
Poster:
The Problem-Based Benchmark Suite (PBBS), V2

Daniel Anderson
Carnegie Mellon University

Pittsburgh, PA, USA
dlanders@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

Pittsburgh, PA, USA
guyb@cs.cmu.edu

Laxman Dhulipala
University of Maryland, College Park

College Park, MD, USA
laxman@umd.edu

Magdalen Dobson
Carnegie Mellon University

Pittsburgh, PA, USA
mrdobson@cs.cmu.edu

Yihan Sun
UC Riverside

Riverside, CA, USA
yihans@cs.ucr.edu

Abstract
The Problem-Based Benchmark Suite (PBBS) is a set of bench-
mark problems designed for comparing algorithms, imple-
mentations and platforms. For each problem, the suite defines
the problem in terms of the input-output relationship, and
supplies a set of input instances along with input generators,
a default implementation, code for checking correctness or
accuracy, and a timing harness. The suite makes it possi-
ble to compare different algorithms, platforms (e.g. GPU vs
CPU), and implementations using different programming
languages or libraries. The purpose is to better understand
how well a wide variety of problems parallelize, and what
techniques/algorithms are most effective.

The suite was first announced in 2012 with 14 benchmark
problems. Here we describe some significant updates. In par-
ticular, we have added nine new benchmarks from a mix of
problems in text processing, computational geometry and
machine learning. We have further optimized the default
implementations; several are the fastest available for multi-
core CPUs, often achieving near perfect speedup on the 72
core machine we test them on. The suite now also supplies
significantly larger default test instances, as well as a broader
variety, with many derived from real-world data.

CCS Concepts: •Computingmethodologies→ Parallel
algorithms.

Keywords: benchmarking, parallel algorithms, performance

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508422

1 Introduction
The Problem Based Benchmark Suite (PBBS) [8] is a collec-
tion of benchmark problems aimed at helping better under-
stand the most effective algorithms and implementations for
a variety of common and widely used problems. Unlike most
benchmarks which are based on specific code and achieving
the best performance out of that code [2, 3, 10] (e.g., using
new hardware, runtimes, or compiler techniques), the bench-
marks in PBBS are defined in terms of an I/O specification.
The design of the suite was motivated by the need to better
understand the tradeoffs among the many different hard-
ware and software platforms and algorithmic techniques
that can be used to get good parallel performance. They are
hence designed to be agnostic to the programming language
used, programming style used (e.g., nested parallel vs. bulk
synchronous vs. map-reduce), and hardware platform (e.g.,
GPU vs CPU vs distributed memory). The most similar other
benchmarks are the Parboil benchmarks [9]. However they
focus mostly on regular scientific tasks, and other than BFS
and histogram there is no overlap in the problem sets.

The original suite was released a decade ago and has been
used in several projects. In this poster we describe several
important updates that have been made to the suite. In PBBS,
each benchmark supplies the following, using comparison-
based sorting as an example:

• The definition of the input problem, e.g., takes an input se-
quence and a comparator, and returns an output sequence
with the same elements sorted based on the comparator.

• Specification of default input instances along with genera-
tors for them. For sorting the instances are sequences of
doubles generated in three distributions (uniform, expo-
nentional, near-sorted), as well as a sequence of pairs of
doubles, and a sequence of strings.

• A testing program that takes an input and the output gen-
erated by an implementation and checks it for correctness,
e.g., checks the output has the same keys and is sorted.

• A timing harness for timing the code. This requires that
the code can be linked with C++, otherwise the user can
print out times in a specific format.

https://doi.org/10.1145/3503221.3508422


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan Sun

• Scripts for generating the specified inputs, running the
timing harness, and running the testing code. By default
the implementation is run three times and the geometric
mean of times is reported.

• At least one parallel implementation designed for CPUs.

