
Differentiable Fluids with Solid Coupling for Learning and Control

Tetsuya Takahashi∗,†, Junbang Liang†, Yi-Ling Qiao†, Ming C. Lin†
∗Adobe, †University of Maryland at College Park

Abstract

We introduce an efficient differentiable fluid simulator that
can be integrated with deep neural networks as a part of lay-
ers for learning dynamics and solving control problems. It of-
fers the capability to handle one-way coupling of fluids with
rigid objects using a variational principle that naturally en-
forces necessary boundary conditions at the fluid-solid inter-
face with sub-grid details. This simulator utilizes the adjoint
method to efficiently compute the gradient for multiple time
steps of fluid simulation with user defined objective func-
tions. We demonstrate the effectiveness of our method for
solving inverse and control problems on fluids with one-way
coupled solids. Our method outperforms the previous gra-
dient computations, state-of-the-art derivative-free optimiza-
tion, and model-free reinforcement learning techniques by at
least one order of magnitude.

1 Introduction
Differentiable physics has been introduced recently as a
powerful and effective approach to solving control and in-
verse problems due to the differentiability that makes it pos-
sible to compute the gradient with user-defined objective
functions in a neural network. The computed gradient allows
us to use gradient-based optimizers, such as gradient descent
and quasi-Newton method, that are generally much more ef-
ficient than derivative-free optimization methods. Given the
larger number of degrees of freedoms (DOFs) for complex
dynamical systems (e.g., DOFs of fluids can be more than
10k) and their high computational cost for simulation over
many time steps, it is indispensable to take advantage of
the gradient information to efficiently minimize the objec-
tive functions.

Because of the effectiveness, many researchers investi-
gated differentiable physics formulations and their applica-
tions, e.g., for rigid bodies (Belbute-Peres et al. 2018; De-
grave et al. 2016), articulated rigid bodies (Geilinger et al.
2020; Sueda 2020), deformable solids (Hu et al. 2019; Weiss
et al. 2020), thin shells and cloths (Liang, Lin, and Koltun
2019), coupling of rigid bodies and cloths (Qiao et al. 2020),
smokes (Holl, Thuerey, and Koltun 2020; Um et al. 2020),
and liquids (Sanchez-Gonzalez et al. 2020). While some dif-
ferentiable formulations for fluid materials have been pro-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

posed, approaches to achieving differentiable physics differ
from each other, typically due to differences in the under-
lying fluid simulation methodologies. In the literature, there
are two types of commonly used fluid simulation methods
characterized by distinct spatial discretization techniques:
Eulerian grid-based approach and Lagrangian particle-based
approach. While the Lagrangian particle-based approach has
become popular due to its flexibility, it is known to be chal-
lenging to enforce the fluid incompressibility, which plays
an important role for realistic fluid behaviors. By contrast,
Eulerian grid-based approach has been proven to be efficient
and effective in simulating incompressible fluids.

The differentiable approach for Eulerian fluid simulation
has been proposed, e.g., with deep neural networks to predict
fluid behaviors (Wiewel, Becher, and Thuerey 2019; Wiewel
et al. 2020; Holl, Thuerey, and Koltun 2020; Wiewel et al.
2020). However, it is reported that predicting the complex
fluid behaviors for a long term can be difficult (Wiewel,
Becher, and Thuerey 2019; Wiewel et al. 2020). In addition,
fluids involving solid objects can pose additional challenges
because of the increased possible fluid and solid configu-
rations, which further make it difficult to learn and predict
the fluid dynamics. As such, for reliable predictions of fluid
behaviors involving solid interactions, it is typically neces-
sary to compute the fluid and solid dynamics using numeri-
cal simulation based on their governing equations.

In this paper, we propose a new differentiable fluid sim-
ulation method that can be integrated as a part of layers in
deep neural networks. The integrated differentiable simula-
tor enables end-to-end learning of the neural networks with
back propagation of the gradient through both of the simu-
lator and networks. The trained networks can generate con-
trol inputs for the simulator to handle fluid and solid control
problems. Our key contributions are summarized as follows.

