
CMSC858N, Spring 2023, University of Maryland (Dhulipala)
HW2 (Theory), due as PDF at Gradescope by 5PM on March 31st

Notes: (i) List the other students with whom you discussed the problems on this assignment: such collab-
oration is allowed, but you need to write up your solutions by yourself. If you did not discuss any problems
with your classmates, please indicate this. Consulting other sources (including the Web) is not allowed. (ii)
Write your solutions neatly; if you are able to make partial progress by making some additional assumptions,
then state these assumptions clearly and submit your partial solution.

1. Leaffix and Rootfix Sums. Given a rooted tree T with n = |T | nodes, consider the leaffix and rootfix
sums.

• The leaffix algorithm processes a tree from the bottom to the top. The sum for a leaf is 0. For each
node v, v’s sum is the sum of all of its children’s sums.

• The rootfix algorithm processes a tree from the top to the bottom. The sum at the root is 0. For each
node v, its sum is the parent’s sum plus the value at the parent.

These concepts are illustrated in the figure below:
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Figure 1: Leaffix and Rootfix Sums on a rooted tree, T .

Show how to compute for each node v ∈ T , the leaffix and rootfix sums of all nodes in T in O(n) work and
O(log n) depth. (10 points)

2. Tree Contraction and Expansion. The parallel tree contraction algorithm we saw in class contracts a
tree T into a single node by repeatedly applying the Contract operator, which (1) rakes all the leaves and
(2) contracts an independent set of the degree-1 children. In this problem, we will revisit tree contraction,
finish fleshing out some of the details left out in class, and apply it to a new application.

• First consider expanding from a single node into the original tree, T by reversing the contraction
process. Just like rake and compress remove nodes from the tree, let’s define new operators, unrake
and uncompress which reintroduce leaves, and reintroduce previously compressed degree-1 nodes,
respectively. Give a high-level description of how to implement an expansion algorithm that applies
any user-defined unrake and uncompress operations. The algorithm should run in the same work and
depth bounds as the original tree contraction algorithm. You can give high-level pseudocode or explain
in words. (5 points)

• Explain how to use rake, unrake and compress and uncompress to solve the subtree maximum
problem, defined as follows: Given a rooted tree T we would like to compute for each v ∈ v the max
of all nodes in v’s subtree. In other words, if the set of nodes in v’s subtree is S(v), we would like to
compute maxu∈S(v) value(u). Your algorithm should run in the same work and depth as performing
parallel tree contraction on T . (5 points)
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3. Pretty-Printing Paragraphs. Given an integer sequence W of length n representing the length of each
word in an n-word paragraph, and a length L representing the number of characters that can fit on a line,
you would like to break the words in the paragraph into lines of length at most W . The output of the
algorithm is a sequence B of length n where B[i] = 1 if word i starts a new line.

You have the following serial code which performs line breaking. The algorithm below greedily keeps
packing words on a line until adding the next word would make the length go over W ; this next word will
then start a new line.

int cur_length = W[0]; B[0] = 1;

for (i=1; i < n; ++i) {

s += W[i];

B[i] = 0;

if (s > L) {

B[i] = 1;

s = W[i];

}

}

Design a parallel algorithm to compute the same output as the serial algorithm above that runs in O(n)
work and O(log n) span. Do not assume that L is a constant (i.e. the work and span must be independent
of L). (15 points) Hint: think about using list-ranking and the Euler-Tour Technique
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