Using BERT in downstream tasks

CS 585, Fall 2019

Mohit Iyyer College of Information and Computer Sciences University of Massachusetts Amherst

many slides from Jacob Devlin

stuff from last time

- slides ahead of time?
- can you repeat questions asked during class?
- project??? (milestone 1 due Oct 24)
- HW2??? (due Oct 18)
- midterm??? (Oct 31)

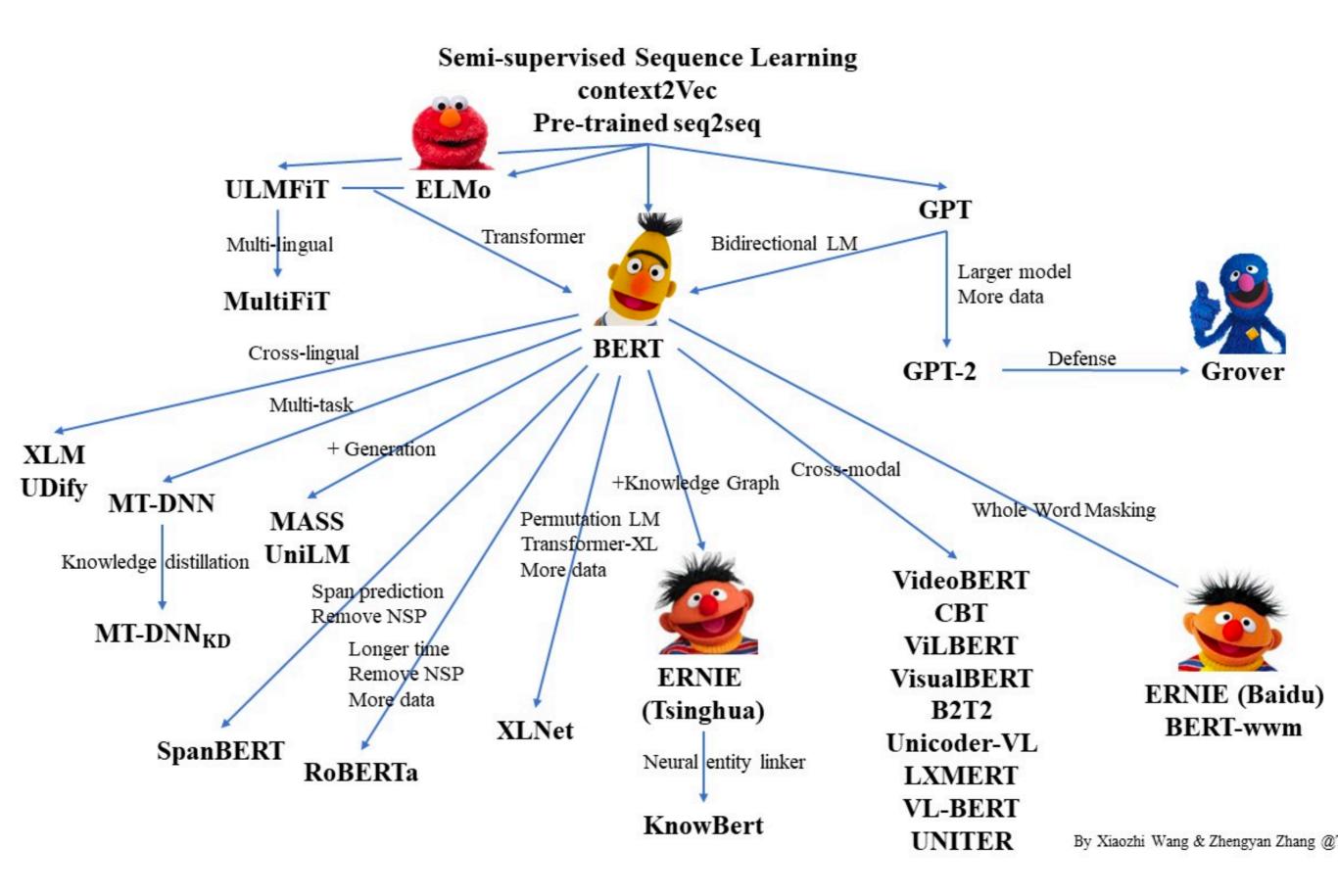
rough details about midterm

- two practice exams on Piazza (solutions soon)
 - many problems are on topics we haven't covered so don't worry about knowing everything

