
Introduction of Cache Memory

1. Basic Cache Structure

Processors are generally able to perform operations on operands faster
than the access time of large capacity main memory. Though
semiconductor memory which can operate at speeds comparable with the
operation of the processor exists, it is not economical to provide all the
main memory with very high speed semiconductor memory. The problem
can be alleviated by introducing a small block of high speed memory
called a cache between the main memory and the processor.

The idea of cache memories is similar to virtual memory in that some
active portion of a low-speed memory is stored in duplicate in a higher-
speed cache memory. When a memory request is generated, the request is
first presented to the cache memory, and if the cache cannot respond, the
request is then presented to main memory.

The difference between cache and virtual memory is a matter of
implementation; the two notions are conceptually the same because they
both rely on the correlation properties observed in sequences of address
references. Cache implementations are totally different from virtual
memory implementation because of the speed requirements of cache.

We define a cache miss to be a reference to a item that is not resident in
cache, but is resident in main memory. The corresponding concept for
cache memories is page fault, which is defined to be a reference to a page
in virtual memory that is not resident in main memory. For cache misses,
the fast memory is cache and the slow memory is main memory. For page
faults the fast memory is main memory, and the slow memory is auxiliary
memory.

Fig 1. A cache-memory reference. The tag 0117X matches address
01173, so the cache returns the item in the position X=3 of the matched

block

Figure 1 shows the structure of a typical cache memory. Each reference to
a cell in memory is presented to the cache. The cache searches its
directory of address tags shown in the figure to see if the item is in the
cache. If the item is not in the cache, a miss occurs.

For READ operations that cause a cache miss, the item is retrieved from
main memory and copied into the cache. During the short period available
before the main-memory operation is complete, some other item in cache
is removed form the cache to make rood for the new item.

The cache-replacement decision is critical; a good replacement algorithm
can yield somewhat higher performance than can a bad replacement
algorithm. The effective cycle-time of a cache memory (teff) is the average
of cache-memory cycle time (tcache) and main-memory cycle time (tmain),
where the probabilities in the averaging process are the probabilities of
hits and misses.

If we consider only READ operations, then a formula for the average
cycle-time is:

teff = tcache + (1 - h) tmain

where h is the probability of a cache hit (sometimes called the hit rate), the
quantity (1 - h), which is the probability of a miss, is know as the miss
rate.

In Fig.1 we show an item in the cache surrounded by nearby items, all of
which are moved into and out of the cache together. We call such a group
of data a block of the cache.

2. Cache Memory Organizations

fig.2 The logical organization of a four-way set-associate cache

Fig.2 shows a conceptual implementation of a cache memory. This system
is called set associative because the cache is partitioned into distinct sets
of blocks, ad each set contains a small fixed number of blocks. The sets
are represented by the rows in the figure. In this case, the cache has N sets,
and each set contains four blocks. When an access occurs to this cache, the
cache controller does not search the entire cache looking for a match.
Instead, the controller maps the address to a particular set of the cache and
searches only the set for a match.

If the block is in the cache, it is guaranteed to be in the set that is searched.
Hence, if the block is not in that set, the block is not present in the cache,
and the cache controller searches no further. Because the search is
conducted over four blocks, the cache is said to be four-way set
associative or, equivalently, to have an associativity of four.

Fig.2 is only one example, there are various ways that a cache can be
arranged internally to store the cached data. In all cases, the processor
reference the cache with the main memory address of the data it wants.
Hence each cache organization must use this address to find the data in the
cache if it is stored there, or to indicate to the processor when a miss has
occurred. The problem of mapping the information held in the main
memory into the cache must be totally implemented in hardware to
achieve improvements in the system operation. Various strategies are
possible.

�� Fully associative mapping

Perhaps the most obvious way of relating cached data to the
main memory address is to store both memory address and
data together in the cache. This the fully associative
mapping approach. A fully associative cache requires the
cache to be composed of associative memory holding both
the memory address and the data for each cached line. The
incoming memory address is simultaneously compared
with all stored addresses using the internal logic of the
associative memory, as shown in Fig.3. If a match is fund,
the corresponding data is read out. Single words form
anywhere within the main memory could be held in the
cache, if the associative part of the cache is capable of
holding a full address

Fig.3 Cache with fully associative mapping

In all organizations, the data can be more than one word,
i.e., a block of consecutive locations to take advantage of
spatial locality. In Fig.4 aline constitutes four words, each
word being 4 bytes. The least significant part of the address
selects the particular byte, the next part selects the word,
and the remaining bits form the address compared to the
address in the cache. The whole line can be transferred to
and from the cache in one transaction if there are sufficient
data paths between the main memory and the cache. With
only one data word path, the words of the line have to be
transferred in separate transactions.

