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ABSTRACT

We propose LightNE,1 a cost-effective, scalable, and high quality
network embedding system that scales to graphs with hundreds
of billions of edges on a single machine. In contrast to the main-
stream belief that distributed architecture and GPUs are needed
for large-scale network embedding with good quality, we prove
that we can achieve higher quality, better scalability, lower cost
and faster runtime with shared-memory, CPU-only architecture.
LightNE combines two theoretically grounded embedding meth-
ods NetSMF and ProNE. We introduce the following techniques to
network embedding for the first time: (1) a newly proposed down-
sampling method to reduce the sample complexity of NetSMF while
preserving its theoretical advantages; (2) a high-performance paral-
lel graph processing stack GBBS to achieve high memory efficiency
and scalability; (3) sparse parallel hash table to aggregate and main-
tain the matrix sparsifier in memory; and (4) Intel MKL for efficient
randomized SVD and spectral propagation.
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1 INTRODUCTION

E-commerce and social networking companies today face the chal-
lenge of analyzing and mining graphs with billions of nodes, and
tens of billions to trillions of edges. In recent years, a popular learn-
ing approach has been to apply network embedding techniques
to obtain a vector representation of each node. These learned rep-
resentations, or embeddings, can be easily consumed in down-
stream machine learning and recommendation algorithms. These
representations are widely used in various online services and are
∗Part of the work was done while the authors visited Microsoft Research.
1Our code is available at https://github.com/xptree/LightNE.
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updated frequently [25, 36, 39]. For example, one of the core item-
recommendation systems at Alibaba with billions of items and
users requires frequent re-embedding as both new users and items
arrive online, and the underlying embedding must be quickly re-
computed [36]. A similar system at LinkedIn computes embeddings
of millions of individuals (nodes) offline and must periodically re-
embed this graph to maintain high accuracy [25]. In both scenarios,
computing embeddings must be done scalably and with low latency.

Despite a significant amount of research on developing sophisti-
cated network embedding algorithms [7, 21, 32], using simple and
scalable embedding solutions that potentially sacrifice a significant
amount of accuracy remains the primary choice in the industry
for dealing with large-scale graphs. For example, LinkedIn uses
LINE [32] for embedding, which only captures local structural infor-
mation within nodes’ 1-hop neighborhoods. Alibaba embeds a 600-
billion-node commodity graph by first partitioning it into 12,000
50-million-node subgraphs, and then embedding each subgraph
separately with 100 GPUs running DeepWalk [21]. The reason is
that in practice, graphs are updated frequently, and the embedding
algorithms are often required to run every few hours [36].

While many new embedding systems have been proposed in the
literature that demonstrate high accuracy for downstream applica-
tions, the high latency, limited scalability, and high computational
cost prohibit these techniques from large scale deployment or com-
mercial usage on massive datasets. For example, GraphVite [41] is a
CPU-GPU hybrid system based on DeepWalk, which takes 20 hours
to train on the Friendster graph (65M nodes and 1.8B edges) with 4
P100 GPUs. The cost of GraphVite for obtaining the embedding on
this graph is 210 dollars measured by cloud virtual machine rent.
One can estimate that embedding 10,000 such graphs (following
the Alibaba approach) using GraphVite would amount to over 2
million dollars per run, which is prohibitively costly.

Motivated by the desire to obtain accurate, highly scalable, and
cost-effective solutions that can embed networks with billions of
nodes and hundreds of billions of edges, we design LightNE. Our
design has the following objectives:
(1) Scalable: Embed graphs with 1B edges within 1.5 hours.
(2) Lightweight: Occupy hardware costs below 100 dollars mea-

sured by cloud rent to process 1B to 100B edges.
(3) Accurate: Achieve the highest accuracy in downstream tasks

under the same time budget and similar resources.
Our Techniques. To reduce both cost and latency, we use a single-
machine shared-memory environment equipped with multi-core
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CPUs, which are ubiquitous from cloud-providers today. Further-
more, to optimize our processing times and fully utilize the system,
we avoid using SSDs or other external storage and instead utilize
enough RAM so that both the input graph and all the intermediate
steps can fit into memory, e.g., 1.5TB of RAM. Purchasing or renting
a system with sufficient RAM and multi-core CPU(s) is the domi-
nant cost of our system. Even with such a simple architecture, we
successfully meet all our design goals by leveraging the following
techniques and building an integrated system:

Firstly, we combine two lines of advances on efficient and ef-
fective network embedding techniques, sample-based approxi-

mation and spectral approximation of random walks stemming
from the original DeepWalk: NetSMF [22] and ProNE [40]. Instead
of using the general-purpose and computationally inefficient sto-
chastic gradient descent method from most other solutions, both
NetSMF and ProNE perform principled, cheap matrix operations on
graphs to leverage the unique characteristics of real-world graphs
such as sparsity, power-law degree distribution, and spectral prop-
erties. We combine both sample-based approximation and spectral
approximation of random walks to achieve high accuracy levels
while maintaining both of their advantages of low resource con-
sumption and efficiency on real-world graphs.

Secondly, we propose a new sampling algorithm that reduces
the number of required random-walk samples of original NetSMF
by a factor of #edges/#vertices. On real-world graphs, it achieves
a 10-100× reduction in the number of samples. Our algorithm is
grounded in spectral graph sparsification theory.

Thirdly, we optimize our system for commodity shared-memory
architectures and performing sparse matrix operations by (1) uti-
lizing state-of-the-art shared-memory graph processing tech-

niques, including parallel graph compression and efficient bulk-
parallel operations, (2) integrating efficient parallel data structures,
and techniques such as sparse hash tables for random walk sam-
plers, and (3) a new randomized SVD subroutine based on Intel
Math Kernel Library (MKL). These techniques enable us to achieve
between 4–32× speedup over state-of-the-art network embedding
systems, while also experiencing a similar order of magnitude cost
improvement, all while maintaining or improving accuracy. Our
memory efficiency enables us to scale to graphs significantly larger
than those processed by single-machine embedding systems today.
In particular, we show that using LightNEwe can embed one of the
largest publicly available graphs, the WebDataCommons hyperlink
2014 graph, with over 100 billion edges in under 2 hours.

