sequence modeling: part-of-speech tagging with hidden Markov models

CS 585, Fall 2019

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

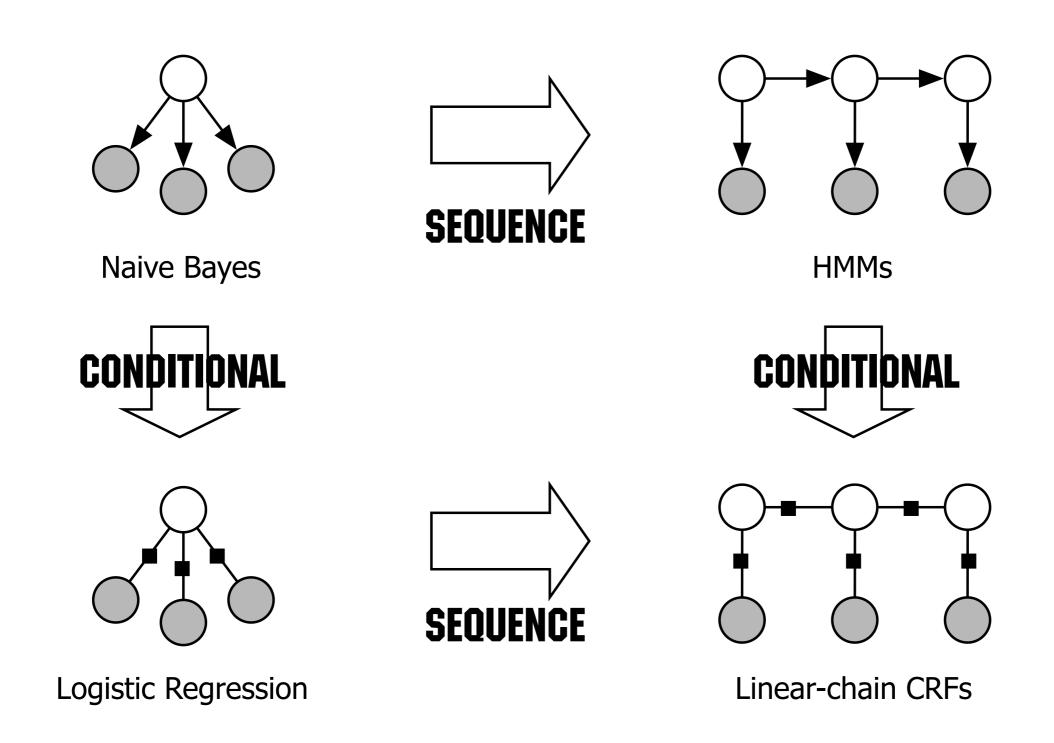
College of Information and Computer Sciences University of Massachusetts Amherst