Fig.5 Fully associative mapped cache with multi-word lines

The fully associate mapping cache gives the greatest
flexibility of holding combinations of blocks in the cache
and minimum conflict for a given sized cache, but is also
the most expensive, due to the cost of the associative
memory. It requires a replacement algorithm to select a
block to remove upon a miss and the algorithm must be
implemented in hardware to maintain a high speed of
operation. The fully associative cache can only be formed
economically with a moderate size capacity.
Microprocessors with small internal caches often employ
the fully associative mechanism.

�� Direct mapping

The fully associative cache is expensive to implement
because of requiring a comparator with each cache
location, effectively a special type of memory. In direct
mapping, the cache consists of normal high speed random
access memory, and each location in the cache holds the
data, at an address in the cache given by the lower
significant bits of the main memory address. This enables
the block to be selected directly from the lower significant
bits of the memory address. The remaining higher
significant bits of the address are stored in the cache with
the data to complete the identification of the cached data.

Consider the example shown in Fig.5. The address from the
processor is divided into tow fields, a tag and an index. The

tag consists of the higher significant bits of the address,
which are stored with the data. The index is the lower
significant bits of the address used to address the cache.

Fig.5 Cache with direct mapping

When the memory is referenced, the index is first used to
access a word in the cache. Then the tag stored in the
accessed word is read and compared with the tag in the
address. If the two tags are the same, indicating that the
word is the one required, access is made to the addressed
cache word. However, if the tags are not the same,
indicating that the required word is not in the cache,
reference is made to the main memory to find it. For a
memory read operation, the word is then transferred into
the cache where it is accessed. It is possible to pass the
information to the cache and the processor simultaneously,
i.e., to read-through the cache, on a miss. The cache
location is altered for a write operation. The main memory
may be altered at the same time (write-through) or later.

Fig.6. shows the direct mapped cache with a line consisting
of more than one word. The main memory address is
composed of a tag, an index, and a word within a line. All
the words within a line in the cache have the same stored
tag. The index part to the address is used to access the
cache and the stored tag is compared with required tag
address. For a read operation, if the tags are the same the
word within the block is selected for transfer to the

processor. If the tags are not the same, the block containing
the required word is first transferred to the cache.

Fig.6 Direct mapped cache with a multi-word block

In direct mapping, the corresponding blocks with the same
index in the main memory will map into the same block in
the cache, and hence only blocks with different indices can
be in the cache at the same time. A replacement algorithm
is unnecessary, since there is only one allowable location
for each incoming block. Efficient replacement relies on
the low probability of lines with the same index being
required. However there are such occurrences, for example,
when two data vectors are stored starting at the same index
and pairs of elements need to processed together. To gain
the greatest performance, data arrays and vectors need to be
stored in a manner which minimizes the conflicts in
processing pairs of elements. Fig.6 shows the lower bits of
the processor address used to address the cache location
directly. It is possible to introduce a mapping function
between the address index and the cache index so that they
are not the same.

�� Set-associative mapping

In the direct scheme, all words stored in the cache must
have different indices. The tags may be the same or
different. In the fully associative scheme, blocks can
displace any other block and can be placed anywhere, but

the cost of the fully associative memories operate relatively
slowly.

Set-associative mapping allows a limited number of blocks,
with the same index and different tags, in the cache and can
therefore be considered as a compromise between a fully
associative cache and a direct mapped cache. The
organization is shown in Fig.7. The cache is divided into
"sets" of blocks. A four-way set associative cache would
have four blocks in each set. The number of blocks in a set
is know as the associativity or set size. Each block in each
set has a stored tag which, together with the index,
completes the identification of the block. First, the index of
the address from the processor is used to access the set.
Then, comparators are used to compare all tags of the
selected set with the incoming tag. If a match is found, the
corresponding location is accessed, other wise, as before,
an access to the main memory is made.