Compared to three large-scale systems: GraphVite, PyTorch-
BigGraph, and NetSMF, and using the tasks and the largest datasets
evaluated by each system LightNE takes an order of magnitude
lower latency and cost, while achieving the state-of-the-art accu-
racy. Compared to ProNE, our accuracy is significantly higher while
the latency is comparable. In addition, we show that our system can
scale to networks with billions of nodes, and hundreds of billions
of edges on a single machine, which has never been demonstrated
by any existing network embedding systems, including ProNE.

2 RELATEDWORK

We review related work of network embedding algorithms/systems.
Network Embedding Algorithms.Over the last decade, network
embedding algorithms have been extensively studied. A survey can

be found in [10]. From an optimization aspect, recent network
embedding algorithms fall into three main categories. The first cate-
gory uses general-purpose stochastic gradient descent to optimize a
logistic loss and follows the skip-grammodel framework [18]. Meth-
ods belonging to this category include DeepWalk [21], LINE [32],
and node2vec [7]. To date, the only bounds on sample efficiency
and convergence rate for these methods require additional assump-
tions [4]. The second category uses singular value decomposi-
tion (SVD) to obtain the best low-rank approximations [6]. Ex-
amples of methods in this category include GraRep [2], HOPE [20],
NetMF [23], NetSMF [22], and ProNE [40]. LightNE also belongs to
this category. Graph Neural Networks represent the third line of net-
work embedding algorithms [1]. Such methods include GCN [12],
GAT [35], GIN [37], GraphSAGE [10] and PinSAGE [39]. These
algorithms usually rely on vertex attributes, as well as supervised
information. They are beyond the scope of this paper because our
focus is on graphs with no additional information.
Network Embedding Systems. Due to the efficiency challenges
posed by large graphs, several systems for embedding large graphs
have been developed. We give a brief overview of the most related
and comparable ones. GraphVite [41] is a CPU-GPU hybrid network
embedding system based on DeepWalk [21] and LINE [32]. It uses
CPU to conduct graph operations andGPU to perform linear algebra
operations. The system is bounded by GPU memory, which in most
cases is at most 32GB per GPU: embedding graphs with billions of
vertices often require hundreds of Gigabytes of parameter mem-
ory. This limit constraints GraphVite to repeatedly updating only
a small part of the embedding matrix. PyTorch-BigGraph [15] is a
distributed memory system based on DeepWalk [21] and LINE [32].
It uses graph partition for load balancing and a shared parame-
ter server for synchronization. LightNE is designed for shared
memory machines, where communication is much cheaper than
distributed memory systems. NetSMF [22] is a network embedding
system based on sparse matrix factorization. The system is built
on OpenMP and Eigen3 (a C++ template library for linear algebra).
On large graphs, NetSMF is still time-consuming due to its poor
implementation of the graph processing system and the shortcom-
ing of Eigen3 in supporting sparse matrix operations. Our proposal
contains a redesign of NetSMF that focuses on the performances on
graphs and sparse matrices. A detailed experimental comparison
of LightNE and NetSMF is in Section 5. NPR [38] is a recently
proposed network embedding system built upon Matlab. It derives
embeddings from the pairwise personalized PageRank (PPR) ma-
trix. Although it is also based on random walks, it omits a step of
taking the entry-wise logarithm of the random walk matrix before
factorization, which is a required step by NetMF and NetSMF for es-
tablishing the equivalence to DeepWalk. Due to that omission, NPR
is able to operate on the original graph efficiently while the others
must construct the random walk matrix exactly or approximately.

3 BACKGROUND AND ALGORITHM

3.1 Background

We provide a self-contained background of the fundamental em-
bedding techniques of our system. The list of notations used in
this paper can be found in Table 1. We take a matrix-oriented view
of graph embedding: the resulting embedding vectors are simply



Table 1: Notation used throughout this paper.

Notation Description Notation Description

𝐺 input network 𝑏 #negative samples
𝑉 vertex set, |𝑉 | = 𝑛 𝑇 context window size
𝐸 edge set, |𝐸 | =𝑚 𝑿 𝑛 × 𝑑 embedding matrix
𝑨 adjacency matrix 𝑘 spectral propagation steps
𝑫 degree matrix 𝑫 −𝑨 graph Laplaician 𝑳
vol (𝐺) volume of𝐺 𝑰 − 𝑫−1𝑨 normalized Laplacian L
𝑀 # edge samples 𝑑 embedding dimension

Algorithm 1: PathSampling.
1 Procedure PathSample(𝐺 , 𝑢, 𝑣, 𝑟)
2 Let a random edge (𝑢, 𝑣) be given.
3 Sample a random number 𝑠 uniformly in [0, 𝑟 − 1].
4 𝑢′ ← random walk 𝑢 for 𝑠 steps on graph𝐺
5 𝑣′ ← random walk 𝑣 for 𝑟 − 1 − 𝑠 steps on graph𝐺 .
6 return edge (𝑢′, 𝑣′)

the rows of a 𝑛 × 𝑑 matrix 𝑿 that we compute from the original
adjacency matrix 𝑨 of 𝑛 × 𝑛, where 𝑛 and 𝑑 denote the number of
nodes and the embedding dimension, respectively. This interpre-
tation of embedding gives us the flexibility of utilizing multiple
matrix processing tools and synthesizing them.
NetMF. We begin with the matrix factorization approach intro-
duced in [23], which showed that most network embedding meth-
ods up to that point in time, including DeepWalk [21] LINE [32],
and node2vec [7], can be described as factorizing a matrix polyno-
mial of the adjacency matrix 𝑨 and degree matrix 𝑫 of the graph.
Formally, for an unweighted, undirected graph,𝑨 is the matrix with
1 in every entry with an edge, and 0 everywhere else; and the matrix
𝑫 is the diagonal matrix where the 𝑖-th diagonal entry contains the
degree of the 𝑖-th vertex. The core result by [23] is that DeepWalk
can be viewed as approximately factorizing the following matrix