1. Our differentiable fluid simulator offers the capability of
handling one-way coupled solids due to a variational prin-
ciple enforcing the fluid incompressibility for realistic
fluid behaviors, while appropriately applying the free-slip
boundary condition at the sub-grid, fluid-solid interface.

2. To achieve the differentiability, we apply the adjoint
method to the entire simulation steps of dynamical sys-
tems (unlike partial application of the adjoint method
within one time step, e.g., as in (Belbute-Peres et al. 2018;



Liang, Lin, and Koltun 2019; Holl, Thuerey, and Koltun
2020)), thereby enabling efficient and scalable gradient
computations for user defined objective functions.

3. Our differentiable fluid simulator computes the gradient
based on automatic differentiation (AD) at the high-level,
fluid simulation operations (e.g., advection and pressure
projection), avoiding the expensive reverse mode AD at
the low-level, primitive operations (e.g., addition and sub-
tractions of each variable), commonly implemented in
public libraries.

Our validations and experiments demonstrate that our dif-
ferentiable simulator can achieve at least one order of mag-
nitude performance improvement, compared to the state-of-
the-art techniques in inverse and control problems.

2 Related Work
Differentiable physics has been a powerful approach, and
various methods have been proposed. Therefore, we first re-
view prior differentiable physics techniques in x 2.1. In x2.2,
we discuss several works on machine learning for fluids
since machine learning techniques can also be one approach
to making physics simulations differentiable. For more ma-
chine learning applications on fluid mechanics, we refer to
the paper (Brunton, Noack, and Koumoutsakos 2020).

2.1 Differentiable Physics
Differentiable physics allows us to compute the gradient
over the sequence of the physics simulation, making it possi-
ble to use efficient gradient-based optimizers and thus to ef-
ficiently solve inverse and control problems. Degrave et al.
(Degrave et al. 2016) proposed a differentiable rigid body
simulation method by taking advantage of the automatic
differentiation technique implemented in Theano (Theano
Development Team 2016). Later, to improve the efficiency,
Belbute-Peres et al. (Belbute-Peres et al. 2018) applied the
adjoint method to rigid body contact problems at each sim-
ulation step in the gradient computation, combining the
differentiable techniques developed for quadratic programs
(Amos and Kolter 2017). Toussaint et al. (Toussaint et al.
2018) utilized differentiable physics to achieve complex ma-
nipulation tasks with a robot. Hu et al. (Hu et al. 2019)
presented an algorithm that combines each of the opera-
tions in the material point method to achieve a differentiable
soft body simulator. Liang et al. (Liang, Lin, and Koltun
2019) presented a differentiable cloth simulator by applying
the adjoint method to handle contact problems, similar to
the work of Belbute-Peres et al. (Belbute-Peres et al. 2018)
while also relying on automatic differentiation implemented
in PyTorch (Paszke et al. 2019). Recently, Qiao et al. (Qiao
et al. 2020) extended this work to support two-way cou-
pling of cloths and rigid bodies. Holl et al. (Holl, Thuerey,
and Koltun 2020) proposed using deep neural networks to
predict smoke behaviors and make the fluid simulation dif-
ferentiable. They also employed the adjoint method to ef-
ficiently perform the gradient computation in solving pres-
sure Poisson equations at each simulation step while their
approach also utilized automatic differentiation provided by
TensorFlow (Abadi et al. 2015). Schenck and Fox (Schenck

and Fox 2018) proposed a differential liquid simulator based
on Smoothed Particle Hydrodynamics (SPH) by implement-
ing inter-particle force exchanges within neural networks.
The differentiability of simulation methods also allow us to
compute the gradient, with respect to structure or shapes, as
demonstrated for protein (Ingraham et al. 2019), soft bodies
(Hu et al. 2019), and plane wings (de Avila Belbute-Peres,
Economon, and Kolter 2020).