Fig.7 Cache with set-associative mapping

The tag address bits are always chosen to be the most
significant bits of the full address, the block address bits are
the next significant bits and the word/byte address bits form
the least significant bits as this spreads out consecutive man
memory blocks throughout consecutive sets in the cache.
This addressing format is known as bit selection and is used
by all known systems. In a set-associative cache it would

be possible to have the set address bits as the most
significant bits of the address and the block address bits as
the next significant, with the word within the block as the
least significant bits, or with the block address bits as the
least significant bits and the word within the block as the
middle bits.

Notice that the association between the stored tags and the
incoming tag is done using comparators and can be shared
for each associative search, and all the information, tags
and data, can be stored in ordinary random access memory.
The number of comparators required in the set-associative
cache is given by the number of blocks in a set, not the
number of blocks in all, as in a fully associative memory.
The set can be selected quickly and all the blocks of the set
can be read out simultaneously with the tags before waiting
for the tag comparisons to be made. After a tag has been
identified, the corresponding block can be selected.

The replacement algorithm for set-associative mapping
need only consider the lines in one set, as the choice of set
is predetermined by the index in the address. Hence, with
two blocks in each set, for example, only one additional bit
is necessary in each set to identify the block to replace.

�� Sector mapping

In sector mapping, the main memory and the cache are both
divided into sectors; each sector is composed of a number
of blocks. Any sector in the main memory can map into any
sector in the cache and a tag is stored with each sector in
the cache to identify the main memory sector address.
However, a complete sector is not transferred to the cache
or back to the main memory as one unit. Instead, individual
blocks are transferred as required. On cache sector miss,
the required block of the sector is transferred into a specific
location within one sector. The sector location in the cache
is selected and all the other existing blocks in the sector in
the cache are from a previous sector.

Sector mapping might be regarded as a fully associative
mapping scheme with valid bits, as in some microprocessor
caches. Each block in the fully associative mapped cache
corresponds to a sector, and each byte corresponds to a
"sector block".

3. Cache Performance

The performance of a cache can be quantified in terms of the hit and miss
rates, the cost of a hit, and the miss penalty, where a cache hit is a memory
access that finds data in the cache and a cache miss is one that does not.

When reading, the cost of a cache hit is roughly the time to access an entry
in the cache. The miss penalty is the additional cost of replacing a cache
line with one containing the desired data.

(Access
time) = (hit cost) + (miss rate)*(miss penalty)

 =(Fast memory access time) + (miss rate)*(slow memory access
time)

Note that the approximation is an underestimate - control costs have been
left out. Also note that only one word is being loaded from the faster
memory while a whole cache block's worth of data is being loaded from
the slower memory.

Since the speeds of the actual memory used will be improving
``independently'', most effort in cache design is spent on fast control and
decreasing the miss rates. We can classify misses into three categories,
compulsory misses, capacity misses and conflict misses. Compulsory
misses are when data is loaded into the cache for the first time (e.g.
program startup) and are unavoidable. Capacity misses are when data is
reloaded because the cache is not large enough to hold all the data no
matter how we organize the data (i.e. even if we changed the hash function
and made it omniscient). All other misses are conflict misses - there is
theoretically enough space in the cache to avoid the miss but our fast hash
function caused a miss anyway.

4. Fetch and write mechanism

�� Fetch policy

We can identify three strategies for fetching bytes or blocks
from the main memory to the cache, namely:

�� Demand fetch

Which is the fetching a block when it is needed and is not already
in the cache, i.e. to fetch the required block on a miss. This
strategy is the simplest and requires no additional hardware or tags
in the cache recording the references, except to identify the block
in the cache to be replaced.

�� Prefetch

Which is fetching blocks before they are requested. A simple
prefetch strategy is to prefetch the (i+1)th block when the ith block
is initially referenced on the expectation that it is likely to be
needed if the ith block is needed. On the simple prefetch strategy,
not all first references will induce a miss, as some will be to
prefetched blocks.