𝑴 ≜ trunc_log◦
(
vol(𝐺)
𝑏

1
𝑇

𝑇∑
𝑟=1
(𝑫−1𝑨)𝑟𝑫−1

)
(1)

in which 𝑇 represents the length of random walks (by default
𝑇 = 10), trunc_log◦ is the truncated logarithm applied entry-wise
to a matrix (trunc_log(𝑥) = max{0, log𝑥}), and vol(𝐺) = 2𝑚 is
the total number of edges in 𝐺 . Moreover, LINE approximately
factorizes a matrix in the same form but for 𝑇 = 1. The bottleneck
of factorizing the matrix in Equation (1) is that (𝑫−1𝑨)𝑟 tends to
be a dense matrix as the increase of 𝑟 , and thus constructing the
matrix is cost-prohibitive even before the factorization can be per-
formed, due to the sheer amount of memory required. Note that the
truncated logarithm is critical for embedding quality and cannot
be omitted, otherwise there exists a shortcut to the factorization
without constructing the dense matrix, similar to NPR [38].
NetSMF. One approach to mitigate the increased construction cost
for constructing the matrix in Equation (1) is through the sampling
of random walks. Qiu et al. [22] showed that an 𝑟 -step random
walk matrix (𝑫−1𝑨)𝑟 could be approximated by repeating the Path-
Sampling algorithm (Algo. 1). The result of applying Algo. 1 is a
𝑟 -step walk in 𝑨 and contributes to a non-zero entry to a sparsified
version of (𝑫−1𝑨)𝑟 . Building upon an analysis of sparsification of
random walk matrix polynomials [3], Qiu et al. [22] showed that
a nearly-linear number of samples w.r.t. the number of edges in

𝐺 (i.e.,𝑚) is sufficient to make a spectral approximation of (𝑫−1𝑨)𝑟 .
They then demonstrated experimentally that this matrix could be
used in place of the dense random walk matrix used by NetMF. Im-
proving the scalability of NetSMF, especially the efficient sampling
of random walks, is the starting point of our system.
ProNE. ProNE [40] proposed to firstly conduct Singular Value De-
composition (SVD) on a matrix 𝑴 with each entry defined to be

𝑴𝑢𝑣 ≜ log
(
𝑨𝑢𝑣

𝑫𝑢

∑
𝑗 (

∑
𝑖 𝑨𝑖 𝑗 /𝑫𝑖 )𝛼

𝑏 (∑𝑖 𝑨𝑖𝑣/𝑫𝑖 )𝛼

)
, which is a modulated normalized

graph Laplacian, with 𝑏 = 1 and 𝛼 = 0.75 by default. Given the
factorized embedding matrix 𝑿 , ProNE applies a filter to each col-
umn of the matrix using a low degree polynomial in the normalized
graph Laplacian matrixL ≜ 𝑰 −𝑫−1𝑨, i.e.,∑𝑘𝑟=0 𝑐𝑟L𝑟𝑿 , where 𝑐𝑟 ’s
are chosen to be coefficients of Chebyshev polynomials and 𝑘 is set
to around 10. We will utilize the same choice of parameters for this
spectral propagation step, but instead apply it to the factorization
of the sparsified NetMF matrix in Equation (1).

3.2 LightNE: Algorithm Design

From an algorithm design perspective, our design of LightNE
combines NetSMF and ProNE. In particular, LightNE consists of
two steps. The first step is NetSMF with a novel edge downsam-
pling algorithm, which significantly improves sample complexity.
The second step is to enhance NetSMF embedding using ProNE’s
spectral propagation. We then introduce the two steps in detail.
Step 1: NetSMF with Edge Downsampling. NetSMF [22] has
proposed an efficient PathSampling algorithm to approximate the
𝑟 -step random walk matrix, (𝑫−1𝑨)𝑟 , with roughly 𝑂 (𝑚) samples.
However, for graphs with billions of edges, there is still an urgent
need to further reduce its sample complexity while preserving its
theoretical advantages. Our approach is to downsample edges that
will be added to the sparsifier. We do this by adding a further layer
of sampling to Algo. 1 — for each sampled edge 𝑒 = (𝑢, 𝑣), we flip a
coin that comes up heads with some probability 𝑝𝑒 , then only apply
Algo. 1 and add the sampled edge to the sparsifier with adjusted
weight𝐴𝑢,𝑣/𝑝𝑒 if the coin comes up heads. Such a sampling method
is a special case of importance sampling — adjusting edge weights
ensures the downsampled graph is an unbiased estimation to the
original graph in terms of the graph Laplacian:

Theorem 3.1 (Unbiasness of Edge Downsampling, Sec 6.5 in
[34]). Let the graph Laplacian of the original graph be 𝑳𝐺 ≜ 𝑫 −𝑨.
Note that 𝑳𝐺 =

∑
(𝑢,𝑣) ∈𝐸 𝐴𝑢,𝑣𝑳𝑢,𝑣 where 𝑳𝑢,𝑣 is the Laplacian matrix

of the graph with just one unweighted edge between 𝑢 and 𝑣 . Also
denote the downsampled graph to be 𝐻 , then we have E[𝑳𝐻 ] =∑
𝑒=(𝑢,𝑣) ∈𝐸 𝑝𝑒

𝐴𝑢,𝑣

𝑝𝑒
𝑳𝑢,𝑣 = 𝑳𝐺 .

In theory, setting sampling probability 𝑝𝑒 as an upper bound of the
effective resistance [31] guarantees an accurate approximation of
input graph 𝐺 with high probability, i.e., 𝑝𝑒 ← min(1,𝐶𝐴𝑢,𝑣𝑅𝑢,𝑣)
where 𝑅𝑢,𝑣 is the effective resistance between 𝑢 and 𝑣 , and 𝐶 is
some constant. However, how to quickly approximate the effective
resistances remains an open problem [14, 31]. Our choice is to
adopt degree sampling. For an edge 𝑒 = (𝑢, 𝑣), we set the sampling
probability 𝑝𝑒 ← min(1,𝐶𝐴𝑢,𝑣 (𝑑−1𝑢 + 𝑑−1𝑣 )). Here 𝑑𝑢 =

∑
𝑣 𝐴𝑢,𝑣

is the degree of 𝑢. The following theorem from Lovász et al. [16]
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Figure 1: System overview of LightNE.

showed that the quantity 𝑑−1𝑢 + 𝑑−1𝑣 is a simple but good upper
bound to the effective resistance, especially for expander graphs:

Theorem 3.2 (Corollary 3.3 in [16]). For∀𝑢, 𝑣 ∈ 𝑉 , 12
(
1
𝑑𝑢
+ 1
𝑑𝑣

)
≤

𝑅𝑢,𝑣 ≤ 1
1−𝜆2

(
1
𝑑𝑢
+ 1
𝑑𝑣

)
, where 1 − 𝜆2 is the spectral gap of the nor-

malized graph Laplacian.