Automatic Differentiation: In general, implementation
of differentiable physics simulation methods is likely to be
more complex than that of forward simulation methods. As
such, several works utilized the automatic differentiation im-
plemented in public libraries (Degrave et al. 2016; Belbute-
Peres et al. 2018; Liang, Lin, and Koltun 2019). However,
their low-level automatic differentiation is known to be slow
and expensive in memory usage, in exchange for their gen-
erality (see e.g., (Hu et al. 2019, 2020)), and specialized ap-
proaches (e.g., the adjoint method for high-level automatic
differentiation) which take advantage of the underlying sys-
tem structures are likely to be more efficient. Similar to
our work, the adjoint method has been employed to effi-
ciently compute the gradient of objective functions for fluids
(McNamara et al. 2004), particle systems (Wojtan, Mucha,
and Turk 2006), deformable objects (Weiss et al. 2020), ar-
ticulated rigid bodies (Geilinger et al. 2020; Sueda 2020).
For the gradient computation using the adjoint method for
fluid control, we refer to the review paper (Kim and Bewley
2007). As one approach to helping practitioners, Hu et al.
(Hu et al. 2020) proposed a programming language, which
computes gradient of physics simulation (e.g., for rigid bod-
ies and fluids) based on source code transformations.

Differentiable Fluids: Among differentiable physics ap-
proaches, while our work shares a similar goal with a con-
current work, PhiFlow (Holl, Thuerey, and Koltun 2020),
there are notable differences. In their work, forward simu-
lation has been replaced with predictions using neural net-
works for efficiency while we rely on numerical simulation
to accurately handle interactions between fluids and rigid
objects. In addition, their work combines low-level auto-
matic differentiation and adjoint method to make simulation
steps differentiable, whereas we apply the adjoint method
over the entire simulation at every time step to make the en-
tire simulator fully differentiable on its own without relying
on low-level automatic differentiation.

Adjoint Methods: Our differentiable fluid simulator is
inspired by (McNamara et al. 2004). However, as a signif-
icant departure from their approach, we introduce one-way
coupled solid objects to achieve boundary-driven fluid con-
trols and control of rigid bodies in the fluid environment,
enforcing appropriate solid boundary conditions with sub-
grid details. To achieve the sub-grid accuracy, we formu-
late the one-way coupling based on a variational principle
with volume fractions, which require augmenting the ad-
joint method, unlike their voxelized simulator. Additionally,
to integrate the gradient computation based on the adjoint
method with neural networks, we interweave forward simu-
lation, backward gradient computation, control input predic-
tions, and back propagation through neural networks. Such
a tight integration has not yet been considered in their work.



2.2 Machine Learning for Fluids
Applying machine learning to fluid simulation has become
popular recently. One of the earliest work presented by
Ladický et al. (Ladický et al. 2015) demonstrated that the
dynamics of SPH fluids can be learned with hand crafted
features to predict the behaviors of simulation particles us-
ing regression forests. To avoid using hand crafted fea-
tures, Schenck and Fox (Schenck and Fox 2018) presented
a deep-learning-based approach to predicting the behaviors
of SPH fluids. This approach is extended to improve the
efficiency by using continuous convolution with an auxil-
iary grid (Ummenhofer et al. 2020) and to support differ-
ent materials, such as rigid bodies and deformable solids,
by dynamically building graph structures (Li et al. 2019).
Recently, Sanchez-Gonzalez et al. (Sanchez-Gonzalez et al.
2020) proposed a general framework for learning simulation
from data, exploiting graph networks (Battaglia et al. 2018)
and demonstrated that their approach is robust to hyperpa-
rameter choices across various settings.