�� Selective fetch

Which is the policy of not always fetching blocks, dependent upon
some defined criterion, and in these cases using the main memory
rather than the cache to hold the information. For example, shared
writable data might be easier to maintain if it is always kept in the
main memory and not passed to a cache for access, especially in
multi-processor systems. Cache systems need to be designed so
that the processor can access the main memory directly and bypass
the cache. Individual locations could be tagged as non-cacheable.

�� Instruction and data caches

The basic stored program computer provides for one main
memory for holding both program instructions and program
data. The cache can be organized in the same fashion, with
the cache holding both program instructions and data. This
is called a unified cache. We also can separate the cache
into two parts: data cache and instruction (code) cache. The
general arrangement of separate caches is shown in fig.8.
Often the cache will be integrated inside the processor chip.

Fig.8 Separate instruction and data caches

�� Write operations

As reading the required word in the cache does not affect
the cache contents, there can be no discrepancy between the
cache word and the copy held in the main memory after a
memory read instruction. However, in general, writing can
occur to cache words and it is possible that the cache word
and copy held in the main memory may be different. It is
necessary to keep the cache and the main memory copy
identical if input/output transfers operate on the main
memory contents, or if multiple processors operate on the
main memory, as in a shared memory multiple processor
system.

If we ignore the overhead of maintaining consistency and
the time for writing data back to the main memory, then the
average access time is given by the previous equation, i.e.
teff = tcache + (1 - h) tmain , assuming that all accesses are
first made to the cache. The average access time including
write operations will add additional time to this equation
that will depend upon the mechanism used to maintain data
consistency.

There are two principal alternative mechanisms to update
the main memory, namely the write-through mechanism
and the write-back mechanism.

�� Write-through mechanism

In the write-though mechanism, every write operation to
the cache is repeated to the main memory, normally at the
same time. The additional write operation to the main
memory will, of course, take much longer than to the cache
and will dominate the access time for write operations. The
average access time of write-through with transfers from
main memory to the cache on all misses (read and write) is
given by:

ta = tcache + (1 - h) ttrans + w(tmain - tcache)
 = (1 - w) tcache + (1 - h) ttrans + wtmain

Where
ttrans

= time to transfer block to cache, assuming the
whole block must be transferred together

 W = fraction of write references.

The term (tmain - tcache) is the additional time to write the
word to main memory whether a hit or a miss has occurred,
given that both cache and main memory write operation
occur simultaneously but the main memory write operation
must complete before any subsequent cache read/write
operation can be proceed. If the size of the block matches
the external data path size, a whole block can be transferred
in one transaction and ttrans = tmain.

On a cache miss, a block could be transferred from the
main memory to the cache whether the miss was caused by
a write or by a read operation. The term allocate on write is
used to describe a policy of bringing a word/block from the
main memory into the cache for a write operation. In write-
through, fetch on write transfers are often not done on a
miss, i.e., a Non- allocate on write policy. The information
will be written back to the main memory but not kept in the
cache.

The write-through scheme can be enhanced by
incorporating buffers, as shown in Fig.9, to hold
information to be written back to the main memory, freeing
the cache for subsequent accesses.

Fig.9 Cache with write buffer

For write-through, each item to be written back to the main
memory is held in a buffer together with the corresponding
main memory address if the transfer cannot be made
immediately.

Immediate writing to main memory when new values are
generated ensures that the most recent values are held in the
main memory and hence that any device or processor
accessing the main memory should obtain the most recent
values immediately, thus avoiding the need for complicated
consistency mechanisms. There will be latency before the
main memory has been updated, and the cache and main
memory values are not consistent during this period.

�� Write-back mechanism

In the write-back mechanism, the write operation to the
main memory is only done at block replacement time. At
this time, the block displaced by the incoming block might
be written back to the main memory irrespective of whether
the block has been altered. The policy is known as simple
write-back, and leads to an average access time of:

ta = tcache + (1 - h) ttrans + (1 - h) ttrans

Where one (1 - h) ttrans term is due to fetching a block from
memory and the other (1 - h) ttrans term is due to writing
back a block. Write-back normally handles write misses as
allocate on write, as opposed to write-through, which often
handles write misses as Non-allocate on write.