many slides from Brendan O'Connor & Jordan Boyd-Graber

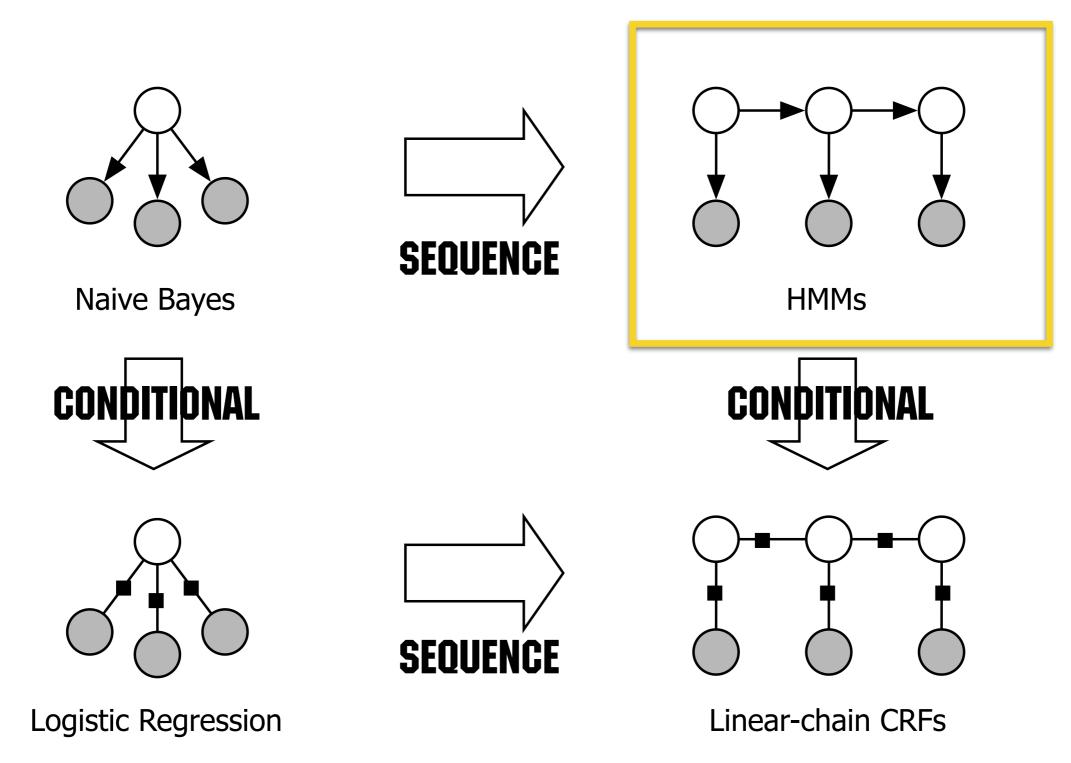
questions from last time...

- Busy next 2 weeks!
 - HW2! Due tmrw
 - Project milestone 1: due Oct 24
 - Midterm: Oct 31
- tested on optional readings? no
- final presentations? possibly Dec 12
- stats on HWs?
- what is a tensor?