In the Eulerian setting, Wiewel et al. (Wiewel, Becher,
and Thuerey 2019) proposed a Long Short-Term Memory
(LSTM)-based approach to predicting the behaviors of grid-
based fluids, and this approach was later extended to ro-
bustly predict long-term sequences by dividing the latent
space (Wiewel et al. 2020). Morton et al. (Morton et al.
2018) also presented a deep learning framework to pre-
dict time evolution of fluid flows based on Koopman the-
ory. Deep learning methods for predicting the dynamics
of Reynolds-Averaged Navier-Stokes simulations have been
also reported in (Ling, Kurzawski, and Templeton 2016;
Thuerey et al. 2020). Unlike these sequence prediction ap-
proaches, Tompson et al. (Tompson et al. 2017) presented
a Convolutional Neural Network (CNN)-based method for
predicting a pressure field at each time step to accelerate
solving pressure Poisson equations. To improve visual de-
tails of smoke, super resolutions methods have been pro-
posed using CNN (Chu and Thuerey 2017) and Generative
Adversarial Networks (GAN) (Xie et al. 2018). To improve
the visual details of liquid droplets, Um et al. (Um, Hu, and
Thuerey 2018) presented a method for augmenting liquid
splashes using neural networks. Prantl et al. (Prantl, Bonev,
and Thuerey 2019) presented a generative model for inter-
polating space-time configurations of fluids represented by
signed distance functions, and this approach was later ex-
tended by Kim et al. (Kim et al. 2019b) to interpolate more
general classes of fluids based on parameters, such as vis-
cosity values. Machine learning techniques for fluids have
been also used to achieve interactive car design (Guo, Li,
and Iorio 2016; Umetani and Bickel 2018), to control rigid
bodies (Ma et al. 2018), and to transfer visual appearances
(Kim et al. 2019a, 2020).

Similar to some of previous works for fluids (e.g.,
(Wiewel, Becher, and Thuerey 2019; Wiewel et al. 2020;
de Avila Belbute-Peres, Economon, and Kolter 2020)), our
method also uses neural networks. However, these works
are complementary to ours, as we use neural networks to
learn fluid dynamics and generate control forces for fluids
and/or rigid bodies to achieve the desired motions, while
their methods use neural networks to predict fluid behaviors.

3 Overview and Preliminaries
The overview of our framework is illustrated in Figure 1.
Our differentiable fluid simulator can be naturally integrated
with deep neural networks to efficiently perform end-to-end
training and to handle control problems. For the forward
pass, given the observation from the simulation, the neural
network can generate control inputs, which are combined
with the current state to perform the forward simulation gen-
erating the next state. While the resulting states are used to
further forward the simulation states, we can also consider
the resulting states as new observations for the input to the
neural network. For the backward pass, each of the simula-
tion results can be used to evaluate the objective (loss) func-
tion, and the computed loss can be repeatedly back prop-
agated through our differentiable fluid simulator and then
deep neural network with the backpropagation techniques to
finally give the gradient.

Our differentiable fluid simulator is established on top of
the fluid simulation with one-way coupled rigid bodies and
the adjoint method for dynamical physics systems. Thus,
we first explain the fundamental formulations of fluid sim-
ulation with one-way coupled rigid bodies in x 3.1. Then,
we briefly review the adjoint method that is specifically de-
signed to efficiently compute the gradient for arbitrary ob-
jective functions over multiple simulation steps, unlike ad-
joint methods applied at an instance (e.g., (Belbute-Peres
et al. 2018; Liang, Lin, and Koltun 2019)) in x3.2. The de-
tails of our differentiable fluid simulator are given in x4.