• topics that can definitely be on the midterm:

- naive Bayes
- ngram LMs + smoothing
- word embeddings (e.g., word2vec)
- neural networks (e.g., backprop, training setup)
- fixed-window / RNN LMs
- Transformers
- Transfer learning (e.g., ELMo / BERT)
- sequence labeling (next week)

ТО



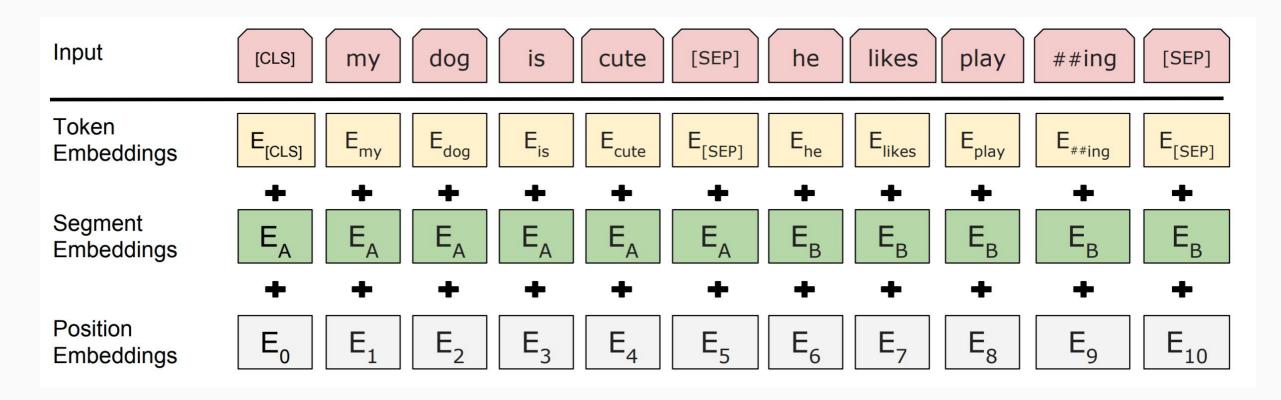
source: <u>https://github.com/thunlp/PLMpapers</u>

Masked LM

- Solution: Mask out *k*% of the input words, and then predict the masked words
 - We always use k = 15%

What are the pros and cons of increasing *k*?

Input Representation

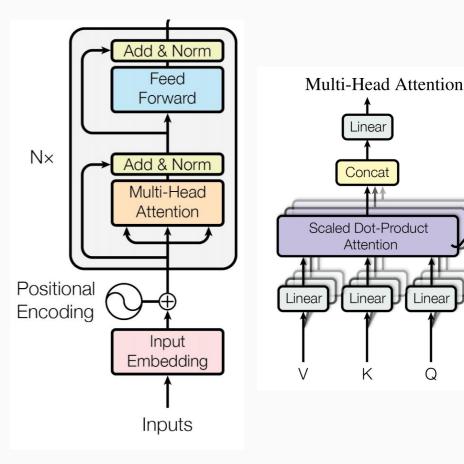


- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings
- Single sequence is much more efficient.

Model Architecture

Transformer encoder

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning



Model Architecture

• Empirical advantages of Transformer vs. LSTM:

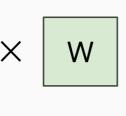
What are they?

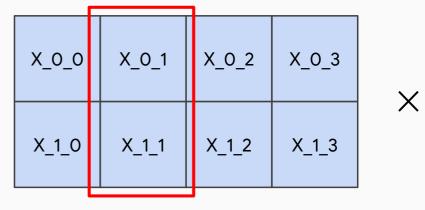
Model Architecture

- Empirical advantages of Transformer vs. LSTM:
- 1. Self-attention == no locality bias
 - Long-distance context has "equal opportunity"
- 2. Single multiplication per layer == efficiency on TPU
 - Effective batch size is number of words, not sequences