Such a scheme ensures that the total number of edges kept in ex-
pectation is 𝑂 (𝑛𝐶): we can show that for any vertex 𝑢, we have∑
𝑣 𝐴𝑢𝑣𝑑

−1
𝑢 = 1 by the definition of 𝑑𝑢 . Furthermore, we can in-

crease the constant 𝐶 in order to increase the concentration of the
samples we pick. In this work, we set 𝐶 = log(𝑛).

Experimentally, this downsampling has negligible effects on the
qualities of the embedding we produce, but significantly reduces
the edge count: most of our graphs initially have at least 10 times
as many edges as vertices, and the random walk graphs have even
more edges. We believe this can be justified using the guarantees
of this degree-sampling scheme in well-connected cases [30]. For
example, the spectral gap (i.e., 1 − 𝜆2 in Theorem 3.2) of the Blog-
catalog graph [33] is about 0.43 [24], and it is widely believed that
most web graphs are well connected, too [19].

Overall, the first step of LightNE provides an 𝑂 (𝑛 log𝑛)-sparse
but accurate estimator to the NetMF matrix in Equation (1). By
conducting randomized SVD on the sparsifer such that𝑴 ≈ 𝑼𝚺𝑽⊤,
the NetSMF embedding matrix is defined as 𝑿 = 𝑼𝚺1/2.
Step 2: Embedding Enhancement with Spectral Propagation.

Once the embedding 𝑿 is obtained, we apply spectral propagation
to further improve its quality. Following ProNE, the final embedding
is enhanced by applying a polynomial 𝑿 ← ∑𝑘

𝑟=0 𝑐𝑟L𝑟𝑿 , where 𝑘
is set to be 10, L ≜ 𝑰 − 𝑫−1𝑨 is the normalized graph Laplacian
matrix and 𝑐𝑟 ’s are the coefficients of Chebyshev polynomials.

4 LightNE: SYSTEM DESIGN

Overview. We make a series of system optimizations to enable
LightNE in a CPU-only shared-memory machine. As introduced in
Section 3.2, LightNE consists of two steps — NetSMF and spectral
propagation. From a system perspective, the NetSMF step can be
further decomposed into two sub-steps — parallel sparsifier con-
struction and parallel randomized SVD. In this section, we present
our acceleration techniques for these components. In Section 4.1,
we introduce a new graph processing system, GBBS, which we
leverage throughout LightNE. In Section 4.2, we discuss how we
optimize sparsifer construction with GBBS and sparse parallel hash-
ing, which enable us to aggregate and construct the sparsifier in
memory efficiently. Lastly, in Section 4.3, we describe our random-
ized SVD and spectral propagation implementation using Intel MKL.
An overview of our design can be found in Figure 1.

4.1 Sparse Parallel Graph Processing

LightNE involves intensive graph operations, such as perform-
ing random walks, querying vertex degrees, random accessing a
neighbor of a vertex, etc. In this work, we build on the Graph Based
Benchmark Suite (GBBS) [5], which extends the Ligra [26] interface
with additional purely-functional primitives such as maps, reduces,
filters over both vertices and graphs. We chose GBBS because it is
performant, relatively simple to use, and has already been shown
to scale to real-world networks with billions–hundreds of billions
of edges on a single machine, achieving state-of-the-art running
times for many fundamental graph problems.
Compression. An important design consideration for LightNE
is to embed very large graphs on a single machine. Although the
CSR format is normally regarded as a good compressed graph rep-
resentation [11], we need to further compress this data structure
and reduce memory usage. Our approach builds on state-of-the-
art parallel graph compression techniques, which enable both fast
parallel graph encoding and decoding. In particular, we adopt the
parallel-byte format from Ligra+ [28]. In sequential byte coding, we
store a vertex’s neighbor list by difference encoding consecutive
vertices, with the first vertex difference encoded with respect to the
source. A decoder processes each difference one at a time, and sums
the differences into a running sum which gives the ID of the next
neighbor. Unfortunately, this process is entirely sequential, which
could be costly for high-degree vertices and thus inhibit parallelism.
The parallel-byte format from Ligra+ breaks the neighbors of a high-
degree vertex into blocks, where each block contains a configurable
number of neighbors. Each block is internally difference-encoded
with respect to the source. As each block can have a different com-
pressed size, the format also stores offsets from the start of the
vertex to the start of each block. In what follows, when we refer
to compressed graphs, we mean graphs in the CSR format where
neighbor lists are compressed using the parallel-byte format.

To the best of our knowledge, we are the first to introduce GBBS
and Ligra+ to the network embedding problem.

4.2 Parallel Sparsifier Construction

As described in Section 3.1, building the sparsifier requires: (1) gen-
erating a large number of edge samples using the PathSampling
in Algo. 1 and (2) aggregating the sampled edges to count the fre-
quency each distinct edge appears. After ensuring that the input
graph is compressed, the main challenge in our design is to effi-
ciently construct and store the sparsifier in memory. In this section,
we use both the purely-functional primitives and the parallel com-
pression techniques in GBBS to scalably and memory-efficiently
conduct the PathSampling. We further employ sparse parallel hash-
ing to aggregate the sampled edges and construct the sparsifer.
Parallel Per Edge PathSampling by GBBS. A natural idea is to
repetitively call PathSampling(𝐺,𝑢, 𝑣, 𝑟 ) (Algo. 1) with a uniformly
sampled edge (𝑢, 𝑣) and a uniformly sampled path length 𝑟 ∈ [𝑇 ].
Unfortunately, this approach is challenging to implement on com-
pressed graphs — it requires an efficient way to sample and access
a random edge. Straightforward methods store all edges in an array
which enables𝑂 (1) random access, or perform binary search on the
prefix sums of vertex degrees and select the chosen edge incident to
a particular vertex. The former would require a prohibitive amount