3.1 Fluid Simulation with One-Way Coupled
Solids

The governing equations for incompressible fluids can be
described by the incompressible Euler equations written as

Du

Dt
= �1

�
rp +

1

�
fv; andr � u = 0; (1)

where t denotes time, D
Dt material derivative, u fluid veloc-

ity, � fluid density, p fluid pressure, and fv external force
(e.g., gravity and control forces) for fluid. To advance the
simulation step, we use the operator splitting approach; we
first address the advection (due to the material derivative) us-
ing the semi-Lagrangian method (Stam 1999), apply exter-
nal forces, and then handle the pressure term, which projects
the fluid velocities onto the divergence-free manifold. This
step is known as pressure projection and is essential to en-
force the fluid incompressibility while satisfying free-slip
boundary conditions at the fluid-solid interface. Specifically,
fluid velocities can be updated to enforce the incompress-
ibility with pressure forces by ut+�t = u∗∗ � �t

� rpt+�t;

where u∗∗ denotes the intermediate fluid velocity after ad-
vection and external force steps, and �t time step size. The
pressure p can be computed, e.g, by solving a pressure Pois-
son equation derived from the incompressibility constraint
r � ut+�t = 0.

Assuming fluid pressure forces are applied to the surface
of rigid bodies, the velocity of the rigid bodies can be con-
sidered to be updated with vt+�t = v∗∗+ �tM−1

r Jpt+�t;



1. Advection

2. External force

3. Projection

Control

Input if

iqState
1i+qState

NetworksObservation Simulation Results



Loss

Function

Forward Simulation

Figure 1: Overview of our framework. Our differentiable fluid simulator is integrated with deep neural networks. Given the
observation, the neural network produces control inputs, which are used in the forward simulation to generate the next state
(new observation). The next state is used to compute the loss function, and the gradient computation is performed backward
through the differentiable simulator and then deep neural networks. Our framework is end-to-end differentiable, which makes
it possible to efficiently handle learning and control problems.

where vt+�t and v∗∗ denote the rigid body velocity after
and before application of pressure forces, respectively, Mr

the mass of rigid bodies, and J is a linear operator which
integrates the pressures over the surface of the rigid bod-
ies to determine the net pressure forces. Due to a variational
principle (Batty, Bertails, and Bridson 2007), one can formu-
late a discrete minimization problem for pressure to enforce
the fluid incompressibility while applying free-slip bound-
ary conditions for solid boundaries as

p = arg min
p

1

2

�u∗∗ ��tP−1Gp
2

Mf
+

v∗∗ + �tM−1
r Jp

2

Mr

�
; (2)

where P denotes a fluid density matrix, G a discrete gra-
dient operator, and Mf a diagonal matrix for fluid mass
at each cell, and matrix-weighted vector norm kukW =p

uTWu. Here, to account for the sub-grid details, we in-
troduce volume fractions that represent how much volume is
occupied by a material in each cell, and we use diagonal ma-
trices Wu

F and Wu
S (where Wu

F + Wu
S = I with the identity

matrix I) to denote the volume fractions of fluids and solids
in the cell at the fluid velocity samples, respectively. Given
Wu

F and Wu
S , we can consistently define Mf = PWu

F and
J = �QWu

SG with the aggregation matrix Q, which accu-
mulates contributions at the fluid velocity samples to apply
to each solid body. Considering one-way coupled solids with
infinite mass, i.e., by setting M−1

r = 0, we can obtain the
pressure by solving the minimization problem. Then, we up-
date fluid velocity by ut+�t = u∗∗��tP−1Gp to enforce
the incompressibility.

3.2 Adjoint Method for Dynamical System
The goal of the adjoint method is to efficiently compute the
gradient for a user-defined objective function. Given a dy-
namical system, we start with an initial state q0 and iter-
atively apply forward simulation operation Fi to compute
the next state with control input fi by qi+1 = Fi(qi; fi),
evolving the state until we obtain qn, where n denotes the

index for the last state. By concatenating each state and con-
trol input into one state vector q =(qT0 ; : : : ;q

T
n )T and con-

trol input vector f =(fT0 ; : : : ; f
T
n )T , we can define our objec-

tive function as �(q; f). Given the objective function, we
aim to minimize it following the constraint on states due
to the forward simulation. This can be formally written as
f = arg minf �(q; f) s:t: q = F(q; f); where F is the con-
catenation of Fi involving consecutive states qi and qi+1

only. To use efficient gradient-based optimizers, it is neces-
sary to compute the gradient of the objective function with
respect to the control inputs, and the gradient can be writ-
ten as d�

df = @�
@q

dq
df + @�

@f : However, the direct computation

of dq
df is extremely costly since this term requires comput-

ing the gradient for each state with respect to each control
input. This expensive computation can be avoided using the
adjoint method.