 The write-back mechanism usually only writes back lines
that have been altered. To implement this policy, a 1-bit tag
is associated with each cache line and is set whenever the

block is altered. At replacement time, the tags are examined
to determine whether it is necessary to write the block back
to the main memory. The average access time now
becomes:

ta = tcache + (1 - h) ttrans + wb(1 - h) ttrans

where wb is the probability that a block has been altered
(fraction of blocks altered). The probability that a block has
been altered could be as high as the probability of write
references, w, but is likely to be much less, as more than
one write reference to the same block is likely and some
references to the same byte/word within the block are
likely. However, under this policy the complete block is
written back, even if only one word in the block has been
altered, and thus the policy results in more traffic than is
necessary, especially for memory data paths narrower than
a line, but still there is usually less memory traffic than
write-through, which causes every alteration to be recorded
in the main memory. The write-back scheme can also be
enhanced by incorporating buffers to hold information to be
written back to the main memory, just as is possible and
normally done with write-through.

5. Replacement policy

When the required word of a block is not held in the cache, we have seen
that it is necessary to transfer the block from the main memory into the
cache, displacing an existing block if the cache is full. Except for direct
mapping, which does not allow a replacement algorithm, the existing
block in the cache is chosen by a replacement algorithm. The replacement
mechanism must be implemented totally in hardware, preferably such that
the selection can be made completely during the main memory cycle for
fetching the new block. Ideally, the block replaced will not be needed
again in the future. However, such future events cannot be known and a
decision has to be made based upon facts that are known at the time.

�� Random replacement algorithm

Perhaps the easiest replacement algorithm to implement is a
pseudo-random replacement algorithm. A true random
replacement algorithm would select a block to replace in a
totally random order, with no regard to memory references
or previous selections; practical random replacement

algorithms can approximate this algorithm in one of several
ways. For example, one counter for the whole cache could
be incremented at intervals (for example after each clock
cycle, or after each reference, irrespective of whether it is a
hit or a miss). The value held in the counter identifies the
block in the cache (if fully associative) or the block in the
set if it is a set-associative cache. The counter should have
sufficient bits to identify any block. For a fully associative
cache, an n-bit counter is necessary if there are 2n words in
the cache. For a four-way set-associative cache, one 2-bit
counter would be sufficient, together with logic to
increment the counter.

�� First-in first-out replacement algorithm

The first-in first-out replacement algorithm removes the
block that has been in the cache for the longest time. The
first-in first-out algorithm would naturally be implemented
with a first-in first-out queue of block address, but can be
more easily implemented with counters, only one counter
for a fully associative cache or one counter for each set in a
set-associative cache, each with a sufficient number of bits
to identify the block.

�� Least recently used algorithm for a cache

In the least recently used (LRU) algorithm, the block which
has not been referenced for the longest time is removed
from the cache. Only those blocks in the cache are
considered. The word "recently" comes about because the
block is not the least used, as this is likely to be back in
memory. It is the least used of those blocks in the cache,
and all of those are likely to have been recently used
otherwise they would not be in the cache. The least recently
used (LRU) algorithm is popular for cache systems and can
be implemented fully when the number of blocks involved
is small. There are several ways the algorithm can be
implemented in hardware for a cache, these include:

1) Counters

In the counter implementation, a counter is associated with
each block. A simple implementation would be to
increment each counter at regular intervals and to reset a
counter when the associated line had been referenced.
Hence the value in each counter would indicate the age of a

block since last referenced. The block with the largest age
would be replaced at replacement time.

2) Register stack

In the register stack implementation, a set of n-bit registers
is formed, one for each block in the set to be considered.
The most recently used block is recorded at the "top" of the
stack and the least recently used block at the bottom.
Actually, the set of registers does not form a conventional
stack, as both ends and internal values are accessible. The
value held in one register is passed to the next register
under certain conditions. When a block is referenced,
starting at the top of the stack, starting at the top of the
stack, the values held in the registers are shifted one place
towards the bottom of the stack until a register is found to
hold the same value as the incoming block identification.
Subsequent registers are not shifted. The top register is
loaded with the incoming block identification. This has the
effect of moving the contents of the register holding the
incoming block number to the top of the stack. This logic is
fairly substantial and slow, and not really a practical
solution.

