
Vector Processors

Topics:
�� Introduction
�� Some Vector Processors
�� New Terms
�� Basic Vector Processor Architecture
�� Problems: Vector length and Stride
�� The Effect of cache design into vector computers
�� References

Introduction

Vector processors are special purpose computers that match a range of (scientific)
computing tasks. These tasks usually consist of large active data sets, often poor locality,
and long run times. In addition, vector processors provide vector instructions.

These instructions operate in a pipeline (sequentially on all elements of vector registers),
and in current machines. Some properties of vector instructions are

�� The computation of each result is independent of the computation of previous
results, allowing a very deep pipeline without any data hazards.

�� A single vector instruction specifies a tremendous amount of work – it is the
same as executing an entire loop. Thus, the instruction bandwidth
requirement is reduced.

�� Vector instructions that access memory have a known access pattern. If the
vector elements are all adjacent, then fetching the vector from a set of heavily
interleaved memory banks works very well. Because a single access is
initiated for the entire vector rather than to a single word, the high latency of
initiating a main memory access versus accessing a cache is amortized. Thus,
the cost of the latency to main memory is seen only once for the entire vector,
rather than once for each word of the vector.

�� Control hazards are non-existent because an entire loop is replaced by a vector
instruction whose behavior is predetermined.

Typical vector operations include (integer and floating point:

��Add two vectors to produce a third.
��Subtract two vectors to produce a third
��Multiply two vectors to produce a third

��Divide two vectors to produce a third
��Load a vector from memory
��Store a vector to memory.

These instructions could be augmented to do typical array operations:

�� Inner product of two vectors (multiply and accumulate sums)
��Outer product of two vectors (produce an array from vectors)
��Product of (small) arrays (this would match the programming language APL

which uses vectors and
��Arrays as primitive data elements)

Some Vector Processors

PROCESSOR YEAR CLOCK(MHZ) REGISTER

ELEMENT
FUCTIONAL
(PER
REGISTER)

UNITS

CRAY-1 1976 80 8 64 6
CRAY-XMP 1983 120 8 64 8
CRAY-YMP 1988 166 8 64 8
NEC SX/2 1984 160 8+8192 256 variable 16
CRAY C-90 1991 240 8 128 8
NEC SX/4 1995 400 8+8192 256 variable 16
CRAY J-90 1995 100 8 64 8
CRAY T-90 1996 500 8 128 8
NEC SX/5 1999

New Terms:

�� initiation rate is the rate of consuming operands and producing new results. (ie.
one per clock cycle for individual instruction, more for parallel operations)

�� convoy is the set of vector instructions that could potentially begin execution

together in one clock period. A convoy must complete before new instructions
can begin.

�� chime is a timing measure for the time for a vector sequence. A vector sequence

of m convoys (executes in m chimes), with a vector length of n elements executes
in roughly m x n clock cycles. A chime ignores the startup overhead for a vector
operation.

�� vector start-up time is the overhead to start execution. It is related to the pipeline
depth, and is due to the time to clear out existing vector operations from the unit.

Basic Vector Architecture

Problems: Vector length and stride

Vector lengths do not often correspond to the length of the vector registers - except by
plan:

�� For shorter vectors, we can use a vector length register applied to each vector
operation

�� For longer vectors, we can split the long vector into multiple vectors (of equal, or
of maximum plus smaller lengths). The process is called strip-mining. The strip-
mined loop consists of a sequence of convoys.

Stride is the distance separating elements in memory that will be adjacent in a vector
register. The unit stride is easiest to handle.

�� Non-unit strides can cause major problems for the memory system, which is
based on unit stride (ie. all the elements are one after another

�� In different interleaved memory banks). Caches deal with unit stride, and behave
badly for non-unit stride.

�� To account for non-unit stride, most systems have a stride register that the
memory system can use for loading elements of a vector register. However, the
memory interleaving may not support rapid loading. In 1995 the vector computers
had from 64 to 1024 banks of memory to overcome some of these problems - and
to allow fast vector memory load/stores.

The Effect of cache design into vector computers

While cache memories have been successfully used in general purpose computers to
boost system performance, their effectiveness for vector processing has not been
established. Most of existing supercomputer vector processors typically do not have a
cache memories because of perceived from these observations:

�� Numerical programs generally have data sets that are too large for the current
cache sizes. Sweep accesses of a large vector may result in complete reloading of
the cache before the processor reuses them.

�� Address sequentially which has been an important assumption in the conventional
caches may not be as good in vectorized numerical algorithms that usually access
data with certain stride which is the difference between addresses associated with
consecutive vector elements.

�� Register files and highly interleaved memories have been commonly used to
achieve high memory bandwidth required by vector processing.

It is on clear whether cache memories can significantly improve the performance of such
systems.

Although cache memories have potential for improving the performance of future vector
processors, there are practical reasons why such vector caches have not yet been
satisfactorily efficient. A single miss in the vector cache results in a number of processor

stall cycles equal to the entire memory access time, while the memory accesses of a
vector processor without cache are fully pipelined. In order to benefit from a vector
cache, the miss ratio must be kept extremely small. In general, cache misses can be
classified into these categories (Refer to part I for more details from website):

�� Compulsory miss
�� Capacity miss
�� Conflict miss

The compulsory misses are the misses in the initial loading of data, which can be
properly pipelined in a vector computer. The capacity misses are due to the size
limitation of a cache to hold data between references. If application algorithms are
properly blocked as mentioned above, the capacity misses can be attributed to the
compulsory misses for the initial loading of each block of data provided that the block
size is less than cache size. The last category, conflict misses, plays a key role in the
vector processing environment. Conflicts can occur when two or more elements of the
same vector are mapped to the same cache line or elements from two different vectors
compete for the same cache line. Since conflict misses that significantly degrade vector
cache performance have a lot to do with vector access stride, one may wish to adjust the
size of an application problem to make a good access stride for a given machine.
However, not only does this approach give a programmer a burden of knowing
architecture details of a machine but also infeasible for many applications.

Proposals such as prime-mapped cache schemes have been proposed and studied. The
new cache organization minimizes cache misses caused by cache line interferences that
have been shown to be critical in numerical applications. The cache lookup time of the
new mapping scheme keeps the same as conventional caches. Generation of cache
addresses for accessing the prime-mapped cache can be done in parallel with normal
address calculations. This address generation takes shorter time than the normal address
calculation due to the special properties of the Mersenne prime. Therefore, the new
mapping scheme does not result in any performance penalty as far as the cache access
time is concerned. With this new mapping scheme, the cache memory can provide
significant performance improvement, which will become larger as the speed gap
between processor and memory increases.

References:

�� J.L. Hennessy and D.A. Patterson, Computer Architecture, A Quantitative
Approach. Morgan Kaufmann, 1990.

�� http://csep1.phy.ornl.gov/ca/node24.html
�� http://www.comp.nus.edu.sg/~johnm/cs3220/l21.htm
�� http://penta-performance.com/sager/vector/Default_vector2.htm
�� http://www-icpc.doc.ic.ac.uk/facilities/vx/arch.html

http://csep1.phy.ornl.gov/ca/node24.html
http://www.comp.nus.edu.sg/~johnm/cs3220/l21.htm
http://penta-performance.com/sager/vector/Default_vector2.htm
http://www-icpc.doc.ic.ac.uk/facilities/vx/arch.html

	Introduction
	Some Vector Processors
	New Terms:
	Basic Vector Architecture
	Problems: Vector length and stride
	The Effect of cache design into vector computers
	References:

