
POSTER: ParGeo: A Library for Parallel

Computational Geometry

Yiqiu Wang1, Shangdi Yu1, Laxman Dhulipala1, Yan Gu2, Julian Shun1
{yiqiuw, shangdiy, laxman}@mit.edu ygu@cs.ucr.edu jshun@mit.edu

1MIT CSAIL 2UC Riverside

Abstract: We present ParGeo, a multicore library for computa-
tional geometry algorithms.We describe two of the algorithms from
ParGeo, convex hull and the smallest enclosing ball, and present a
short evaluation of all implementations currently in ParGeo.
1 Introduction

Computational geometry algorithms have important appli-
cations in areas such as graphics, robotics, computer vision,
and geographic information systems. There exist numerous
libraries for computational geometry, but most of them are
not designed for parallel processing. For example, CGAL [1]
is a famous library of computational geometry algorithms
that includes a wide range of packages, but most implemen-
tations are not parallel. Batista et al. [2] parallelize the spatial
sorting, box intersection, and Delaunay triangulation algo-
rithms in CGAL. Libigl specializes in the construction of
discrete differential geometry operators and finite-element
matrices. Other libraries include PMP, Cinolib, and Tetwild,
which are designed for polygonal and polyhedron meshes.
These libraries are partially parallelized and tackle different
problems from CGAL.
This paper presents the ParGeo library, which targets

similar classes of problems as CGAL, but containsmanymore
parallel multicore implementations of algorithms than prior
work. A subset of the algorithms in ParGeo are from the
Problem Based Benchmark Suite [8]. The code for ParGeo
is publicly available at https://github.com/ParAlg/ParGeo.
2 The ParGeo Library

We describe here the current (preliminary) implementa-
tions in ParGeo, and we plan to continue adding more imple-
mentations to ParGeo. Many of the implementations have
been ported into ParGeo from our prior work [10–12, 14].
ParGeo contains efficient multicore implementations of

𝑘d-trees. The code supports 𝑘d-tree based spatial search,
including 𝑘-nearest neighbor and range search. The code
can also compute the bichromatic closest pair by traversing

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508429

two 𝑘d-trees. Our code is optimized for fast 𝑘d-tree con-
struction by performing the split in parallel, and the queries
themselves are data-parallel. We also include a parallel batch-
dynamic 𝑘d-tree that supports batch insertions and deletions.
Our 𝑘d-tree can be used to generate a well-separated pair
decomposition (WSPD), which can be used to compute the
Euclidean minimum spanning tree (EMST) and spanners.
In addition, ParGeo contains parallel implementations

for classic algorithms in computational geometry, including
Morton sorting, closest pair, convex hull, and smallest en-
closing ball. ParGeo also contains a collection of geometric
graph generators for point data sets. It includes routines for
constructing 𝑘-nearest neighbor graphs using 𝑘d-trees, and
also supports common spatial network graphs, including the
Delaunay graph and the 𝛽-skeleton graph.
Below, we briefly describe our parallel implementations

for convex hull and smallest enclosing ball, which we have
not presented in prior work.
Convex Hull. The convex hull of a set of points in R𝑑 is
the smallest convex polyhedron containing all of the points.
ParGeo includes a practical parallel incremental algorithm
for R2 and R3 that is able to express both the randomized
incremental algorithm and the quickhull algorithm. The high
level idea is similar to a sequential incremental algorithm,
where a convex hull is iteratively updated by adding points
in a round-based manner. However, unlike a sequential in-
cremental algorithm that adds one point per round, we add
multiple points in parallel in a round. The key challenge is
that some of the points cannot be processed in parallel due to
concurrent modifications on the shared convex polyhedron.
We use a reservation algorithm [3] to resolve these conflicts,
such that we only process the points that modify disjoint
facets of the polyhedron. We give each point a unique ID,
and have it perform priority concurrent writes with its ID to
reserve all of its visible facets. Only a point that has its ID
written to all of its visible facets will proceed to modify the
polyhedron. The algorithm terminates when there are no
more points outside of the polyhedron. Our ideas are based
on a recent theoretical algorithm from Blelloch et al. [5].