Algorithm 2: Downsampled Per-Edge PathSampling.
1 Procedure DownSampledPerEdgePathSampling(𝐺 ,𝑇)
2 𝐺 .MapEdges(function (𝑒 = (𝑢, 𝑣)) →
3 𝑛𝑒 ← ⌊𝑀/𝑚⌋+random variable from Bernoulli ( {𝑀/𝑚})
4 for 𝑖 ← 1 to 𝑛𝑒 do

5 𝑝 ← Uniform[0, 1]; 𝑟 ← Uniform[1,𝑇 ]
6 if 𝑝 < 𝑝𝑒 then

7 (𝑢′, 𝑣′) ← PathSampling(𝐺,𝑢, 𝑣, 𝑟 )
8 Add (𝑢′, 𝑣′) with weight 1/𝑝𝑒 to the sparsifier )

of memory for our largest networks, and the latter would require
extra 𝑂 (log𝑛) time for binary searching each sample.

Instead, we propose Algo. 2, which describes an equivalent pro-
cess that has the benefit of being more cache and memory-friendly,
and works seamlessly alongside compression. The idea is to map
over the edges in parallel, and for each edge 𝑒 = (𝑢, 𝑣) we run Path-
Sampling (Algo. 1) 𝑛𝑒 times where 𝑛𝑒 is ⌊𝑀/𝑚⌋ plus a Bernoulli
random variable with mean {𝑀/𝑚}.2 Since each edge 𝑒 is sampled
independently, the expected number of samples is exactly𝑀 .3 And
it is easy to see that Θ(𝑀) samples are drawn with high probability
by standard concentration bounds. After sampling a value 𝑛𝑒 from
this random variable for a given edge (𝑢, 𝑣), we perform 𝑛𝑒 many
random walks from (𝑢, 𝑣) treating it as though it had been selected
uniformly at random in the original process. We further incorporate
the edge downsampling (as introduced in Section 3.2) into Alg. 2
to reduce the sample complexity. After drawing random variable
𝑛𝑒 (Algo. 2, Line 3), for each of the 𝑛𝑒 times this edge 𝑒 is sampled,
we flip a coin that comes up heads with probability 𝑝𝑒 (Algo. 2,
Line 5). We then apply Algo. 1 and add the sampled edge pair to
the sparsifier with adjusted weight 1/𝑝𝑒 only if the coin comes up
heads (Algo. 2, Line 7-8). Our implementation of the above idea uses
the MapEdges primitive (Algo. 2, Line 2) in GBBS, which applies a
user-defined function over every edge in parallel. The user-defined
function (Algo. 2, Line 3-8) conducts the downsampled per-edge
sampling we introduced above.

Lastly, we observe that implementing randomwalks in the shared-
memory setting requires efficiently fetching the 𝑖-th edge incident
to a vertex during the walk. This is because we simulate the random
walk one step at a time by first sampling a uniformly random 32-bit
value, and computing this value modulo the vertex degree. Fetch-
ing an arbitrary incident edge is trivial to implement for networks
stored in CSR (without extra compression) by simply fetching the
offset for a vertex and accessing its 𝑖-th edge. However, for graphs
in CSR where adjacency information is additionally compressed in
the parallel-byte format, we may need to decode an entire block in
order to fetch the 𝑖-th edge. To help mitigate this cost, we chose
a block size of 64 after experimentally evaluating the trade-off be-
tween the compressed size of the graph in memory, and the latency
of fetching arbitrary edges incident to vertices. We note that further
optimizations of this approach, such as batching multiple random
walks accessing the same (or nearby vertices) together, to mitigate
the cost of accessing these vertices’ edges would require a careful
analysis of the overhead for shuffling the data via a semisort [8], or

2 ⌊ ·⌋ is the floor function, and {·} is the fractional part of a number.
3E[𝑛𝑒 ] = 𝑀/𝑚, and E[∑𝑒∈𝐸 𝑛𝑒 ] =

∑
𝑒∈𝐸 E[𝑛𝑒 ] = 𝑀 .

a partial radix-sort [13] vs. the overhead for performing random
reads. Optimizations of this flavor to further improve locality may
be an interesting direction for future work.
Sparse Parallel Hashing. Next, we turn to how the sparsifier is
constructed and represented in memory. After running Algo. 2
which generates many weighted edges, we need to count the fre-
quency each distinct edge is sampled. We considered several differ-
ent techniques for this aggregation problem in the shared-memory
setting, including (1) generating per-processor lists of the edges
and then merging the lists using the efficient sparse-histogram in-
troduced in GBBS [5] and (2) storing the edges and partial-counts
in per-processor hash tables that are periodically merged.

Ultimately, we found that the fastest and most memory-efficient
method across all of our inputs was to use sparse parallel hashing.
The construction used in this paper is folklore in the parallel al-
gorithms literature, and we refer to Maier et al. [17] for a detailed
explanation of the folklore algorithm. In a nutshell, our parallel
hash table stores a distinct entry for each edge that is ever sam-
pled, along with a count. Threads can access the table in parallel,
and collisions are resolved using linear probing. Note that we do
not require deletions in this setting. When multiple samples are
drawn for a single edge, the counts are atomically incremented
using the atomic xadd instruction. We note that the xadd instruc-
tion is significantly faster than a more naive implementation of a
fetch-and-add instruction using compare-and-swap in a while
loop when there is contention on a single memory location, and
xadd is only negligibly slower in the light-load case [27]. Our imple-
mentation is lock-free and ensures that the exact count of each edge
is computed, since our implementation uses atomic instructions to
ensure that each sample is accounted for.
4.3 Randomized SVD and Spectral Propagation

Randomized SVD. After constructing the sparsifier, the next step
is to efficiently perform randomized SVD and obtain the initial em-
bedding. The randomized SVD [9] involves excessive linear algebra
operations, which are well-supported and highly-optimized by the
Intel MKL library. For example, its random projection is, in essence,
a product of an 𝑛 × 𝑛 sparse matrix and a dense 𝑛 × 𝑑 Gaussian
random matrix, which are implemented in MKL’s Sparse BLAS
Routines. Other examples include the Gram-Schmidt process and
SVD on the projected matrices, which are all supported by Intel
MKL LAPACK routines. We list the pseudo-code of randomized
SVD [9] and the corresponding Intel MKL routines in Algo. 3.
Spectral Propagation.Besides randomized SVD, the spectral prop-
agation step also involves linear algebra operations. Note that the
spectral propagation step is highly efficient. It does not need to
evaluate the higher powers of L, but rather only applies repeated
Sparse Matrix-Matrix multiplication (SPMM) between a sparse 𝑛×𝑛
Laplacian matrix L and a dense 𝑛 × 𝑑 embedding matrix, which
can also be handled by MKL Sparse BLAS routines.