Fig.10 Least recently used replacement algorithm implementation

3) Reference matrix

The reference matrix method centers around a matrix of
status bits. There is more than one version of the method.
In one version (Smith, 1982), the upper triangular matrix of
a B X B matrix is formed without the diagonal, if there are
B blocks to consider. The triangular matrix has (B * (B -
1))/2 bits. When the ith block is referenced, all the bits in
the ith row of the matrix are set to 1 and then all the bits in
the ith column are set to 0. The least recently used block is
one which has all 0's in its row and all 1's in its column,
which can be detected easily by logic. The method is
demonstrated in Fig.10 for B = 4 and the reference
sequence 2, 1, 3, 0, 3, 2, 1, …, together with the values that
would be obtained using a register stack.

4) Approximate methods.

When the number of blocks to consider increases above
about four to eight, approximate methods are necessary for
the LRU algorithm. Fig.11 shows a two-stage
approximation method with eight blocks, which is
applicable to any replacement algorithm. The eight blocks
in Fig.11 are divided into four pairs, and each pair has one
status bit to indicate the most/least recently used block in
the pair (simply set or reset by reference to each block).
The least recently used replacement algorithm now only
considers the four pairs. Six status bits are necessary (using
the reference matrix) to identify the least recently used pair
which, together with the status bit of the pair, identifies the
least recently used block of a pair.

Fig.11 Two-stage replacement algorithm

The method can be extended to further levels. For example,
sixteen blocks can be divided into four groups, each group
having two pairs. One status bit can be associated with each
pair, identifying the block in the pair, and another with each
group, identifying the group in a pair of groups. A true least
recently used algorithm is applied to the groups. In fact, the
scheme could be taken to its logical conclusion of
extending to a full binary tree. Fig.12 gives an example.
Here, there are four blocks in a set. One status bit, B0,
specifies which half o the blocks are most/least recently
used. Two more bits, B1 and B2, specify which block of
pairs is most/least recently used. Every time a cache block
is referenced (or loaded on a miss), the status bits are
updated. For example, if block L2 is referenced, B2 is set to
a 0 to indicate that L2 is the most recently used of the pair
L2 and L3. B0 is set to a 1 to indicate that L2/L3 is the most
recently used of the four blocks, L0, L1, L2 and L3. To
identify the line to replace on a miss, the status bits are
examined. If B0 = 0, then the block is either L0 or L1. If
then B1 = 0, it is L0.

Fig.12 Replacement algorithm using a tree selection

6. Second-level caches

When the cache is integrated into the processor, it will be impossible to
increase its size should the performance not be sufficient. In any case,
increasing the size of the cache may create a slower cache. As an
alternative, which has become very popular, a second larger cache can be
introduced between the first cache and the main memory as shown in
Fig.13. This "second-level" cache is sometimes called a secondary cache.

Fig.13 Two-level caches

On a memory reference, the processor will access the first-level cache. If
the information is not found there (a first-level cache miss occurs), the
second-level cache will be accessed. If it is not in the second cache (a
second-level cache miss occurs), then the main memory must be accessed.
Memory locations will be transferred to the second-level cache and then to
the first-level cache, so that two copies of a memory location will exist in
the cache system at least initially, i.e., locations cached in the second-level
cache also exist in the first-level cache. This is known as the Principle of
Inclusion. (Of course the copies of locations in the second-level cache will
never be needed as they will be found in the first-level cache.) Whether
this continues will depend upon the replacement and write policies. The
replacement policy practiced in both caches would normally be the least
recently used algorithm. Normally write-through will be practiced
between the caches, which will maintain duplicate copies. The block size
of the second-level cache will be at least the same if not larger than the
block size of the first-level cache, because otherwise on a first-level cache
miss, more than one second-level cache line would need to be transferred
into the first-level cache block.

Optimizing the data cache performance
------- Taking advantage of locality in matrix multiplication

When we dealing with multiple arrays, with some arrays accessed by rows
and some by columns. Storing the arrays row-by-row or column-by-
column does not solve the problem because both rows and columns are
used in every iteration of the loop. We must bring the same data into the
cache again and again if the cache is not large enough to hold all the data,
which is a waste. We will use a matrix multiplication (C = A.B, where A,
B, and C are respectively m x p, p x n, and m x n matrices) as an example
to show how to utilize the locality to improve cache performance.