We have also implemented existing algorithms which use
our incremental algorithm as a subroutine. They include a
divide-conquer algorithm that divides the input based on the
number of processors and combines the partial results in the
end, as well as the pseudo-hull algorithm by Tang et al. [9].
Smallest Enclosing Ball. The smallest enclosing ball of set

https://github.com/ParAlg/ParGeo
https://doi.org/10.1145/3503221.3508429


of points in R𝑑 is the smallest 𝑑-sphere containing all of the
points. It is well known that the smallest enclosing ball is
unique and defined by a support set of 𝑑 + 1 points on the
surface of the ball. For the smallest enclosing ball problem
in constant dimensions, the algorithm and implementation
of Gartner [6], which is a variation of Welzl’s randomized
incremental algorithm [13], is the state of the art in the
sequential setting. In the parallel setting, Larsson et al. [7]
developed practical algorithms for both CPUs and GPUs.
ParGeo includes a new sampling-based algorithm for

smallest enclosing ball in R2 and R3, based on Larsson et al.’s
approach to quickly reduce the size of the data set. Our sam-
pling algorithm is based on Larsson et al.’s orthant-scan [7].
Similarly to orthant-scan, our algorithm scans the input to
search for good support sets in a round-based manner. Our
algorithm divides the space into orthants (4 for R2 and 8
for R3) centered at the center of an initial ball. On each it-
eration, we scan through a small random sample, and find
the furthest visible samples in each orthant. The ball is then
updated to the next intermediate solution using the existing
support set and the new visible samples found. The algorithm
iterates until there are no more visible points, followed by a
full orthant-scan to compute the final smallest enclosing ball.
Compared with Larsson’s algorithm, our sampling algorithm
avoids repeatedly scanning the input in the initial stage. We
parallelize the orthant scan by dividing the input array to
into blocks and processing each block sequentially, but in
parallel across different blocks.
ParGeo also includes an optimized implementation of

Blelloch et al.’s [4] parallelization of Welzl’s algorithm, with
the move-to-front (MTF) and pivoting heuristics [6, 13].
3 Experimental Evaluation

We run experiments on a 36-core machine with two-way
hyper-threading, and 144 GiB of RAM. Our data sets contain
10 million uniformly distributed points in a hypercube in 2, 3,
and 5 dimensions. Table 1 shows the running times and par-
allel speedup for the implementations in ParGeo. Our imple-
mentations achieve parallel speedups of 4.07–46.61x (22.74x
on average). Figure 1 compares the performance of differ-
ent implementations of convex hull and smallest enclosing
ball. For convex hull, we observe that the existing sequential
implementations in CGAL is significantly slower than our
parallel implementations. Our parallel divide-and-conquer
(DC-Inc) and pseudo-hull (PH-Inc) [9] implementations that
use our incremental algorithm as a sub-routine achieve the
fastest running times. For smallest enclosing ball, Larsson’s
orthant-scan (OrthScan) [7] and our sampling algorithm are
significantly faster than the implementation in CGAL and
our parallelized Welzl’s algorithm with heuristics.
Acknowledgements. This research is supported by DOE Early
Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,
NSF Award #CCF-2103483, Google Faculty Research Award, Google
Research Scholar Award, DARPA SDH Award #HR0011-18-3-0007,

Implementation 𝑇1 𝑇36ℎ Speedup (𝑇1/𝑇36ℎ )
𝑘d-tree Build (2d) 5.51 0.43 12.70x
𝑘d-tree Build (5d) 8.39 0.89 9.40x
𝑘d-tree 𝑘-NN (2d) 31.45 0.68 46.34x
𝑘d-tree Range Search (2d) 17.14 0.37 46.61x
Dynamic 𝑘d-tree Insert (2d) 2.43 0.60 4.07x
Dynamic 𝑘d-tree Delete (2d) 1.09 0.14 7.69x
WSPD (2d) 6.72 0.24 27.63x
EMST (2d) 33.02 1.58 20.86x
Convex Hull (2d) 0.38 0.0088 43.13x
Convex Hull (3d) 2.36 0.097 24.36x
Smallest Enclosing Ball (2d) 0.053 0.0033 16.30x
Smallest Enclosing Ball (5d) 0.13 0.014 9.54x
Closest Pair (2d) 10.35 0.52 19.90x
Closest Pair (3d) 28.00 2.32 12.07x
𝑘-NN Graph (2d) 37.89 1.46 25.99x
Delaunay Graph (2d) 55.91 2.03 27.53x
Gabriel Graph (2d) 59.61 1.99 29.99x
𝛽-skeleton Graph (2d) 113.27 3.20 35.37x
Spanner (2d) 27.19 2.15 12.67x

Table 1. Runtimes (seconds) and parallel speedups for ParGeo
implementations on hypercube data sets with 10 million points. 𝑇1
and𝑇36ℎ denote the single-threaded and the 36-core hyper-threaded
times, respectively.