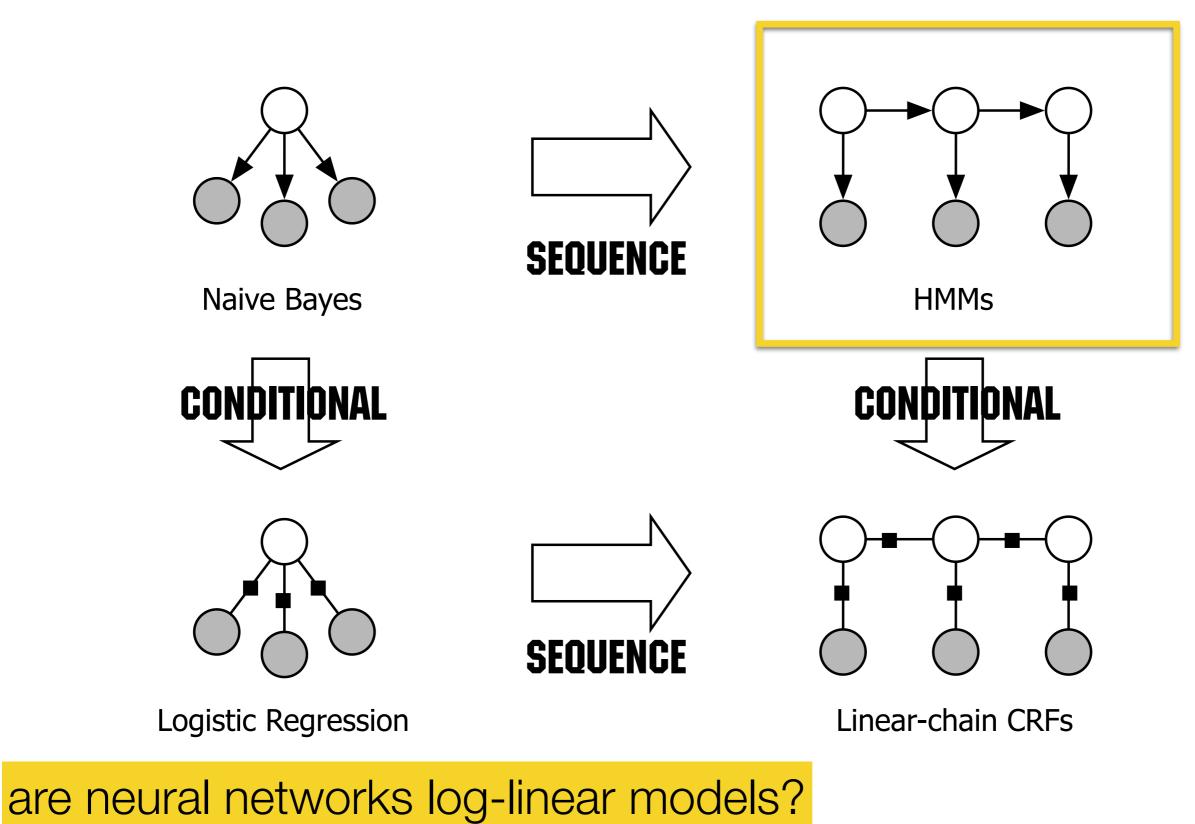
These are all log-linear models



These are all log-linear models



These are all log-linear models



Tagging (Sequence Labeling)

- Given a sequence (in NLP, words), assign appropriate labels to each word.
- Many NLP problems can be viewed as sequence labeling:
 - POS Tagging
 - Chunking
 - Named Entity Tagging
- Labels of tokens are dependent on the labels of other tokens in the sequence, particularly their neighbors

Plays well with others.VBZRBINNNS

What's a part-of-speech (POS)?

- Syntax = how words compose to form larger meaning bearing units
- POS = syntactic categories for words (a.k.a word class)
 - You could substitute words within a class and have a syntactically valid sentence

I saw the **dog** I saw the **cat** I saw the <u>___</u>

• Gives information how words combine into larger phrases

Why do we want POS?

- Useful for many syntactic and other NLP tasks.
 - Phrase identification ("chunking")
 - Named entity recognition
 - Full parsing
 - Sentiment
- Especially when there's a low amount of training data

POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled corpus, useful for sentiment analysis.

	First Word	Second Word	Third Word
			(Not Extracted)
1.	JJ	NN or NNS	anything
2.	RB, RBR, or	JJ	not NN nor NNS
	RBS		
3.	JJ	JJ	not NN nor NNS
4.	NN or NNS	JJ	not NN nor NNS
5.	RB, RBR, or	VB, VBD,	anything
	RBS	VBN, or VBG	

Table 2. An example of the processing of a review that the author has classified as *recommended*.⁶

		a
Extracted Phrase	Part-of-Speech	Semantic
	Tags	Orientation
online experience	JJ NN	2.253
low fees	JJ NNS	0.333
local branch	JJ NN	0.421
small part	JJ NN	0.053
online service	JJ NN	2.780
printable version	JJ NN	-0.705
direct deposit	JJ NN	1.288
well other	RB JJ	0.237
inconveniently	RB VBN	-1.541
located		
other bank	JJ NN	-0.850
true service	JJ NN	-0.732

POS patterns: simple noun phrases

• Quick and dirty noun phrase identification

Tag Pattern	Example
A N	linear function
N N	regression coefficients
AAN	Gaussian random variable
A N N	cumulative distribution function
NAN	mean squared error
N N N	class probability function
N P N	degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns were used by Justeson and Katz to identify likely collocations among frequently occurring word sequences.

Open class (lexical) words	6			
Nouns		Verbs	Adjectives	old older	oldest
Proper	Common	Main	Adverbs	slowly	
IBM Italy	cat / cats snow	see registered	Numbers 122,312] <i>n</i>	nore
Closed class	(functional)	Modals	one		
Determiner	s the some	can had	Preposition	s to with	
Conjunctior	ns and or	Παυ	Particles	off up	<i>more</i>
Pronouns	he its		Interjections	s Ow Eh	

Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: a, an, the
 - pronouns: *she*, *he*, *l*
 - prepositions: on, under, over, near, by, ...
 - Q: why called "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Many Tagging Standards

- Penn Treebank (45 tags) ... this is the most common one
- Brown corpus (85 tags)
- Coarse tagsets
 - Universal POS tags (Petrov et. al. <u>https://github.com/slavpetrov/</u> <u>universal-pos-tags</u>)
 - Motivation: cross-linguistic regularities