By differentiating q = F(q; f) with respect to f , we ob-
tain @q

@f = @F
@q

@q
@f + @F

@f , i.e., (I � @F
@q )@q

@f = @F
@f . Under this

constraint, the computation of @�
@q

dq
df can be efficiently per-

formed using the adjoint method (see e.g., (McNamara et al.

2004)) as @�
@q

dq
df = rT @F

@f s:t:
�

I� @F
@q

�T
r =

�
@�
@q

�T
;

where r is known as the adjoint state. With the adjoint state,
we can compute the objective function by d�

df = rT @F
@f + @�

@f

while we have the recursive relation of r as r =
�
@F
@q

�T
r +�

@�
@q

�T
. Due to the structure of the constraint, i.e., for-

ward simulation which involves only two consecutive sim-
ulation steps (i and i + 1), the adjoint state is considered
as r = (rT0 ; : : : ; r

T
n )T and can be efficiently computed via

backward computation as ri =
�
@Fi

@qi

�T
ri+1 +

�
@�
@qi

�T
;

where rn =
�
@�
@qn

�T
. We note that it is typically necessary

to store q (and some intermediate results for efficiency) in
the forward pass since @Fi

@qi
in the backward adjoint state up-

date depends on qi. An algorithm for the adjoint method is
summarized in Algorithm 1.



Algorithm 1 Gradient computation with the adjoint method

1: Store q0

2: for i = 0; : : : ; n� 1 do
3: Forward simulation: qi+1 = Fi(qi; fi)
4: Store qi and intermediate results

5: rn =
�
@�
@qn

�T
6: for i = n� 1; : : : ; 0 do

7: Backward update: ri =
�
@Fi

@qi

�T
ri+1 +

�
@�
@qi

�T
8: Compute gradient: d�dfi

= rTi
@Fi

@fi
+ @�

@fi

4 Differentiable Fluids with One-Way
Fluid-Solid Coupling

In our framework, we consider velocities of fluids and solids
as states of the system (i.e., q = (uT ;vT )T ), and if neces-
sary, we can also extend the state to include, e.g., smoke den-
sity fields (McNamara et al. 2004; Holl, Thuerey, and Koltun
2020), position and (parameterized) shapes of rigid bodies.
To compute the gradient of an objective function with re-
spect to control inputs d�

df using the adjoint method, in addi-
tion to the forward simulation, it is necessary to compute the
adjoint state r (with @F

@q and @�
@q ), @�@f , and @F

@f in the back-
ward pass.

To achieve specific tasks, for convenience, we formulate
our objective function as �(q; f) = Estate(q) +Econtrol(f);
where Estate evaluates how the state q is far from our
desired state (e.g., key frame), and Econtrol penalizes the
use of the control input f . We define these two terms
as quadratic functions: Estate(q) = 1

2 (q � q†)TK(q �
q†); and Econtrol(f) = 1

2 fTSTCSf ; where q† denotes our
key frames (desired states), K a diagonal matrix to weight
key frames, S a selection matrix to specify active control
inputs, and C a diagonal matrix to adjust the magnitude of
penalty for using control inputs. Due to the quadratic nature
of these objective functions, @�@f and @�

@q can be easily com-

puted by
�
@�
@f

�T
= STCSf and

�
@�
@q

�T
= K(q� q†).