CGAL

Ran
d-In

c

Quick
Hull-

In
c

DC-In
c

PH-In
c

102

103

104
Convex Hull (3d) Time (Sec)

CGAL
W

elz
l

W
elz

l-M
TF

W
elz

l-P
ivo

tin
g

Orth
Sca

n

Sam
plin

g

101

102

103

SEB (3d) Time (Sec)

Figure 1. Runtimes (seconds) of convex hull (left) and smallest
enclosing ball (right) on the 3d hypercube data set using all cores.
and Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA.
References

[1] The computational geometry algorithms library. www.cgal.org.
[2] V. H. Batista, D. L. Millman, S. Pion, and J. Singler. Parallel geometric

algorithms for multi-core computers. Comput. Geom., 2010.
[3] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally

deterministic parallel algorithms can be fast. In PPoPP, 2012.
[4] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized

incremental algorithms. In SPAA, 2016.
[5] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental

convex hull is highly parallel. In SPAA, 2020.
[6] B. Gärtner. Fast and robust smallest enclosing balls. In ESA, 1999.
[7] T. Larsson, G. Capannini, and L. Källberg. Parallel computation of

optimal enclosing balls by iterative orthant scan. Comput. Graph.,
2016.

[8] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan. Brief announcement: The problem
based benchmark suite. In SPAA, 2012.

[9] M. Tang, J. Zhao, R. Tong, and D. Manocha. GPU accelerated convex
hull computation. Computers & Graphics, 2012.

[10] Y. Wang, S. Yu, L. Dhulipala, Y. Gu, and J. Shun. Geograph: A frame-
work for graph processing on geometric data. SIGOPS OSR, 2021.

[11] Y.Wang, S. Yu, Y. Gu, and J. Shun. Fast parallel algorithms for Euclidean
minimum spanning tree and hierarchical spatial clustering. In SIGMOD,
2021.

[12] Y. Wang, S. Yu, Y. Gu, and J. Shun. A parallel batch-dynamic data
structure for the closest pair problem. In SoCG, 2021.

[13] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results
and New Trends in Computer Science, 1991.

[14] R. Yesantharao, Y. Wang, L. Dhulipala, and J. Shun. Parallel batch-
dynamic 𝑘d-trees. arXiv, 2021.

www.cgal.org


A Artifact

In this section, we present the instructions for our arti-
fact, which is publicly available at https://zenodo.org/record/
5812180.
Setting up the environment and dependencies. We per-
form all of our experiments on an Amazon EC2 c5.18xlarge

instance with 36 cores and 144 GB of RAM, using Ubuntu
20.04.2 LTS. After setting up the instance, an Internet con-
nection is required throughout the process for downloading
dependencies for compiling, testing, and benchmarking the
code.

Install the dependencies with the following commands:
sudo apt-get update
sudo apt-get -y install build-essential
sudo apt-get -y install cmake

Compiling and running the benchmarks. Download the
artifact, unzip it, and navigate to the artifact root directory,
which contains a README.md file.

Since all of the necessary steps are included in the
runme.sh script, simply run the script with sh runme.sh. The

final benchmarking results will be automatically generated
as JSON files in the build/benchmark/ directory.
Generating Table 1. After running runme.sh, create the
table by running sh tabulate.sh. The script will first copy
relevant JSON files from the build/benchmark/ directory to
the plot/ directory, and then compute the speedups using a
script. The speedups will be displayed on the console, and
they should be similar to the numbers reported in Table 1.
Generating Figure 1. The generation of the plot re-
quires Python3 and the matplotlib 3.4.2 package. Assum-
ing Python3 is already installed, install the plotting depen-
dency with the following commands:
sudo apt install -y python3-pip
pip3 install matplotlib

Run the plotting script by running sh plot.sh from the
artifact root directory. The plotting script first copies the
JSON outputs from the build/benchmark/ directory to the
plot/ directory, and then generates the plots. After that,
the plots can be found in the plot/ directory as PDF files,
which correspond to Figure 1. The running times of the
baselines whose implementations do not belong to us are
not generated.

https://zenodo.org/record/5812180
https://zenodo.org/record/5812180

	1 Introduction
	2 The ParGeo Library
	3 Experimental Evaluation
	References
	A Artifact

