Data representation

```
How do we represent "stuff"?
Example: file my.c
       %emacs my.c
       main () {
           float f = 3.14;
           printf ("%f\n", f);
       %cc my.c
       %a.out
What is the representation of "3.14"?
       in my.c: character (ASCII)
       in a.out (file or RAM): floating point (IEEE 754 standard)
What is the representation of "\n"?
       in my.c: 2 characters (ASCII)
       in a.out (file or RAM): integer
       in output: cursor moves to next line
In general, it's all bits!
       What they mean depends on the interpretation
```

Data representation

"All your base are belong to us."
- The Computer Organization

Number bases

Positional representation of a number

Base (radix) k, digits d_i Digit values: 0, 1, . . . (k-1)

Number of digits: n

weight	k ⁽ⁿ⁻¹⁾		k ²	k ¹	k ⁰
digits	d _(n-1)	•••	d ₂	d₁	d_0

number =
$$P(d_i * k^i)$$

 $i = 0$

Focus on integers first, then extend to fractions

Number bases

Human number system: base 10

Base (radix) k = 10, digits d_i Assume number of digits: 5

weight digits

10 ⁽ⁿ⁻¹⁾	10 ³	10 ²	10 ¹	10 ⁰	
	3	7	2	9	4

number =
$$P(d_i * k^i)$$
 = (3 * 10000) + (7 * 1000) + (2 * 100) + (9 * 10) + (4 * 1)
= 37294_{ten}

Computer number system: base 2 (binary) Base (radix) k = 2, digits $d_i = (0, 1)$

Given: 13_{ten}

Find: binary representation

b ₅	b ₄	b ₃	b ₂	b ₁	b ₀
2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1	0	1

$$8 + 4 + 1 = 13_{ten}$$

	result	remainder		try it!
start	13			
13/2	6	1	b_0	
6/2	3	0	b_1	
3/2	1	1	b_2	
1/2	0	1	b_3	
0/2	0	0	b_4	
0/2	0	0	b_5	

Why does this work?

$$13_{ten} = b_5 * 32 + b_4 * 16 + b_3 * 8 + b_2 * 4 + b_1 * 2 + b_0$$

$$(2 * 6 + 1)_{ten} = 2 * (b_5 * 16 + b_4 * 8 + b_3 * 4 + b_2 * 2 + b_1) + b_0$$

Therefore, dividing by 2 gives a result of the expression in parentheses and a remainder of b₀

$$6_{ten} = b_5 * 16 + b_4 * 8 + b_3 * 4 + b_2 * 2 + b_1$$

= 2 * (b₅ * 8 + b₄ * 4 + b₃ * 2 + b₂) + b₁

Dividing by 2 again gives a remainder of b_1 and so forth.

$$3_{ten} = b_5 * 8 + b_4 * 4 + b_3 * 2 + b_2$$

$$= 2 * (b_5 * 4 + b_4 * 2 + b_3) + b_2$$

$$1_{ten} = b_5 * 4 + b_4 * 2 + b_3$$

$$= 2 * (b_5 * 2 + b_4) + b_3$$

$$0_{ten} = b_5 * 2 + b_4$$

What do all higher bits have to be?

Given: 50_{ten}

Find: base 3 representation

	d_5	d_4	d_3	d_2	d_1	d_0
weight	243	81	27	9	3	1
digit	0	0	1	2	1	2

	result	remainder
start	50	
50/3	16	2
16/3	5	1
5/3	1	2
1/3	0	1
	0	0
	0	0

Given: 325_{ten}

Find: base 16 (hexadecimal) representation

weight digit

d_3	d_2	d_1	d_0
4096	256	16	1
0	1	4	5

	result	remainder
start	325	
325/16	20	5
20/16	1	4
1/16	0	1
	0	0

Given: binary representation

Find: base 8 (octal) representation

value: 101010111010100110_{two}

Could convert to base 10, then convert to base 8 However, what is the pattern of digit values?

binary: 64 32 16 8 4 2 1 octal: 64 8

Group binary digits:

10	010	111	010	100	110
	5 2	7	2	4	6

Converting number bases: fractions

Given: decimal fraction representation

Find: binary representation

value: 0.375

		b ₋₁	b ₋₂	b ₋₃	b ₋₄	b ₋₅
weight		0.5	0.25	0.125	0.0625	0.03125
digit	0.	0	1	1	0	0

To convert a whole number, we successively divided by 2 What should we do with a fraction?

$$0.375_{\text{ten}} = b_{-1} * 2^{-1} + b_{-2} * 2^{-2} + b_{-3} * 2^{-3} + b_{-4} * 2^{-4} + b_{-5} * 2^{-5}$$

If we multiply by 2,

$$0.750 = b_{-1} * 2^{0} + b_{-2} * 2^{-1} + b_{-3} * 2^{-2} + b_{-4} * 2^{-3} + b_{-5} * 2^{-4}$$

Notice that the result is still less than 1, so b_{-1} must be 0, since we assume that all digits are positive Multiply by 2 again,

1.50 =
$$b_{-2} * 2^{0} + b_{-3} * 2^{-1} + b_{-4} * 2^{-2} + b_{-5} * 2^{-3}$$

Now we know that b_{-2} must be 1, since the rest of the expression is a fraction:

$$0.50 = b_{-3} * 2^{-1} + b_{-4} * 2^{-2} + b_{-5} * 2^{-3}$$

Repeat the process:

1.00 =
$$b_{-3} * 2^{0} + b_{-4} * 2^{-1} + b_{-5} * 2^{-2}$$

$$0.00 = b_{-4} * 2^{-1} + b_{-5} * 2^{-2}$$

What are all the bits to the right?

0

Converting number bases: repeating fractions

Given: decimal fraction representation

Find: binary representation

value:	0.27					
		b ₋₁	b ₋₂	b ₋₃	b ₋₄	b ₋₅
weight		0.5	0.25	0.125	0.0625	0.03125
digit	0.	0	0	1	1	0

Sometimes, a fraction may not be exactly represented:

$$1/3 = 0.3333...$$

$$0.2_{\text{ten}} = b_{-1} * 2^{-1} + b_{-2} * 2^{-2} + b_{-3} * 2^{-3} + b_{-4} * 2^{-4} + b_{-5} * 2^{-5}$$

If we multiply by 2,

$$0.4 = b_{-1} \cdot 2^{0} + b_{-2} \cdot 2^{-1} + b_{-3} \cdot 2^{-2} + b_{-4} \cdot 2^{-3} + b_{-5} \cdot 2^{-4}$$

Multiply by 2 again,

0.8 =
$$b_{-2} * 2^{0} + b_{-3} * 2^{-1} + b_{-4} * 2^{-2} + b_{-5} * 2^{-3}$$

1.6 =
$$b_{-3} * 2^{0} + b_{-4} * 2^{-1} + b_{-5} * 2^{-2}$$

$$0.6 = b_{-4} * 2^{-1} + b_{-5} * 2^{-2}$$

1.2 =
$$b_{-4} * 2^{0} + b_{-5} * 2^{-1}$$

$$0.2 = b_{-5} * 2^{-1}$$

At this point, we are back to the original value 0.2, so the digits must repeat.

$$0.27_{\text{ten}} = 0.00110011..._{\text{two}}$$

Converting number bases: any float

Given: decimal float representation

Find: binary representation

Integer part and fractional part are independent.

- 1. Convert integer
- 2. Convert fraction
- 3. Add together

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.