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stuff from last class….
• group assignments due by this Thursday Sep 19th 

at the end of the day, otherwise you’ll be randomly 
assigned! 

• HW1 bug fixed, recopy the notebook for those who 
already started! 

• more readings that are research papers? ok 
• talk about state-of-the-art models? later 
• code libraries for project?
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where we left off: 
so we have some input text from 
which we have computed feature 

vector x. 

x (…Hence, in any statistical) = 10010010110101

ϕ0 = {1, if wi−1 = statistical,
0, otherwise .

ϕ1 = {1, if wi−1 = animal,
0, otherwise .

ϕ2 = {1, if pos(wi−1) = adj,
0, otherwise .



given features x, how do we predict the next word y?
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s = Wx + b

score vector 

weight matrix

s ∈ ℝ|V|

W ∈ ℝ|V|×m

features x ∈ ℝm

each row of W contains weights for a (word y, x) pair



how do we obtain probabilities?
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s = Wx + b

score vector 

weight matrix

s ∈ ℝ|V|

W ∈ ℝ|V|×m

features x ∈ ℝm

pi =
esi

∑j esj
; p = softmax(s)



colab demo!
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what do we have left?

• how do we find the optimal values of W and b for 
our language modeling problem? 

• gradient descent! this involves computing: 
1. a loss function, which tells us how good the 

current values of W and b are on our training 
data 

2. the partial derivatives         and
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kinda like we 
did in HW0!



first, an aside: what is the bias b?

• Let’s say we have a feature that is always set to 1 
regardless of what the input text is.  

• This is clearly not an informative feature. However, 
let’s say it was the only one I had…
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first, how many weights do I 
need to learn for this feature?



first, an aside: what is the bias b?

• Let’s say we have a feature that is always set to 1 
regardless of what the input text is.  

• This is clearly not an informative feature. However, 
let’s say it was the only one I had…
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first, how many weights do I 
need to learn for this feature?

okay… what is the best set of 
weights for it?
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Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

L = − log p(y |x, W) = − log( eWyx

∑y′�∈V eWy′�x )
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Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

why not just maximize the log 
probability?

L = − log p(y |x, W) = − log( eWyx

∑y′�∈V eWy′�x )
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Background:	Why	“Cross	entropy”	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	log	
probability	of	the	true	class

1/18/188

H(p, q) = − ∑
w∈V

p(w)log q(w)



let’s say I also have the derivatives

• the partial derivatives tell us how the loss changes 
given a change in the corresponding parameter 

• we can thus take steps in the negative direction of 
the gradient to minimize the loss function
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draw on paper

 16



derivation on paper
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