Transformer

X_0_0	X_0_0 X_0_1		X_0_3	
X_1_0	X_1_1	X_1_2	X_1_3	

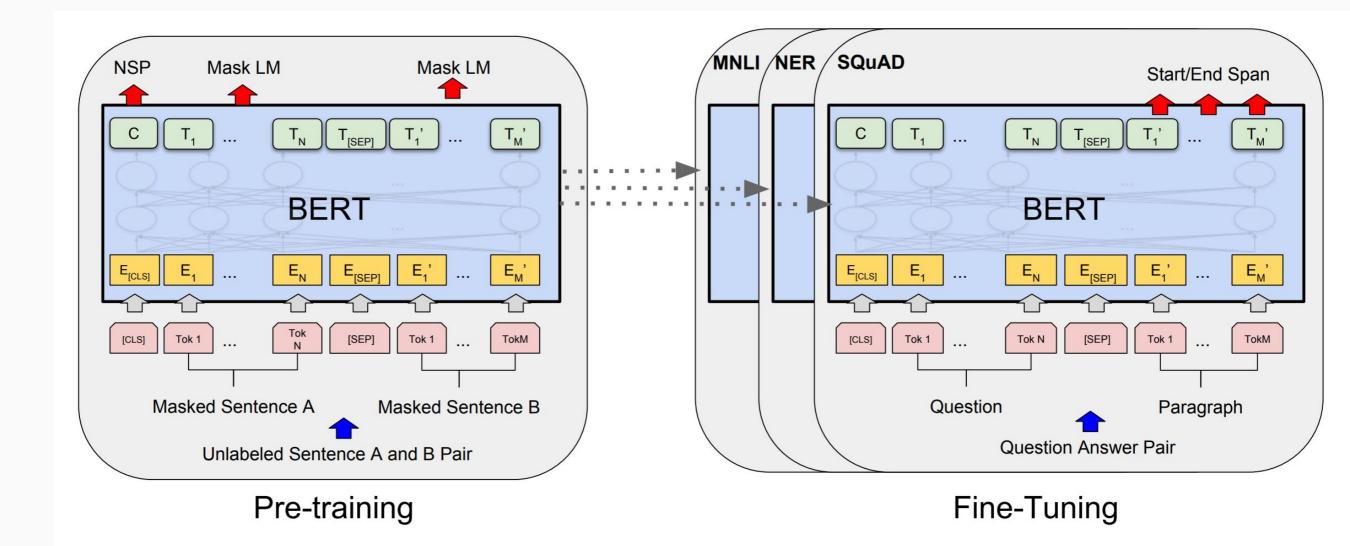




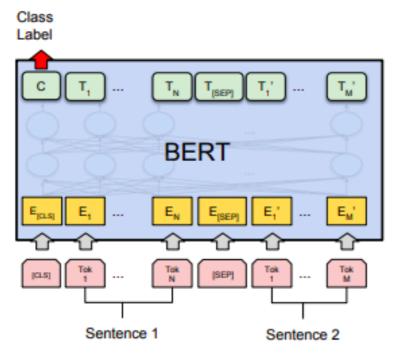
Model Details

- <u>Data</u>: Wikipedia (2.5B words) + BookCorpus (800M words)
- <u>Batch Size</u>: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- <u>Training Time</u>: 1M steps (~40 epochs)
- <u>Optimizer</u>: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

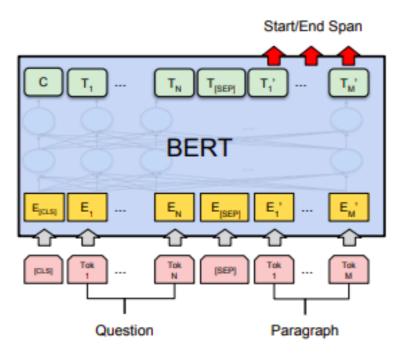
Fine-Tuning Procedure



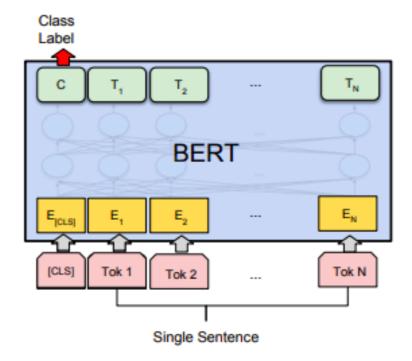
Fine-Tuning Procedure



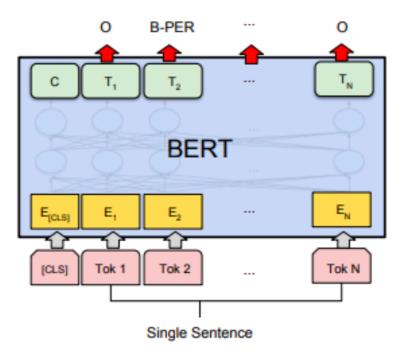
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(c) Question Answering Tasks: SQuAD v1.1