5 END-TO-END EVALUATIONS

In this section, we evaluate LightNE on nine graph datasets, sum-
marized in Table 3. These datasets fall into three natural groups by
scale: (1) large graphs in previous works, such as Friendster studied
by GraphVite and OAG studied by NetSMF; (2) some of the largest
publicly-available graphs where no previous results on network



Algorithm 3: Randomized SVD.
1 Procedure RandomizedSVD(𝑨, 𝑑)
2 Sample Gaussian random matrix 𝑶 and 𝑷 // vsRngGaussian

3 Gaussian random projection 𝒀 = 𝑨⊤𝑶 // mkl_sparse_s_mm

4 Orthonormalize 𝒀 // LAPACKE_sgeqrf, LAPACKE_sorgqr

5 Compute 𝑩 = 𝑨𝒀 // mkl_sparse_s_mm

6 Gaussian random projection 𝒁 = 𝑩𝑷 // cblas_sgemm

7 Orthonormalize 𝒁 // LAPACKE_sgeqrf, LAPACKE_sorgqr

8 Compute 𝑪 = 𝒁⊤𝑩 // cblas_sgemm

9 Run SVD on 𝑪 = 𝑼𝚺𝑽⊤ // LAPACKE_sgesvd

10 return 𝒁𝑼 , 𝚺, 𝒀𝑽 // cblas_sgemm

Table 2: Hardware configurations and their most similar counterparts in
Azure. N/A indicates it is not reported in the original paper.

vCores RAM GPU Price ($/h)

System

GraphVite N/A 256 GB 4X P100 N/A
PBG 48 256 GB 0 N/A
NetSMF 64 1.7 TB 0 N/A
LightNE 88 1.5 TB 0 N/A

Azure

NC24s v2 24 448 GiB 4X P100 8.28
E48 v3 48 384 GiB 0 3.024
M64 64 1024 GiB 0 6.669
M128s 128 2,048 GiB 0 13.338

embeddings exist; (3) small-sized benchmarks standard to the net-
work embedding literature, such as Blogcatalog and Youtube. We
use the large graphs from (1) to demonstrate the effectiveness and
efficiency of our method. The experiments on the very large graphs
from (2) further demonstrate that our system can scale beyond
previous work. The small graphs from (3) are used to verify the
effectiveness of LightNE, although they are not our main target
scenarios. We set up our evaluation in Section 5.1 and then report
experimental results in the three groups, respectively.

5.1 Experimental Setup

Hardware Configuration. For LightNE, all experiments are con-
ducted on a server with two Intel®Xeon®E5-2699 v4 CPUs (88
virtual cores in total) and 1.5 TB memory.
Accuracy Metrics. We follow the tasks and evaluation metrics in
the original proposals. When comparing to PBG on LiveJournal, we
evaluate the link prediction task with metrics to be mean rank (MR),
mean reciprocal rank (MRR), and HITS@10. When comparing to
GraphVite on Hyperlink-PLD , we evaluate the link prediction task
with metric to be AUC. For the rest of the datasets, the task is node
classification, and the metric is Mico/Macro F1.
Efficiency Metrics.We compare both the time and cost efficiency
of different systems. Time efficiency is measured by running time,
while cost efficiency is measured by estimated cost. Our cost estima-
tion is based on the pricing ($) on Azure Cloud (The AWS price is
very similar). We search the most suitable Azure instance for each
system and then use its price per hour multiplied by the running
time to estimate the cost. As shown in Table 2, we assumeGraphVite
uses NC24s v2, PBG uses E48 v3, while NetSMF and LightNE use
M128s. The reason why we present cost efficiency is that different
systems have different hardware requirements — GraphVite is a
CPU-GPU hybrid system, while LightNE and NetSMF are CPU

applications. Thus we use cloud rent price as a measure for the
value of different hardware configurations.

5.2 Large Graphs

We compare to three systems that are designed for large graphs:
PyTorch-BigGraph, GraphVite, and NetSMF. We use the tasks,
datasets, hyper-parameters, and evaluation scripts provided by the
corresponding papers’ GitHub repos in making these comparisons.

5.2.1 Comparison with PyTorch-BigGraph (PBG). We comparewith
PBG on the LiveJournal dataset 4. For LightNE, we set 𝑇 = 5 by
cross-validation. The results are reported in the following table:

Time Cost MR MRR Hits@10

PBG 7.25 h $21.95 4.25 0.87 0.93
LightNE 16 min $2.76 2.13 0.91 0.98

.

Not only does LightNE achieve better performance regarding all
metrics, but it also reduces time and cost by one order of magnitude.
Specifically, LightNE is 27× faster and 8× cheaper than PBG.

5.2.2 Comparison with GraphVite. GraphVite offers the evalua-
tion of link prediction task on Hyperlink-PLD and node classifi-
cation task on Friendster-small and Friendster. The performance
of LightNE is obtained by setting 𝑇 = 5 via cross-validation.
LightNE achieves AUC score 96.7 and outperforms GraphVite’s
94.3. Limited by space, we report Micro-F1 for the two node classi-
fication tasks (Friendster-small and Friendster), and the conclusion
for Macro-F1 is the same. For LightNE, cross-validation shows that
the best performance is obtained by setting 𝑇 = 1. The following is
the performance when the label ratio is 1%, 5%, and 10%:
Metric Dataset Label Ratio (%) 1 5 10

Micro-F1
Friendster-small GraphVite 76.93 87.94 89.18

LightNE 84.53 93.20 94.04

Friendster GraphVite 72.47 86.30 88.37
LightNE 80.72 91.11 92.34

AUC Hyperlink-PLD GraphVite 94.3 LightNE 96.7

.