Penn Treebank POS

- 45 possible tags
- 34 pages of tagging guidelines

https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	**	Left quote	(' or '')
POS	Possessive ending	's	"	Right quote	(' or '')
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster	*	Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off		9.24	

Ambiguity in POS Tagging

- Words often have more than one POS: back
 - The <u>back</u> door = JJ
 - On my <u>back</u> = NN
 - Win the voters <u>back</u> = RB
 - Promised to <u>back</u> the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

- Input: Plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

Penn Treebank POS tags

• Output: Plays/VBZ well/RB with/IN others/NNS

POS Tagging Performance

- How many tags are correct? (Tag Accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (*the*, *a*, etc.) and for punctuation marks!

How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., *that*
 - I know *that* he is honest = IN
 - Yes, *that* play was nice = DT
 - You can't go *that* far = RB
- 40% of the word tokens are ambiguous

Token vs. Type Token is instance or individual occurrence of a type.

Stanford CoreNLP Toolkit

Part-of-Speech:

NNP NNP CC PRP\$ NN NN NNP NNP CC NNP , WDT VBD VBN IN VBG RB 1 Chase Manhattan and its merger partner J.P.Morgan and Citibank, which was involved in moving about	
DOLLAR CD CD IN NNP NNP IN NNP , NN IN DT JJ JJ NN , TO NNS IN \$ 100 million for Raul Salinas de Gortari, brother of a former Mexican president, to banks in	
NNP . VBP RB VBN TO VB IN. Switzerland, are also expected to sign on.	

Named Entity Recognition:

1	Organization Chase Manhattan and its merger part	Organization Org ner J.P.Morgan and Citibank,	MONEY which was involved in moving about \$100 million
	Person	Location	Location
	for Raul Salinas de Gortari, brother of	a former Mexican president, t	to banks in Switzerland, are also expected to
	sign on.		

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- "Local": e.g., can is more likely to be a modal verb MD rather than a noun NN
- "Contextual": e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in conflict:

The trash can is in the garage

HMM Intuition

Generative Model

- Probabilistic generative model for sequences.
- Assume an underlying set of hidden (unobserved) states in which the model can be (e.g. parts of speech). different from RNN hidden states!
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a probabilistic generation of tokens from states (e.g. words generated for each POS).

Hidden Markov Models

- We have an input sentence x = x₁, x₂, ..., x_n (x_i is the i'th word in the sentence)
- We have a tag sequence y = y₁, y₂, ..., y_n (y_i is the i'th tag in the sentence)
- We'll use an HMM to define

$$p(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$$

for any sentence $x_1 \dots x_n$ and tag sequence $y_1 \dots y_n$ of the same length.

Then the most likely tag sequence for x is

$$\arg \max_{y_1...y_n} p(x_1...x_n, y_1, y_2, ..., y_n)$$

are HMMs generative or discriminative models?

HMM Definition

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π A distribution over start states (vector of length K): $\pi_i = p(z_1 = i)$
- θ Transition matrix (matrix of size K by K):
 θ_{i,j} = p(z_n = j | z_{n-1} = i) Markov assumption!
 β An emission matrix (matrix of size K by V):
 β_{i,w} = p(x_n = w | z_n = j)

HMM Definition

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π A distribution over start states (vector of length K): $\pi_i = p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = p(z_n = j | z_{n-1} = i)$
- β An emission matrix (matrix of size K by V): $\beta_{j,w} = p(x_n = w | z_n = j)$

Two problems: How do we move from data to a model? (Estimation) How do we move from a model and unlabled data to labeled data? (Inference)

today: estimation

Reminder: How do we estimate a probability?

