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stuff from last time

• HW2 out now! please start early, as it is fairly 
long and may prove difficult to implement 

• can you repeat questions asked during 
class? ok
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Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention
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connections



Positional encoding



Positional encoding

Positional encoding is a 512d vector 
i = a particular dimension of this vector 
pos = position of the word in the text 
d_model = 512 



What does this look like?*

CosSin
Even parts Odd parts



Absolute vs relative difference?

Shaw et al., NAACL 2018



What’s going 
on here?



Last major missing piece:
• Decoder self-attention masking



Ablations



Hacks to get it to work:





I went to class and took ___

0      0         1        0         0
cats TV notes took sofa

0.025   0.025        0.9     0.025     0.025
with label smoothing



Get penalized for 
overconfidence!

Loss

Target word confidence



Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by instead 

using subword tokenization

Sennrich et al., ACL 2016



exercise



transfer learning



Do NNs really need millions 
of labeled examples?
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• Can we leverage unlabeled data to cut down 
on the number of labeled examples we 
need?



What is transfer learning?
• In our context: take a network trained on a 

task for which it is easy to generate labels, 
and adapt it to a different task for which it is 
harder. 

• In computer vision: train a CNN on 
ImageNet, transfer its representations to 
every other CV task 

• In NLP: train a really big language model on 
billions of words, transfer to every NLP task!
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can we use language models 
to produce word embeddings?

Deep contextualized word representations. Peters et al., NAACL 2018



Word vectors are ubiquitous

Most if not all current state-of-the-art NLP 
systems use pre-trained word embeddings*  
(as of 2018) 

* With the exception of data-rich tasks like machine translation 



word2vec represents each 
word as a single vector

     play =[0.2, -0.1, 0.5, ...] 
    bank =[-0.3, 1.4, 0.7, ...] 
     run  =[-0.5, -0.3, -0.1, ...] 



The new-look play area is due to be 
completed by early spring 2010 . 

Single vector per word



Gerrymandered congressional districts 
favor representatives who play to the 
party base . 

Single vector per word



The freshman then completed the 
three-point play for a 66-63 lead . 

Single vector per word



Nearest neighbors
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players     multiplayer 
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Multiple senses entangled

play =[0.2, -0.1, 0.5, ...] 
  Nearest Neighbors 
playing             plays 
game     player 
games     Play 
played     football 
players     multiplayer 

VERB 
NOUN 
ADJ
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Contextual Representations

● Problem: Word embeddings are applied in a 
context free manner

● Solution: Train contextual representations on text 
corpus

[0.3, 0.2, -0.8, …]

open a bank account on the river bank

open a bank account

[0.9, -0.2, 1.6, …]

on the river bank

[-1.9, -0.4, 0.1, …]
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History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 
2015

Train LSTM
Language Model

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

LSTM

very

LSTM

funny

LSTM

movie

POSITIVE

...

Fine-tune on 
Classification Task
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History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 & 
University of Washington, 2017

Train Separate Left-to-Right and 
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained 
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture



Deep bidirectional language model

… download     new      games        or           play     ??  
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LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

??

Deep bidirectional language model

… download     new      games        or           play     ??  



biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

 …     games       or           play        online        via     …

Use all layers of language model

0.25

0.6

embeddings from 
language models

0.15

ELMo



Learned task-specific combination of layers

biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

 …     games       or           play        online        via     …

s3

s2

embeddings from 
language models

s1

ELMo
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layer weights



Contextual representations

ELMo representations are contextual – 
they depend on the entire sentence in 
which a word is used.

how many different embeddings does 
ELMo compute for a given word?



ELMo improves NLP tasks



Large-scale recurrent neural language models 
learn contextual representations that capture 
basic elements of semantics and syntax 

Adding ELMo to existing state-of-the-art 
models provides significant performance 
improvement on all NLP tasks.
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TOFROM
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Problem with Previous Methods

● Problem: Language models only use left context 
or right context, but language understanding is 
bidirectional.

● Why are LMs unidirectional?
● Reason 1: Directionality is needed to generate a 

well-formed probability distribution.
○ We don’t care about this.

● Reason 2: Words can “see themselves” in a 
bidirectional encoder.
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● Problem: Language models only use left context 
or right context, but language understanding is 
bidirectional.

● Why are LMs unidirectional?
● Reason 1: Directionality is needed to generate a 

well-formed probability distribution.
○ We don’t care about this.

● Reason 2: Words can “see themselves” in a 
bidirectional encoder.

Why not?
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Layer 2

<s>

Layer 2

open

Layer 2

open

Layer 2

a

Layer 2

a

Layer 2

bank

Unidirectional context
Build representation incrementally

Layer 2

<s>

Layer 2

open

Layer 2

open

Layer 2

a

Layer 2

a

Layer 2

bank

Bidirectional context
Words can “see themselves”

Unidirectional vs. Bidirectional Models
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Masked LM

● Solution: Mask out k% of the input words, and 
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon

What are the pros and 
cons of increasing k?
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Masked LM

● Problem: Mask token never seen at fine-tuning
● Solution: 15% of the words to predict, but don’t 

replace with [MASK] 100% of the time. Instead:
● 80% of the time, replace with [MASK]

went to the store → went to the [MASK]
● 10% of the time, replace random word

went to the store → went to the running
● 10% of the time, keep same

went to the store → went to the store
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Next Sentence Prediction

● To learn relationships between sentences, predict 
whether Sentence B is actual sentence that 
proceeds Sentence A, or a random sentence
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Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.
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Model Architecture