As we can see, LightNE is significantly better than GraphVite. This
again shows that our method is competitive.

As for efficiency, LightNE can embed Hyperlink-PLD in 30 min,
11× faster than GraphVite. Moreover, LightNE achieves 29× and
32× speedup respectively in Friendster-small and Friendster, and
saves the cost by orders of magnitude (22× cheaper on Friendster-
small and 25× cheaper on Friendster). The detailed efficiency com-
parison between LightNE and GraphVite is summarized as follows:

Friendster-small Hyperlink-PLD Friendster

Time GraphVite 2.79 h 5.36 h 20.3 h
LightNE 5.83 min 29.77 min 37.6 min

Cost GraphVite $28.84 $44.38 $209.84
LightNE $1.30 $6.62 $8.36

.

5.2.3 Comparing with NetSMF and ProNE+. NetSMF and ProNE are
redesigned and used as building blocks of LightNE. In this section,

4PBG reports results on LiveJournal, YouTube and Twitter, but only releases configu-
ration for LiveJournal in the official github repository.



Table 3: Datasets statistics.

Small Graphs ( |𝐸 | ≤ 10𝑀) Large Graphs (10𝑀 < |𝐸 | ≤ 10𝐵) Very Large Graphs ( |𝐸 | > 10𝐵)

BlogCatalog YouTube LiveJournal Friendster-small Hyperlink-PLD Friendster OAG ClueWeb-Sym Hyperlink2014-Sym

|𝑉 | 10,312 1,138,499 4,847,571 7,944,949 39,497,204 65,608,376 67,768,244 978,408,098 1,724,573,718
|𝐸 | 333,983 2,990,443 68,993,773 447,219,610 623,056,313 1,806,067,142 895,368,962 74,744,358,622 124,141,874,032

Table 4: Comparison on OAG with label ratio 0.001%, 0.01%, 0.1% and 1%.

Metric Method Time 0.001% 0.01% 0.1% 1%

Micro

NetSMF (M=8Tm) 22.4 h 30.43 31.66 35.77 38.88
ProNE+ 21 min 23.56 29.32 31.17 31.46

LightNE-Small 20.9 min 23.89 30.23 32.16 32.35
LightNE-Large 1.53 h 44.50 52.89 54.98 55.23

Macro

NetSMF (M=8Tm) 22.4 h 7.84 9.34 13.72 17.82
ProNE+ 21 min 10.47 10.30 9.83 9.79

LightNE-Small 20.9 min 10.90 11.92 11.59 11.57
LightNE-Large 1.53 h 25.85 35.72 38.18 38.53

.
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Figure 2: Efficiency-effectiveness trade-off curve of LightNE.

we focus on investigating how LightNE combines and strength-
ens the advantages of both. The dataset we adopt is OAG [29], the
largest graph from NetSMF. We vary the number of edge samples
𝑀 conducted by LightNE from 0.1𝑇𝑚 to 20𝑇𝑚. We denote the con-
figuration with the fewest edge samples (𝑀 = 0.1𝑇𝑚) as LightNE-
Small, and the one with the most edge samples (𝑀 = 20𝑇𝑚) as
LightNE-Large. As for NetSMF, we enumerate its edge samples
𝑀 from {1𝑇𝑚, 2𝑇𝑚, 4𝑇𝑚, 8𝑇𝑚}5. Both LightNE and NetSMF set
𝑇 = 10. The Python implementation released by ProNE paper [40] is
inefficient, and it “requires 29 hours to embed a network of hundreds
of millions of nodes” (quote from the abstract of ProNE paper [40]).
For fair comparison, we re-implement ProNE to benefit from our
system optimizations (highly optimized GBBS for graph processing
and MKL for linear algebra operations). Our re-implementation
has comparable accuracy to the original one on datasets used in
ProNE [40], but much faster. We refer to this new implementation
as ProNE+. The predictive performance of LightNE, NetSMF and
ProNE+ is shown in Table 4 and Figure 2.
Comparing LightNE-Large with NetSMF.As shown in Table 4,
LightNE-Large achieves 14.9× speedup (1.53h v.s. 22.4h) and sig-
nificant performance gain (on average 52.3% and 201.7% relatively
better regarding Micro and Macro F1, respectively).
Comparing LightNE-Small with ProNE+.As shown in Table 4,
not only does LightNE-Small run faster than ProNE+ (20.9 min
v.s. 21 min), but also outperforms ProNE+ significantly (averagely
+0.78 Micro F1 and +1.4 Macro F1).
5We can not run the experiment with𝑀 = 10𝑇𝑚 in NetSMF paper because it needs
1.7TB memory but our machine has only 1.5TB memory.

Overall, LightNE is a Pareto-optimal solution that strictly dom-
inates ProNE+ or NetSMF — for either ProNE+ or NetSMF, one can
find a configuration of LightNE in Figure 2 that is faster and more
accurate. Moreover, there is a clear trade-off between efficiency and
effectiveness in LightNE. That means a user can configure and adjust
LightNE flexibly according to his/her time/cost budgets and perfor-
mance requirements. Comparing LightNE to NetSMF and ProNE+
also suggests that spectral propagation plays the role of “standing
on the shoulder of giants” — the quality of the enhanced embedding
heavily relies on that of the initial one.

5.2.4 Ablation Study on the OAG Dataset. Next, we conduct abla-
tion studies on the OAG dataset.
Ablation Study on Running Time. We break down the run-
ning time of LightNE, NetSMF, and ProNE+, as shown in Table 5.
LightNE consists of three stages — parallel sparsifier construction,
randomized SVD, and spectral propagation. In contrast, (1) NetSMF
does not have the third stage; (2) ProNE+ directly factorizes a simple
graph Laplacian matrix, so it doesn’t have the first stage;

Comparing LightNE-Large with NetSMF, LightNE achieves 33x
speedup when constructing the sparsifier, showing the advantages
of the sparse parallel graph processing, the downsampling algo-
rithm, and the sparse parallel hashing. It also achieves 4.8x speedup
when factorizing the sparse matrix, showing the advantage of Intel
MKL over Eigen3 in the implementation of randomized SVD.

