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pick up an exercise at the 
front of the class!
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also, if you are not currently 
registered, please write your 
name/ID on the sheet at the 
front of class.
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In-class exercise policies

•Attendance, which we keep track of via in-
class exercises, will be a part of your 
overall participation grade. Everyone can 
miss up to two in-class exercises with no 
penalty; any further absences will lower 
your attendance score

•If you have to miss more than two classes 
for legitimate preplanned reasons (e.g., 
interviews) or for health/personal 
emergencies, please contact the 
instructors at cs585nlp@gmail.com
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Late policies:
• Late policy: everyone will get three late 

days to use for homework assignments. 
After all three late days have been 
exhausted, no more late submissions will 
be accepted.

• For unforeseen health and personal 
emergencies, please email the 
instructors account. Job interviews / 
other schoolwork are not excuses for 
late homework.



questions from last class…

• why am i not on gradescope? 
• please consent on the poll or we can’t add you! 

• do NOT email me or cs585nlp@gmail with 
course registration issues! we can’t do 
anything
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tentative roadmap

• today: naive Bayes for text classification 
• next week: count-based language models 
• following week: logistic regression for text 

classification 
• following week: word representations and 

neural language models
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text classification

• input: some text x (e.g., sentence, document) 
• output: a label y (from a finite label set) 
• goal: learn a mapping function f from x to y
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text classification

• input: some text x (e.g., sentence, document) 
• output: a label y (from a finite label set) 
• goal: learn a mapping function f from x to y
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fyi: basically every NLP problem 
reduces to learning a mapping function 

with various definitions of x and y!
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problem x y

sentiment analysis text from reviews (e.g., 
IMDB) {positive, negative}

topic identification documents {sports, news, health, …}

author identification books {Tolkien, Shakespeare, 
…}

spam identification emails {spam, not spam}

… many more!
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input x:

label y: spam or not spam

we’d like to learn a mapping f such that 
f(x) = spam



f can be hand-designed rules

• if “won $10,000,000” in x, y = spam 
• if “CS585 Fall 2019” in x, y = not spam
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what are the drawbacks of this method?



f can be learned from data

• given training data (already-labeled x,y pairs) 
learn f by maximizing the likelihood of the 
training data 

• this is known as supervised learning
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x (email text) y (spam or not spam)

learn how to fly in 2 minutes spam
send me your bank info spam

CS585 Gradescope consent poll not spam

click here for trillions of $$$ spam
… ideally many more examples!

x (email text) y (spam or not spam)

CS585 important update not spam
ancient unicorns speaking english!!! spam

training data:

heldout data:



 14

x (email text) y (spam or not spam)

learn how to fly in 2 minutes spam
send me your bank info spam

CS585 Gradescope consent poll not spam

click here for trillions of $$$ spam
… ideally many more examples!

x (email text) y (spam or not spam)

CS585 important update not spam
ancient unicorns speaking english!!! spam

training data:

heldout data:

learn mapping function on training data, 
measure its accuracy on heldout data



probability review
• random variable    takes value    with 

probability              ; shorthand  

• joint probability:  

• conditional probability:  

• when does 
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p(X = x, Y = y)

p(x)
X x

p(X = x)

p(X = x ∣ Y = y)

=
p(X = x, Y = y)

p(Y = y)

p(X = x, Y = y) = p(X = x) ⋅ p(Y = y) ?



probability of some input text
• goal: assign a probability to a sentence 

• sentence: sequence of tokens


•             where    is the vocabulary (types)


• some constraints:
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p(w1, w2, w3, …, wn)
p(the cat sleeps) > p(cat sleeps the)

wi ∈ V V

for any w ∈ V, p(w) ≥ 0

∑
w∈V

p(w) = 1

non-negativity

probability 
distribution, 
sums to 1



how to estimate p(sentence)?
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p(w1, w2, w3, …, wn)

we could count all occurrences of the sequence  

in some large dataset and normalize by the number of 
sequences of length n in that dataset 

w1, w2, w3, …, wn

how many parameters would this require?



chain rule
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= p(w1) ⋅ p(w2 |w1) ⋅ p(w3 |w1, w2) … ⋅ p(wn |w1…n−1)

p(w1, w2, w3, …, wn)

in naive Bayes, the probability of generating a 
word is independent of all other words