● Multi-headed self attention
○ Models context

● Feed-forward layers
○ Computes non-linear hierarchical features

● Layer norm and residuals
○ Makes training deep networks healthy

● Positional embeddings
○ Allows model to learn relative positioning

Transformer encoder
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Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM

What are they?
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Model Details

● Data: Wikipedia (2.5B words) + BookCorpus (800M 
words)

● Batch Size: 131,072 words (1024 sequences * 128 
length or 256 sequences * 512 length)

● Training Time: 1M steps (~40 epochs)
● Optimizer: AdamW, 1e-4 learning rate, linear decay
● BERT-Base: 12-layer, 768-hidden, 12-head
● BERT-Large: 24-layer, 1024-hidden, 16-head
● Trained on 4x4 or 8x8 TPU slice for 4 days
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Fine-Tuning Procedure
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Fine-Tuning Procedure
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GLUE Results

MultiNLI
Premise: Hills and mountains are especially 
sanctified in Jainism.
Hypothesis: Jainism hates nature.
Label: Contradiction

CoLa
Sentence: The wagon rumbled down the road.
Label: Acceptable

Sentence: The car honked down the road.
Label: Unacceptable
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SWAG

● Run each Premise + Ending 
through BERT.

● Produce logit for each pair 
on token 0 ([CLS])
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Effect of Pre-training Task

● Masked LM (compared to left-to-right LM) is very important on 
some tasks, Next Sentence Prediction is important on other tasks.

● Left-to-right model does very poorly on word-level task (SQuAD), 
although this is mitigated by BiLSTM
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Effect of Directionality and Training Time

● Masked LM takes slightly longer to converge because 
we only predict 15% instead of 100%

● But absolute results are much better almost immediately
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Effect of Model Size

● Big models help a lot
● Going from 110M -> 340M params helps even on 

datasets with 3,600 labeled examples
● Improvements have not asymptoted 
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Effect of Masking Strategy

● Masking 100% of the time hurts on feature-based approach 

● Using random word 100% of time hurts slightly
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Multilingual BERT

● Trained single model on 104 languages from Wikipedia. Shared 110k 
WordPiece vocabulary.

● XNLI is MultiNLI translated into multiple languages.
● Always evaluate on human-translated Test.
● Translate Train: MT English Train into Foreign, then fine-tune.
● Translate Test: MT Foreign Test into English, use English model.
● Zero Shot: Use Foreign test on English model.

System English Chinese Spanish
XNLI Baseline - Translate Train 73.7 67.0 68.8
XNLI Baseline - Translate Test 73.7 68.4 70.7
BERT - Translate Train 81.9 76.6 77.8
BERT - Translate Test 81.9 70.1 74.9
BERT - Zero Shot 81.9 63.8 74.3
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Common Questions

● Is deep bidirectionality really necessary? What about 
ELMo-style shallow bidirectionality on bigger model?

● Advantage: Slightly faster training time
● Disadvantages:

○ Will need to add non-pre-trained bidirectional model on top
○ Right-to-left SQuAD model doesn’t see question
○ Need to train two models
○ Off-by-one: LTR predicts next word, RTL predicts previous word
○ Not trivial to add arbitrary pre-training tasks.
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Common Questions

● Why did no one think of this before?
● Better question: Why wasn’t contextual pre-training 

popular before 2018 with ELMo?
● Good results on pre-training is >1,000x to 100,000 

more expensive than supervised training.
○ E.g., 10x-100x bigger model trained for 100x-1,000x as many steps.
○ Imagine it’s 2013: Well-tuned 2-layer, 512-dim LSTM sentiment analysis 

gets 80% accuracy, training for 8 hours.
○ Pre-train LM on same architecture for a week, get 80.5%.
○ Conference reviewers: “Who would do something so expensive for such 

a small gain?”
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Common Questions

● The model must be learning more than “contextual 
embeddings”

● Alternate interpretation: Predicting missing words 
(or next words) requires learning many types of 
language understanding features.
○ syntax, semantics, pragmatics, coreference, etc.

● Implication: Pre-trained model is much bigger than 
it needs to be to solve specific task

● Task-specific model distillation words very well
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Common Questions
● Is modeling “solved” in NLP? I.e., is there a reason to come 

up with novel model architectures?
○ But that’s the most fun part of NLP research :( 

● Maybe yes, for now, on some tasks, like SQuAD-style QA.
○ At least using the same deep learning “lego blocks”

● Examples of NLP models that are not “solved”:
○ Models that minimize total training cost vs. accuracy on modern hardware
○ Models that are very parameter efficient (e.g., for mobile deployment)
○ Models that represent knowledge/context in latent space
○ Models that represent structured data (e.g., knowledge graph)
○ Models that jointly represent vision and language
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Common Questions

● Personal belief: Near-term improvements in NLP 
will be mostly about making clever use of “free” 
data.
○ Unsupervised vs. semi-supervised vs. synthetic supervised is 

somewhat arbitrary.
○ “Data I can get a lot of without paying anyone” vs. “Data I have to pay 

people to create” is more pragmatic distinction. 

● No less “prestigious” than modeling papers:
○ Phrase-Based & Neural Unsupervised Machine Translation, Facebook 

AI Research, EMNLP 2018 Best Paper
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Conclusions

● Empirical results from BERT are great, but biggest 
impact on the field is:

● With pre-training, bigger == better, without clear 
limits (so far).

● Unclear if adding things on top of BERT really helps 
by very much.
○ Good for people and companies building NLP systems.
○ Not necessary a “good thing” for researchers, but important.