Advection. To address the advection in the forward sim-
ulation, we use the semi-Lagrangian method (Stam 1999),
which updates physical variables with interpolated values
at a back-traced location. Considering the fact that this ad-
vection operation does not depend on solid velocities, we
can write this as u∗ = Fadv(ut) = L(x � �tut)ut,
where u∗ denotes fluid velocity after the advection step, L
an interpolation operator, and thus we obtain

�
@Fadv

@ut

�T
=

L(x��tut)T .
External force. Due to (1) and the operator splitting,

the integration of the external force can be formulated as
q∗∗ = Fcontrol(q

∗; f) = q∗ + Sf , including similarly de-
fined external forces to rigid bodies. From this formulation,

we obtain
�
@Fcontrol

@q∗

�T
= IT , and

�
@Fcontrol

@f

�T
= ST .

Projection. Due to the quadratic nature of (2), the mini-
mization problem can be handled by solving a linear system.

Figure 2: Example frame for FD comparison with different
sizes of control areas (cyan) with zero target velocities.

Thus, by combining the linear solve and the fluid velocity
update ut+�t = u∗∗ ��tP−1Gp, the pressure projection
step (qt+�t = Fproj(q

∗∗)) can be written as�
ut+�t

vt+�t

�
=

�
B �tP−1GA−1JT

O I

� �
u∗∗

v∗∗

�
;

(3)

where B = I��tP−1GA−1GTWu
F , A = �tGTWu

FG,
and O is the zero matrix. We note that, as a solution of the
minimization problem (2), pressure p is defined as p =
A−1(GTWu

Fu∗∗ � JTv∗∗), which we solve with Mod-
ified Incomplete Cholesky Conjugate Gradient (MICCG).
The computed pressure can be substituted to (3) for effi-
ciency. Since the adjoint state involves the transpose of the

system matrix, in the backward pass,
�
@Fproj

@q∗∗

�T
is given by�

@Fproj

@q∗∗

�T

=

�
I��tWu

FGA−1GTP−1 O
�tJA−1GTP−1 I

�
:

(4)

By performing forward and backward computations (see
Algorithm 1), we can efficiently compute the gradient. We
note that in practice to minimize the memory usage for the
adjoint state, we implicitly merge operations for the ad-
vection, external force, and projection steps. To integrate
the gradient computation with neural networks, we evaluate
neural networks with the current state to generate control in-
put before each forward simulation step, and perform back
propagation through the neural network after each of back-
ward gradient computations.

5 Experiments
We implemented our differentiable fluid simulator in C++
and integrated it with deep neural networks implemented
in PyTorch 1.5 (Paszke et al. 2019). To evaluate the effec-
tiveness of our method, we conduct three types of experi-
ments on an Intel Core i5-7200U with 8GB RAM. First, we
perform an ablation study to evaluate the performance gain
compared to other gradient computation techniques in x5.1.
Then, we apply our method to optimization problems in x5.2
and control problems x5.3. More details and results can be
found in the supplementary material.

5.1 Ablation Study
Comparison to numerical differentiation. To demonstrate
the efficiency and scalability of our method in the gradi-
ent computation, we first compare our adjoint-based method



Table 1: Performance results for gradient computations.
Ours is 2-3 orders of magnitude faster than FD.

DOFs Ours (ms) FD (ms) Speed-up
4,200 28 7,232 258.3
8,400 48 13,533 281.9

14,000 43 22,905 532.7
18,200 33 29,170 883.9

with numerical differentiation using the central finite dif-
ference (FD). We use four different numbers of control in-
puts and evaluate computational time using the scene shown
in Figure 2. Performance numbers are summarized in Ta-
ble 1. In this experiment, relative errors are less than 1.0%
on average, and both gradient computation methods worked
equally well generating comparable results.

Our gradient computation is significantly faster than FD
since the adjoint method computes the gradient with two
passes (forward and backward computations) whose total
cost is approximately double of the forward simulation cost.
In addition, the computational cost is mostly irrelevant to
the number of control inputs (DOFs), and the computational
time is similar over different number of control DOFs, sug-
gesting the linear scalability of our method with respect to
the simulation resolution and length. By contrast, FD needs
to perform two forward simulations for each control DOF.
As such, the computational cost becomes much higher than
our method and increases linearly with the number of control
DOFs. Although FD can be advantageous in terms of mem-
ory usage, the performance gain shown here clearly suggests
the advantage of our method in practical use.
Comparison to the voxelized method of (McNamara
et al. 2004). Due to the volume fractions (for any non-grid-
aligned objects including box-shaped solids), our method
can achieve sub-grid accuracy, in stead of voxel resolu-
tion (McNamara et al. 2004), as also reported in the forward
simulation (Batty, Bertails, and Bridson 2007). These vol-
ume fractions also need to be taken into account in the ad-
joint update via (4), and neglecting the volume fractions in
the backward pass can negatively affect the accuracy of the
gradient, as shown in Figure 3. On average, the relative error
for the gradient with and without volume fractions was 1.8%
and 6.4%, respectively, with almost the same speed.

We also note that our method fully integrates the differ-
entiable fluid simulator with neural networks, interweav-
ing forward and backward computations within our simula-
tor and the neural networks, thereby addressing the control
problems shown (Figures 6 and 7), while their work did not
consider such integration.
Comparison to PhiFlow (Holl, Thuerey, and Koltun
2020). While this concurrent work suggested to replace the
forward simulation with the neural network prediction, their
released source code, written in python, supports differen-
tiable fluid simulation without using neural networks. This
library uses the low-level AD implemented in TensorFlow,
and the adjoint method is only used within one simulation
step to avoid unrolling of long chains in the pressure projec-
tion. In contrast, our method based on the adjoint method is

Figure 3: Gradient computation comparison with and with-
out volume fractions. From left to right, setup, initial forces
to induce non-zero gradients, relative errors of the gradi-
ent with and without volume fractions. Neglecting the vol-
ume fractions for the orange sphere and brown wall leads to
larger relative errors in the gradient shown in red.

Table 2: Performance comparison with PhiFlow. Ours is
about 1-2 orders of magnitude faster than PhiFlow.

Resolution Ours (s) PhiFlow (s) Speed-up
32� 32 0.17 23.08 135.8
64� 64 0.88 46.86 53.3

128� 128 5.42 175.99 32.5
256� 256 42.56 1,032.03 24.2

fully differentiable on its own, with our C++ implementation
achieving a speed-up of one to two orders of magnitude in
performance for gradient computations over 30 frames. Ob-
serving these differences, we show comparisons in Table 2.
Comparison to low-level AD. We also compare our high-
level AD with low-level AD, which we implemented using
C++ AD in PyTorch 1.5 (Paszke et al. 2019), and the result is
summarized in Table 3. Due to the large overhead of the low-
level AD, ours was significantly faster. A similar observation
has also been reported in (Hu et al. 2019).

5.2 Space-Time Optimization
Space-time optimization for fluid control. Our differen-
tiable simulator makes it possible to use efficient gradient-
based optimizers. To demonstrate the efficiency, we compare
our method using a gradient descent method with a state-
of-the-art derivative-free optimizer, CMA-ES (Hansen and
Kern 2004), in a space-time optimization setup with the grid
resolution of 32�32 over 5 frames, as shown in Figure 4. We
use 4 samples (simulations) in each CMA-ES iteration, and
thus one iteration for the gradient descent is generally faster.
The goal is to generate control forces to keep fluid veloci-
ties zero at specific areas (cyan box in the left most image
of Figure 4) while an orange rigid rotating bar perturbs the
fluid velocities. The number of active control DOFs is 840.

Table 3: Comparison with low-level AD. Ours is about 1-2
orders of magnitude faster than low-level AD.

Resolution Ours (s) Low-level AD (s) Speed-up
32� 32 0.17 12.58 74.0
64� 64 0.86 54.10 62.8

128� 128 5.34 179.10 33.5
256� 256 41.27 842.00 20.4