= p(w1) ⋅ p(w2) ⋅ p(w3) … ⋅ p(wn)

this is called the unigram probability. 
what are its limitations?
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models that estimate p(text) are called 
language models. we will be seeing a lot of 

these in the rest of the class. naive Bayes 
uses a unigram language model, which is the 

simplest possible LM.

an aside:



toy sentiment example

• vocabulary V: {i, hate, love, the, movie, actor} 
• training data (movie reviews): 

• i hate the movie 
• i love the movie 
• i hate the actor 
• the movie i love 
• i love love love love love the movie 
• hate movie 
• i hate the actor i love the movie
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labels: 
positive 
negative



bag-of-words representation
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i hate the actor i love the movie



bag-of-words representation
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i hate the actor i love the movie

word count

i 2

hate 1

love 1

the 2

movie 1

actor 1



bag-of-words representation
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i hate the actor i love the movie

word count

i 2

hate 1

love 1

the 2

movie 1

actor 1

equivalent representation to: 
actor i i the love the movie hate



naive Bayes

• represents input text as a bag of words 
• assumption: each word is independent of all 

other words 
• given labeled data, we can use naive Bayes 

to estimate probabilities for unlabeled data 
• goal: infer probability distribution that 

generated the labeled data for each label
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which of the below distributions most 
likely generated the positive reviews?

0

0.25

0.5

0.75

1

i hate love the movie actor
0

0.25

0.5

0.75

1

i hate love the movie actor



… back to our reviews
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p(i love love love love love the movie)

= p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie)

0

0.25

0.5

0.75

1

i hate love the movie actor
0

0.25

0.5

0.75

1

i hate love the movie actor

= 5.95374181e-7 = 1.4467592e-4



logs to avoid underflow
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p(w1) ⋅ p(w2) ⋅ p(w3) … ⋅ p(wn)

log∏p(wi) = ∑ log p(wi)

can get really small esp. with large n

p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie) = 5.95374181e-7
log p(i) + 5 log p(love) + log p(the) + log p(movie)

= -14.3340757538



class conditional probabilities
Bayes rule (ex: x = sentence, y = label in {pos, neg})
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p(y |x) =
p(y) ⋅ P(x |y)

p(x)

posterior
prior likelihood

our predicted label is the one with the highest 
posterior probability, i.e.,

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)



class conditional probabilities
Bayes rule (ex: x = sentence, y = label in {pos, neg})
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p(y |x) =
p(y) ⋅ P(x |y)

p(x)

posterior
prior likelihood

our predicted label is the one with the highest 
posterior probability, i.e.,

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)
what happened to 

the denominator???



remember the independence assumption!
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̂y = arg max
y∈Y

p(y) ⋅ P(x |y)

= arg max
y∈Y

p(y) ⋅ ∏
w∈x

P(w |y)

maximum a 
posteriori 

(MAP) class

= arg max
y∈Y

log p(y) + ∑
w∈x

log P(w |y)



computing the prior…
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• i hate the movie 
• i love the movie 
• i hate the actor 
• the movie i love 
• i love love love love love the movie 
• hate movie 
• i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels
we can estimate it from the data by simply counting…

label y count p(Y=y) log(p(Y=y))

positive 3 0.43 -0.84

negative 4 0.57 -0.56



computing the likelihood…
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word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18
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word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18

new review Xnew: love love the movie

log p(Xnew |positive) = ∑
w∈Xnew

log p(w |positive) = − 4.96

log p(Xnew |negative) = − 8.91



posterior probs for Xnew
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p(y |x) ∝ arg max
y∈Y

p(y) ⋅ P(Xnew |y)

log p(positive |Xnew) ∝ log P(positive) + log p(Xnew |positive)
= − 0.84 − 4.96 = − 5.80

log p(negative |Xnew) ∝ − 0.56 − 8.91 = − 9.47

naive Bayes predicts a positive label!



what if we see no positive training documents 
containing the word  “awesome”?

 35

p(awesome |positive) = 0
any review that contains “awesome” will have 
zero probability for the positive class!
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what happens if we do  
add-n smoothing as n increases?

unsmoothed P(wi |y) =
count(wi, y)

∑w∈V count(w, y)

Add-1 (Laplace) smoothing

smoothed P(wi |y) =
count(wi, y) + 1

∑w∈V count(w, y) + |V |



exercise!
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