical navigable small world graphs. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

42(4):824–836, 2020.

[40] Christopher D. Manning, Prabhakar Raghavan, and Hin-

rich Schütze. Introduction to Information Retrieval.

Cambridge University Press, 2008.

[41] Robert Ryan McCune, Tim Weninger, and Greg Madey.

Thinking like a vertex: A survey of vertex-centric frame-

works for large-scale distributed graph processing. ACM

Comput. Surv., 48(2):25:1–25:39, October 2015.

[42] Ulrich Meyer and Peter Sanders. ∆-stepping: a paralleliz-

able shortest path algorithm. J. Algorithms, 49(1):114–

152, 2003.

[43] Nicholas Monath, Avinava Dubey, Guru Guruganesh,

Manzil Zaheer, Amr Ahmed, Andrew McCallum,

Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon

Tjanaka, Yuan Wang, and Yuchen Wu. Scalable

45



bottom-up hierarchical clustering. arXiv preprint

arXiv:2010.11821, 2020.

[44] Rodrigo Paredes and Edgar Chávez. Using the k-nearest

neighbor graph for proximity searching in metric spaces.

In String Processing and Information Retrieval, pages

127–138, 2005.

[45] Fabian Pedregosa et al. Scikit-learn: Machine learn-

ing in Python. Journal of Machine Learning Research,

12:2825–2830, 2011.

[46] Benjamin Perret, Giovanni Chierchia, Jean Cousty, Sil-

vio J. Guimaraes, Yukiko Kenmochi, and Laurent Na-

jman. Higra: Hierarchical graph analysis. SoftwareX,

10:100335, 2019.

[47] Franco P. Preparata and Michael I. Shamos. Computa-

tional Geometry. Springer, 1990.

[48] John Radke and Anders Flodmark. The use of spatial

decompositions for constructing street centerlines. Geo-

graphic Information Sciences, 5(1):15–23, 1999.

[49] Thomas B. Sebastian and Benjamin B. Kimia. Metric-

based shape retrieval in large databases. In Proceedings

of the International Conference on Pattern Recognition

(ICPR), 2002.

[50] Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel

clique counting and peeling algorithms. arXiv preprint

arXiv:2002.10047, 2020.

[51] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin,

Ligang He, Bo Liu, and Qiang-Sheng Hua. Graph

processing on GPUs: A survey. ACM Comput. Surv.,

50(6):81:1–81:35, January 2018.

[52] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman,

Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan

Simhadri, and Kanat Tangwongsan. Brief announce-

ment: the Problem Based Benchmark Suite. In ACM

Symposium on Parallelism in Algorithms and Architec-

tures, pages 68–70, 2012.

[53] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch.

Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In IEEE Data Compression Con-

ference, pages 403–412, 2015.

[54] Amarnag Subramanya and Partha Pratim Talukdar.

Graph-Based Semi-Supervised Learning. Morgan &

Claypool Publishers, 2014.

[55] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vard-

han Simhadri, Ravishankar Krishnawamy, and Rohan

Kadekodi. Rand-NSG: Fast accurate billion-point near-

est neighbor search on a single node. In Conference on

Neural Information Processing Systems, pages 13748–

13758, 2019.

[56] Joshua B. Tenenbaum, Vin de Silva, and John C. Lang-

ford. A global geometric framework for nonlinear di-

mensionality reduction. Science, 290(5500):2319–2323,

2000.

[57] Godfried T. Toussaint and Constantin Berzan.

Proximity-graph instance-based learning, support

vector machines, and high dimensionality: An empirical

comparison. In Machine Learning and Data Mining in

Pattern Recognition, pages 222–236, 2012.

[58] Tom Tseng, Laxman Dhulipala, and Julian Shun. Par-

allel index-based structural graph clustering and its ap-

proximation. In ACM SIGMOD International Confer-

ence on Management of Data, 2021.

[59] Vijay V. Vazirani. Approximation Algorithms. Springer

Publishing Company, Incorporated, 2010.

[60] Remco C. Veltkamp. The γ-neighborhood graph. Com-

putational Geometry, 1(4):227–246, 1992.

[61] Pauli Virtanen et al. SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nature Methods,

17(3):261–272, 2020.

[62] Peng-Jun Wan, Grucia Călinescu, Xiang-Yang Li, and

Ophir Frieder. Minimum-energy broadcasting in static

ad hoc wireless networks. Wireless Networks, 8(6):607–

617, 2002.

[63] Yiqiu Wang, Yan Gu, and Julian Shun. Theoretically-

efficient and practical parallel DBSCAN. In ACM SIG-

MOD International Conference on Management of Data,

page 2555–2571, 2020.

[64] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. Fast

parallel algorithms for euclidean minimum spanning

tree and hierarchical spatial clustering. In ACM SIG-

MOD International Conference on Management of Data,

2021.

[65] Peter Willett. Recent trends in hierarchic document

clustering: A critical review. Information Processing &

Management, 24(5):577–597, 1988.

[66] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Desh-

pande. Big graph analytics platforms. Foundations and

Trends in Databases, 7(1-2):1–195, 2017.

46