1. Principle of Locality

Since code is generally executed sequentially, virtually all programs repeat
sections of code and repeatedly access the same or nearby data. This
characteristic is embodied in the Principle of Locality, which has been
found empirically to be obeyed by most programs. It applies to both
instruction references and data references, though it is more likely in
instruction references. It has two main aspects:

1. Temporal locality (locality in time) -- individual locations, once
referenced, are likely to be referenced again in the near future.

2. Spatial locality (locality in space) - references, including the next
location, are likely to be near the last reference.

Temporal locality is found in instruction loops, data stacks and variable
accesses. Spatial locality describes the characteristic that programs access
a number of distinct regions. Sequential locality describes sequential
locations being referenced and is a main attribute of program construction.
It can also be seen in data accesses, as data item are often stored in
sequential locations.

�� Taking advantage of temporal locality

When instructions are formed into loops which are
executed many times, the length of a loop is usually quite
small. Therefore once a cache is loaded with loops of
instructions from the main memory, the instructions are
used more than once before new instructions are required
from the main memory. The same situation applies to data;
data is repeatedly accessed. Suppose the reference is

repeated n times in all during a program loop and after the
first reference, the location is always found in the cache,
then the average access time would be:

ta = (n*tcache + tmain)/n = tcache + tmain/n

where n = number of references. As n increases, the
average access time decreases. The increase in speed will,
of course, depend upon the program. Some programs might
have a large amount of temporal locality, while others have
less. We can do some optimization about this.

�� Taking advantage of spatial locality

To take advantage of spatial locality, we will transfer not
just one byte or word from the main memory to the cache
(and vice versa) but a series of sequential locations called a
block. We have assumed that it is necessary to reference
the cache before a reference is make to the main memory to
fetch a word, and it is usual to look into the cache first to
see if the information is held there.

2. Data Blocking

For the matrix multiplication C = A.B, if we made code as below:

For (I = 0; I < m; I++)
 For (J = 0; J < n; J = J++) {
 R = 0;
 For (K = 0; K < p; K++)
 R = R + A[I][K] * B[K][J];
 C[I][J] = R; }

The two inner loops read all p by n elements of B and access the same p
elements in a row of A repeatedly, and write one row of n elements of C.
The number of capacity misses clearly depends on the dimension
parameters: m, n, p and the size of the cache. If the cache can hold all
three metrics, then all is well, provided there are no cache conflicts. In the
worst case, there would be (2*m*n*p + m*n) words read form memory
for m*n*p operations.

To enhance the cache performance if it is not big enough, we use an
optimization technique: blocking. The block method for this matrix
product consist of:

�� Split result matrix C into blocks CI,J of size Nb x Nb, each blocks is
constructed into a continuous array Cb which is then copied back
into the right CI,J.

�� Matrices A and B are spit into panels AI and BJ of size (Nb x p) and
(p x Nb) each panel is copied into continuous arrays Ab and Bb.
The choice of Nb must ensure that Cb, Ab and Bb fit into one level
of cache, usually L2 cache.

Then we rewrite the code as:

For (I = 0; I < m/Nb; I++){
 Ab = AI;
 For (J = 0; J < n/Nb; J++) {
 Bb = BJ; Cb = 0;
 For (K = 0; K < p/Nb; K++)
 Cb = Cb + AbK*BKb;
 CI,J = Cb; }} here "=" means assignment for matrix

We suppose for simplicity that Nb divides m, n and p. The figure below
may help you in understanding operations performed on blocks. In the
case of previous algorithm matrix A is loaded only one time into cache
compared to the n times access of the original one, while matrix B is still
accessed m times. This simple block method greatly reduce memory
access and real codes may choose by looking at matrix size which loop
structure (ijk vs. jik) is best appropriate and if some matrix operand fits
totally into cache.

In the previous we do not talk about L1 cache use. In fact L1 will be
generally too small to handle a CI,J block and one panel of A and B, but
remember that operation performed at Cb = Cb + AbK*BKb is a matrix-
matrix product so each operand AbK and BKb is aceessed Nb times: this part
could also use a block method. Since Nb is relatively small, the
implementation may load only one of Cb, AbK, BKb into L1 cache and
works with others from L2.