(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

<u>Premise</u>: Hills and mountains are especially sanctified in Jainism. <u>Hypothesis</u>: Jainism hates nature. <u>Label</u>: Contradiction

CoLa

<u>Sentence</u>: The wagon rumbled down the road. <u>Label</u>: Acceptable

<u>Sentence</u>: The car honked down the road. <u>Label</u>: Unacceptable

SWAG

A girl is going across a set of monkey bars. She

(i) jumps up across the monkey bars.

(ii) struggles onto the bars to grab her head.

(iii) gets to the end and stands on a wooden plank.

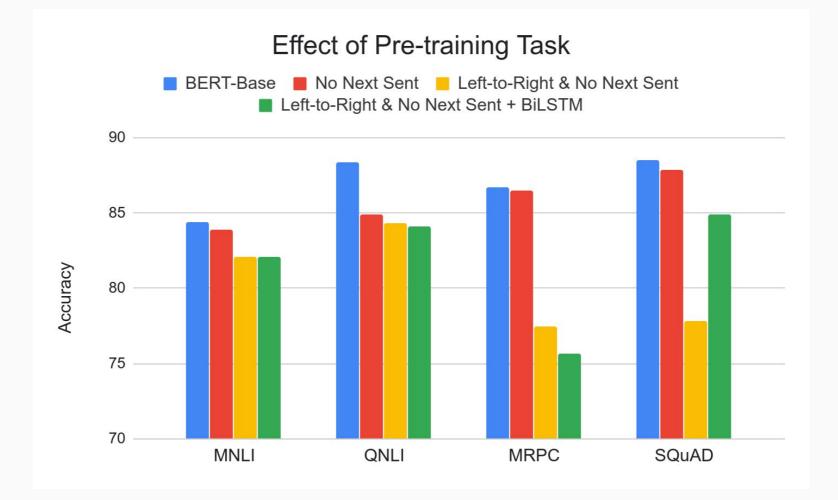
(iv) jumps up and does a back flip.

- Run each Premise + Ending through BERT.
- Produce logit for each pair on token O([CLS])

$$P_i = \frac{e^{V \cdot C_i}}{\sum_{j=1}^4 e^{V \cdot C_j}}$$

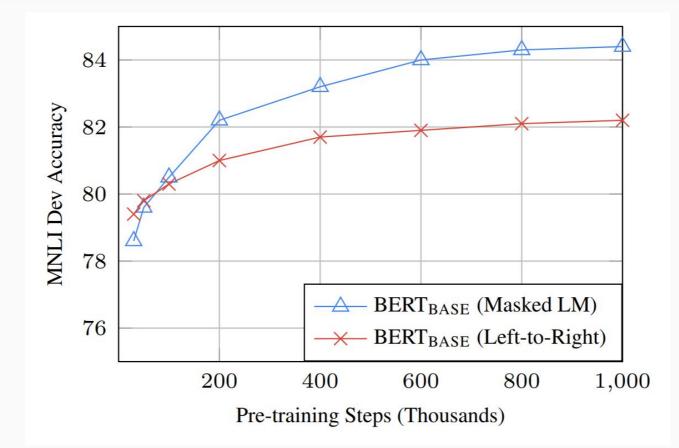
Leaderb	oard → Human Performance (88.00%) Running Best Submissions	
Rank	Model	Test Score
1	BERT (Bidirectional Encoder Representations from Transfo <i>Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova</i> 10/11/2018	86.28%
2	OpenAl Transformer Language Model <i>Original work by Alec Radford, Karthik Narasimhan, Tim Salimans,</i> 10/11/2018	77.97%
3	ESIM with ELMo <i>Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin</i> 08/30/2018	59.06%
4	ESIM with Glove <i>Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin</i> 08/29/2018	52.45 %