Comparing LightNE-Small with ProNE+, both methods take
8.2 min in spectral propagation, while the factorization step in
LightNE is slightly faster than that of ProNE+. The main reason is
that thematrix factorized by LightNE-Small is sparser than ProNE+.
Note that ProNE+ has exactly𝑚 non-zeros in its matrix to be factor-
ized. However, for LightNE-Small with𝑀 = 0.1𝑇𝑚 =𝑚 samples,
the actual number of non-zeros in the sparsifier could be fewer
than𝑚, due to the downsampled PathSampling algorithm (Algo. 2).
Ablation Study on Sample Size.Comparing to NetSMFwith 8𝑇𝑚
samples, LightNE-Large is able to draw up to 20𝑇𝑚 (2.5x) samples
and achieves significantly better performance. The large sample
size can be attributed to (1) compressed GBBS, (2) downsampling
technique, and (3) sparse parallel hashing. However, the uncom-
pressed OAG graph (in CSR format) occupies only 16GB; thus, the
effect to compressed GBBS is negligible given our machine has
1.5TB memory (though compressed GBBS plays a big role in very
large graphs, ref. Section 5.3). We turn off the downsampling in
LightNE and gradually increase its number of samples until out-
of-memory. We observe that we can have at most 12.5𝑇𝑚 samples
without downsampling, which is 56.3% greater than NetSMF’s 8𝑇𝑚.
The above analysis suggests that the sparse parallel hashing is an-
other contributor to the larger sample size — it increases affordable
sample size by 56.3%, and downsampling further increases by 60%.
This is because the shared-memory hash table in LightNE can sig-
nificantly save memory. However, NetSMF maintains a thread-local
sparsifer in each thread and merges them at the end of sampling.



Table 5: The running time distribution of LightNE, NetSMF and ProNE+.
NA means the algorithm does not have the corresponding stage.

Time Parallel Sparsifier
Construction

Randomized
SVD

Spectral
Propagation

LightNE-Large 32.8 min 49.9 min 8.1 min
NetSMF (M=8Tm) 18 h 4 h NA

LightNE-Small 1.4 min 10.5 min 8.2 min
ProNE+ NA 12.0 min 8.2 min
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Figure 3: HITS@K (𝐾 = 1, 10, 50) of LightNE w.r.t. the number of samples.

5.3 Very Large Graphs

To further illustrate the lightweightness and scalability of LightNE,
we test LightNE on two very large 100-billion scale graphs, ClueWeb-
Sym, and Hyperlink2014-Sym, as shown in Table 3. It is worth
noting that none of the existing network embedding systems can
handle such large graphs in a single machine. For example, it takes
564GB memory to store ClueWeb-Sym’s 74 billion unweighted
edges. Furthermore, the Hyperlink2014 graph is one of the largest
publicly available graph today, and very few graph processing sys-
tems or graph algorithms have been applied to a graph of this mag-
nitude, in any setting [5]. However, by adopting the graph compres-
sion from GBBS [5], we are able to reduce the size of ClueWeb-Sym
to 107GB. Moreover, by leveraging the downsampling technique in
Section 3.2, we are able to maintain a 𝑂 (𝑛 log𝑛) sparsifier, which
only requires a modest amount of memory and enables us to apply
randomized SVD without an excessive memory footprint.

To evaluate the performance of LightNE on very large graphs,
we adopt link prediction to be the evaluation task, as vertex labels
are not available for these graphs. We follow PBG to set up link
prediction evaluation — we randomly exclude 0.00001% edges from
the training graph for evaluation. When training LightNE on the
two very large graphs, we skip the spectral propagation step (due
to memory issue) and set 𝑇 = 2 as well as 𝑑 = 32. After training,
the ranking metrics on the test set are obtained by ranking positive
edges among randomly sampled corrupted edges. We gradually
increase the number of edge samples until it reaches the 1.5TB
memory bottleneck. For each experiment, LightNE needs fewer
than two hours for training. Figure 3 presents the HITS@K with
𝐾 = 1, 10, 50 of LightNE with different numbers of edge samples
𝑀 . As we can see, the more samples we draw by edge sampling,
the higher accuracy LightNE can achieve. Moreover, the trend of
growth shown in Figure 3 suggests that the performance in these
datasets can be further improved if we can overcome the memory
bottleneck by, for example, using a machine with larger memory,
or designing compressed hash tables and linear algebra tools.
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Figure 4: Predictive performance on small graphs.

5.4 Small Graphs

As shown in Figure 4, we compare the prediction performance of
LightNE against all the baselines6 in BlogCatalog and YouTube. In
BlogCatalog, LightNE outperforms all the baselines consistently in
terms of Macro-F1, and achieves comparable results to GraphVite
regarding Micro-F1. In YouTube, the right panel of Figure 4 suggests
that LightNE, together with GraphVite, consistently yields the
best results among all the methods. In particular, LightNE shows
better Micro-F1 than GraphVite when the training ratio is small (1-
6%). We also highlight that ProNE+ performs consistently worse
than LightNE, again showing that enhancing a simple embedding
via spectral propagation may yield sub-optimal performance. The
experiments on small graphs demonstrate the effectiveness of our
system, though the system is mainly designed for larger graphs.

6 CONCLUSION

In this work, we present LightNE, a single-machine shared-memory
system that significantly improves the efficiency, scalability, and ac-
curacy of state-of-the-art network embedding techniques. LightNE
combines two advanced network embedding algorithms, NetSMF
and ProNE, to achieve state-of-the-art performance on nine bench-
marking graph datasets, compared to three recent network em-
bedding systems—GraphVite, PyTorch-BigGraph, and NetSMF. By
incorporating sparse parallel graph processing techniques, and
other parallel algorithmic techniques like sparse parallel hashing
and high-performance parallel linear algebra, LightNE is able to
learn high-quality embeddings for graphs with hundreds of billions
of edges in a few hours, all at a modest cost.

In the future, as we discussed in Section 5.2, we plan to study
techniques for reducing the memory bottleneck on our hash table
and SVD implementation. Designing efficient compression tech-
niques for these data structures is a promising avenue to achieve
even better performance for massive real-world networks. We also
would like to study large-scale network embedding in a streaming
or dynamic setting.
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