The updates we have made to the benchmark suite include
the following. Firstly, we have added nine new benchmarks,
marked in Table 1, bringing the total to twenty-two (we
dropped a dictionary benchmark). We added four in the
category of text processing since the previous benchmarks
only had one, and it is an important class of applications. We
also added a feature-based classification benchmark since
this is a broadly used application.
Secondly, we have added many more implementations

of some of the benchmarks. Our original suite only had at
most one parallel and one sequential implementation. We
now have several implementations of some of the bench-
marks. Sorting now has six implementations–sample sort,
stable sample sort, merge sort, quicksort, serial sort, and
ips4o sort [1]. In some cases one algorithm dominates while
in other cases it depends on the particular input. Some of
the additional implementations are our own, and some are
contributed by others.
Thirdly, we have improved the performance of many of

the default implementations. The nearest-neighbor default
parallel implementation, for example, is 3x faster than the
previous version. The integer sort is also considerably faster,
and the BFS now uses the backward-forward optimization
from Ligra [7] and matches the GBBS [5] performance.
Fourthly, we have broadened the set of input sets and

distributions. Originally, for example, we only had some syn-
thetic graphs, we now use a variety of graphs from the SNAP
graph dataset [6]. Similarly for the text, we have accumulated
a collection of real text from wikipedia, DNA sources, and
elsewhere. We also now include two sets of input instances
for each benchmark, one small and one large. The small one
is similar in size to the original, and the large one is an order
of magnitude larger.
Fifthly, the framework is now built on ParlayLib [4], a

library of parallel tools for C++. Importantly, ParlayLib has
been ported to and tested on a wide variety of compilers and
platforms. In addition to the testing and timing harnesses,
and data generators, for each benchmark we have at least
one parallel implementation based on ParlayLib.

Community Contributions.We would like to encourage
researchers to contribute to PBBS. This can include contribut-
ing new implementations either on multicores or on other
platforms (currently all our implementations are for multi-
cores). It can also include new benchmarks, or improvements
to the framework. Currently contributions can be made by
making a git push request. Some information on the expecta-
tions of benchmark are given below, and more in the online
documentation.

Basic Building Blocks
SORT Comparison based sort.

* HIST Histogram keys in given integer range.
ISORT Sorts integer keys in given range along with data.
DDUP Remove duplicates (integers, pairs, and strings).

Graph Algorithms
BFS Return a breadth-first-search tree from a given vertex.
MIS Return a maximal independent set.
MM Return a maximal matching.
SF Return a spanning tree.
MSF Return a minimum spaning tree with float weights.

Text Processing
SA Suffix array of a string of bytes.

* WC Break string into words, and report count for each word.
* IIDX Parse documents and generate inverted index.
* LRS Find the longest repeated substring.
* BWD Inverse Burrows-Wheeler transform on string of bytes.
Geometry and Graphics

CH 2D Convex Hull of ponts in clockwise order.
DT 2D Delaunay triangulation of set of points.

* DR 2D Delaunay refinement of set of triangles.
KNN k Nearest neighbors of points in 2D and 3D.
RAY In 3D determine first triangle each ray intersects.

* RQ In 2D for each rectangle count points it contains.
Other
* CLASS Predict labels for feature vectors given training vectors.
* NBODY Determine gravitational forces among n bodies in 3D.

Table 1. Benchmark descriptions. * indicates it is new in V2.

References
[1] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders.

2017. In-place parallel super scalar samplesort (IPS4o). In European
Symposium on Algorithms (ESA).

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSECBenchmark
Suite: Characterization and Architectural Implications. In ACM Intl.
Conf. on Parallel Architectures and Compilation Techniques (PACT).

[3] Stephen M. Blackburn and et. al. 2006. The DaCapo benchmarks: Java
benchmarking development and analysis. In Symposium on Object-
oriented Programming, Systems, Languages and Applications (OOPSLA).

[4] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-
layLib - A Toolkit for Parallel Algorithms on Shared-Memory Multi-
core Machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[5] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian
Shun. 2020. The Graph Based Benchmark Suite (GBBS). In Intl. Work-
shop on Graph Data Management Experiences and Systems (GRADES).

[6] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[7] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

[8] Julian Shun, Guy E. Blelloch, Jeremy T Fineman, Phillip B Gibbons,
Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012.
Brief announcement: the Problem-Based Benchmark Suite. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[9] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu.
2012. Parboil: A Revised Benchmark Suite for Scientific and Commercial
Throughput Computing. Technical Report IMPACT-12-01. UIUC.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations. In ACM Int. Symposium on Computer Architecture (ISCA).

http://snap.stanford.edu/data


The Problem-Based Benchmark Suite (PBBS), V2 PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

A Artifact Description
A.1 Overview
The artifact is the full contents of the problem-based bench-
mark suite (PBBS) version 2 as described above. To evaluate
performance of the benchmarks, we provide a script for run-
ning the benchmarks. We also outline here the structure of
the directories.