Effect of Pre-training Task



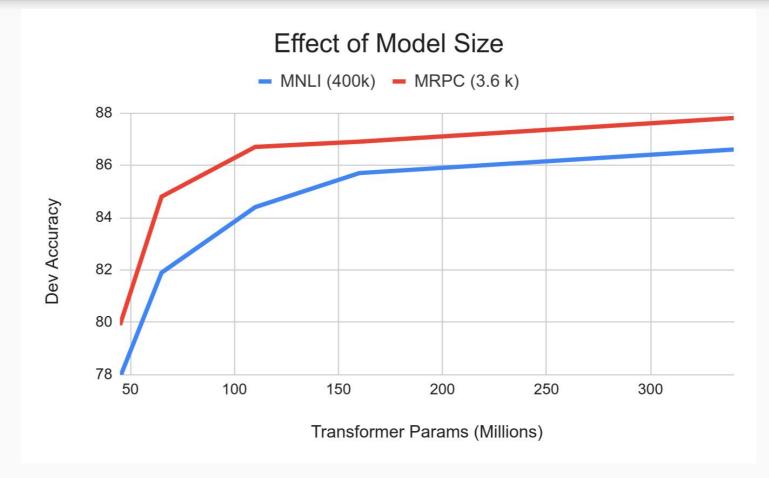
- Masked LM (compared to left-to-right LM) is very important on some tasks, Next Sentence Prediction is important on other tasks.
- Left-to-right model does very poorly on word-level task (SQuAD), although this is mitigated by BiLSTM

Effect of Directionality and Training Time



- Masked LM takes slightly longer to converge because we only predict 15% instead of 100%
- But absolute results are much better almost immediately

Effect of Model Size



- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

Multilingual BERT

• Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary.

System	English	Chinese	Spanish
XNLI Baseline - Translate Train	73.7	67.0	68.8
XNLI Baseline - Translate Test	73.7	68.4	70.7
BERT - Translate Train	81.9	76.6	77.8
BERT - Translate Test	81.9	70.1	74.9
BERT - Zero Shot	81.9	63.8	74.3

- XNLI is MultiNLI translated into multiple languages.
- Always evaluate on human-translated Test.
- <u>Translate Train</u>: MT English Train into Foreign, then fine-tune.
- <u>Translate Test</u>: MT Foreign Test into English, use English model.
- <u>Zero Shot</u>: Use Foreign test on English model.

- Why did no one think of this before?
- Better question: Why wasn't contextual pre-training popular before 2018 with ELMo?
- Good results on pre-training is >1,000x to 100,000 more expensive than supervised training.
 - E.g., 10x-100x bigger model trained for 100x-1,000x as many steps.
 - Imagine it's 2013: Well-tuned 2-layer, 512-dim LSTM sentiment analysis gets 80% accuracy, training for 8 hours.
 - Pre-train LM on same architecture for a week, get 80.5%.
 - Conference reviewers: "Who would do something so expensive for such a small gain?"

- The model must be learning more than "contextual embeddings"
- Alternate interpretation: Predicting missing words (or next words) requires learning many types of language understanding features.
 - syntax, semantics, pragmatics, coreference, etc.
- Implication: Pre-trained model is much bigger than it needs to be to solve specific task
- Task-specific model distillation words very well

- Is modeling "solved" in NLP? I.e., is there a reason to come up with novel model architectures?
 - But that's the most fun part of NLP research :(
- Maybe yes, for now, on some tasks, like SQuAD-style QA.
 - At least using the same deep learning "lego blocks"
- Examples of NLP models that are not "solved":
 - Models that minimize total training cost vs. accuracy on modern hardware
 - Models that are very parameter efficient (e.g., for mobile deployment)
 - Models that represent knowledge/context in latent space
 - Models that represent structured data (e.g., knowledge graph)
 - Models that jointly represent vision and language

- Personal belief: Near-term improvements in NLP will be mostly about making clever use of "free" data.
 - Unsupervised vs. semi-supervised vs. synthetic supervised is somewhat arbitrary.
 - "Data I can get a lot of without paying anyone" vs. "Data I have to pay people to create" is more pragmatic distinction.
- No less "prestigious" than modeling papers:
 - Phrase-Based & Neural Unsupervised Machine Translation, Facebook Al Research, EMNLP 2018 Best Paper

Conclusions

- Empirical results from BERT are great, but biggest impact on the field is:
- With pre-training, bigger == better, without clear limits (so far).
- Unclear if adding things on top of BERT really helps by very much.
 - Good for people and companies building NLP systems.
 - Not necessary a "good thing" for researchers, but important.

draw stuff

masked transformer exercise