 For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{1}$$

• α_i is called a smoothing factor, a pseudocount, etc.

just like in naive Bayes, we'll be counting to estimate these probabilities!

x = tokens z = POS tags	X Z		come V		flatt N	ор	
a c DET		of PREP	• •	le stop	-		stared V
	gotta V		you PRO		my PRO	life V	
		and CONJ	I PRO	love V	her PRO		

Initial Probability π

POS	Frequency	Probability
MOD	1.1	0.234
DET	1.1	0.234
CONJ	1.1	0.234
N	0.1	0.021
PREP	0.1	0.021
PRO	0.1	0.021
V	1.1	0.234

let's use add-alpha smoothing with alpha = 0.1

			come V	old MOD	flatto N	р	
a DET			• •	le stop ۱	•		stared V
	gotta V	_	-	into PREP	-	life N	
		and CONJ	I PRO	love V	her PRO		

			come V	old MOD	flatto _l N	0	
a DET	crowd N			le stop	-		stared V
	gotta V			into PREP		life N	
		and CONJ	I PRO	love V	her PRO		

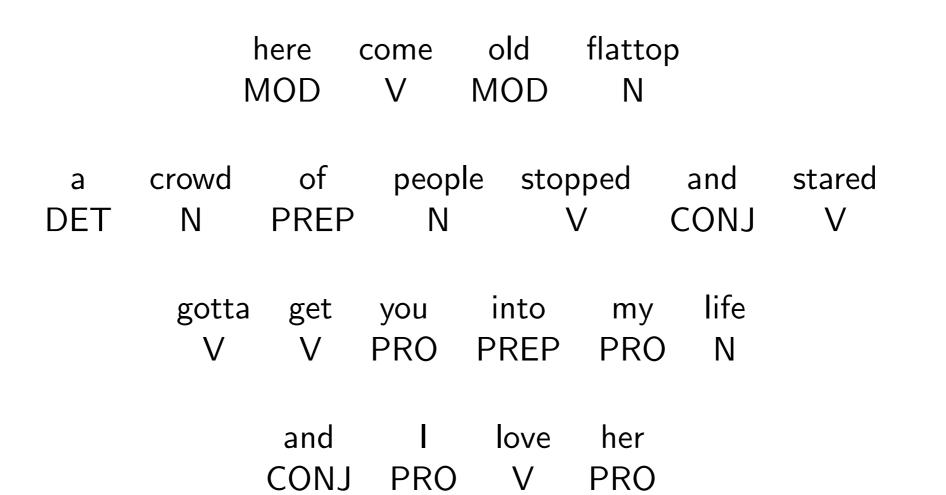
		here MOD		old MOD	flatto N	р	
a DET	crowd N		• •	le stop	•	and <mark>CONJ</mark>	stared V
	gotta V	_	-	into PREP	-	life N	
		and CONJ	l PRO	love V	her PRO		

Transition Probability θ

- We can ignore the words; just look at the parts of speech. Let's compute one row, the row for verbs.
- We see the following transitions: V \rightarrow MOD, V \rightarrow CONJ, V \rightarrow V, V \rightarrow PRO, and V \rightarrow PRO

POS	Frequency	Probability	
MOD	1.1	0.193	
DET	0.1	0.018	
CONJ	1.1	0.193	
N	0.1	0.018	
PREP	0.1	0.018	
PRO	2.1	0.368	
V	1.1	0.193	

how many transition probability distributions do we have?



			come V	old MOD	flatto N	р	
a DET				le <mark>sto</mark> p \	-		<mark>stared</mark> V
	<mark>gotta</mark> V		•	into PREP	-	life N	
		and CONJ	l PRO		her PRO		

Emission Probability β

Let's look at verbs ...

LELS IUUN AL					
Word	а	and	come	crowd	flattop
Frequency	0.1	0.1	1.1	0.1	0.1
Probability	0.0125	0.0125	0.1375	0.0125	0.0125
Word	get	gotta	her	here	i
Frequency	1.1	1.1	0.1	0.1	0.1
Probability	0.1375	0.1375	0.0125	0.0125	0.0125
Word	into	it	life	love	my
Frequency	0.1	0.1	0.1	1.1	0.1
Probability	0.0125	0.0125	0.0125	0.1375	0.0125
Word	of	old	people	stared	stopped
Frequency	0.1	0.1	0.1	1.1	1.1
Probability	0.0125	0.0125	0.0125	0.1375	0.1375

how many emission probability distributions do we have?

Next time

• Viterbi algorithm: dynamic algorithm discovering the most likely POS sequence given a sentence

what if we don't have any labeled data to estimate an HMM? we can still learn a model using the expectation-maximization algorithm. but we won't cover this in class :(