A.2 Requirements
Running experiments requires the following.
• Operating System: Linux or macOS.
• Hardware (small instances): Multicore machine with at
least 12GB of memory and 1GB of disk space.

• Hardware (large instances): Multicore machine with at
least 64GB of memory and 10GB of disk space.

• Software: A C++-17 compiler. jemalloc (or other efficient
allocator) is not required, but improves performance. nu-
mactl is also not required but improves performance on
multichip systems. CGAL is required to be installed for
one of the optional implementations but not needed for
the default ones.

Timing results are reported to standard output (stdout).

A.3 How delivered
The benchmark suite is available on GitHub:

https://github.com/cmuparlay/pbbsbench
Documentation can be found at:

https://cmuparlay.github.io/pbbsbench/

A.4 Setup
The suite can be cloned via github using:
$ git clone https://github.com/cmuparlay/pbbsbench.git
$ cd pbbsbench
$ git submodule update --init

The repository includes three sub-repositories: ParlayLib,
PAM and ips4o which will be loaded as submodules. The
ParlayLib library is used throughout, but the other two are
just used for one benchmark each.

A.5 Running the benchmarks
The top level directory includes a script runall for running
the benchmarks in various ways. Using
$ ./runall

will compile, run, verify results and report times for all the
default benchmark implementations (at least one for each
problem) on the large instances. This runs each implementa-
tion on all available cores (if parallel) and can take an hour
or more. The following optional arguments can be used:
-par : just run one parallel implementation of each problem.
-ext : run all implementations, not just the defaults.
-only <prob>/<impl> : only run the implementation <impl>

of the benchmark <prob>.

-small : use the small problem instances instead of the large
ones.

-scale : run scaling experiments using increasing number
of cores.

-nonuma : do not use numactl. This option must be passed
if numactl is not installed.

-nocheck : do not check correctness of result.
For a quick run try:
$ ./runall -par -small -nocheck

A.6 Benchmark Directories
Within the benchmarks directory at toplevel is a subdirec-
tory for each benchmark. The documentation for the bench-
marks, including specification and description of default
input instances, is available in the general documentation.

Within each benchmarks is a subdirectory for each of the
implementations. Each benchmark also has some directories
shared across implementations. In particular each has a di-
rectory called bench containing the driver and testing code.
Each benchmark also has a xxxData page containing data
generators for the benchmark (xxx varies by benchmark).

Within each implementation directory, you can run make
to make the executable, and then run ./testInputs to run
the benchmarks. These are run automatically by the ./runall
script. On a machine with multiple chips, using
$ numactl -i all ./testInputs

will give better results. ./testInputs_small will use the
smaller inputs. See the documentation for optional argu-
ments. The inputs are specified in the script and can be
changed if desired.

To add an implementation—we would love contributions—
create a new directory within the benchmark. It is probably
best to start by copying an existing one.

A.7 Timing
Users can use the benchmark suite as they please, but there
are certain expectations for timing an implementation so that
it can be properly compared with other implementations,
including the default ones.We do not expect a full end-to-end
timing of the executable because often the time is dominated
by reading the input file and possibly writing an output
file, which have little to do with the benchmark. Instead we
expect a benchmark to wrap a timer (real time) around the
benchmark itself. More details and the particular format for
outputting the result and times so they can be used by the
scripts is given in the documentation.

Acknowledgments
Funding provided by the National Science Foundation grants
CCF-1901381, CCF-1910030, CCF-1919223, and CCF-2103483.

https://github.com/cmuparlay/pbbsbench
https://cmuparlay.github.io/pbbsbench/

	Abstract
	1 Introduction
	References
	A Artifact Description
	A.1 Overview
	A.2 Requirements
	A.3 How delivered
	A.4 Setup
	A.5 Running the benchmarks
	A.6 Benchmark Directories
	A.7 Timing

	Acknowledgments

