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questions from last time…

• Busy next 2 weeks! 
• HW2! Due tmrw 
• Project milestone 1: due Oct 24 
• Midterm: Oct 31 

• tested on optional readings? no 
• final presentations? possibly Dec 12 
• stats on HWs? 
• what is a tensor?
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These are all log-linear models
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Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

One perspective for gaining insight into the di↵erence between gen-
erative and discriminative modeling is due to Minka [80]. Suppose we
have a generative model pg with parameters ✓. By definition, this takes
the form

pg(y,x; ✓) = pg(y; ✓)pg(x|y; ✓). (2.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; ✓) = pg(x; ✓)pg(y|x; ✓), (2.11)

where pg(x; ✓) and pg(y|x; ✓) are computed by inference, i.e., pg(x; ✓) =
P

y

pg(y,x; ✓) and pg(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓).
Now, compare this generative model to a discriminative model over

the same family of joint distributions. To do this, we define a prior
p(x) over inputs, such that p(x) could have arisen from pg with some
parameter setting. That is, p(x) = pc(x; ✓0) =

P

y

pg(y,x|✓0). We com-
bine this with a conditional distribution pc(y|x; ✓) that could also have
arisen from pg, that is, pc(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓). Then the re-
sulting distribution is

pc(y,x) = pc(x; ✓0)pc(y|x; ✓). (2.12)

By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require
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the form
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parameter setting. That is, p(x) = pc(x; ✓0) =

P

y
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By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require

are neural networks log-linear models?
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Tagging (Sequence Labeling)

• Given a sequence (in NLP, words), assign appropriate labels to 
each word. 
• Many NLP problems can be viewed as sequence labeling: 
- POS Tagging 
- Chunking 
- Named Entity Tagging 

• Labels of tokens are dependent on the labels of other tokens in 
the sequence, particularly their neighbors

Plays well with others. 
VBZ    RB    IN     NNS



 7

What’s a part-of-speech (POS)?
• Syntax = how words compose to form larger meaning bearing units 

• POS = syntactic categories for words (a.k.a word class) 
• You could substitute words within a class and have a syntactically valid 

sentence 

• Gives information how words combine into larger phrases

I saw the dog 

I saw the cat 

I saw the ___



Why do we want POS?

• Useful for many syntactic and other NLP tasks.

• Phrase identification (“chunking”)

• Named entity recognition

• Full parsing

• Sentiment

• Especially when there’s a low amount of training 
data
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POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled corpus, 
useful for sentiment analysis.
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mantic orientation of a given phrase is calculated 
by comparing its similarity to a positive reference 
word (“excellent”) with its similarity to a negative 
reference word (“poor”).   More specifically, a 
phrase is assigned a numerical rating by taking the 
mutual information between the given phrase and 
the word “excellent” and subtracting the mutual 
information between the given phrase and the word 
“poor”. In addition to determining the direction of 
the phrase’s semantic orientation (positive or nega-
tive, based on the sign of the rating), this numerical 
rating also indicates the strength of the semantic 
orientation (based on the magnitude of the num-
ber). The algorithm is presented in Section 2. 

Hatzivassiloglou and McKeown (1997) have 
also developed an algorithm for predicting seman-
tic orientation. Their algorithm performs well, but 
it is designed for isolated adjectives, rather than 
phrases containing adjectives or adverbs. This is 
discussed in more detail in Section 3, along with 
other related work. 

The classification algorithm is evaluated on 410 
reviews from Epinions2, randomly sampled from 
four different domains: reviews of automobiles, 
banks, movies, and travel destinations. Reviews at 
Epinions are not written by professional writers; 
any person with a Web browser can become a 
member of Epinions and contribute a review. Each 
of these 410 reviews was written by a different au-
thor. Of these reviews, 170 are not recommended 
and the remaining 240 are recommended (these 
classifications are given by the authors). Always 
guessing the majority class would yield an accu-
racy of 59%. The algorithm achieves an average 
accuracy of 74%, ranging from 84% for automo-
bile reviews to 66% for movie reviews. The ex-
perimental results are given in Section 4. 

The interpretation of the experimental results, 
the limitations of this work, and future work are 
discussed in Section 5. Potential applications are 
outlined in Section 6. Finally, conclusions are pre-
sented in Section 7. 

2 Classifying Reviews 

The first step of the algorithm is to extract phrases 
containing adjectives or adverbs. Past work has 
demonstrated that adjectives are good indicators of 
subjective, evaluative sentences (Hatzivassiloglou 

                                                           
2 http://www.epinions.com 

& Wiebe, 2000; Wiebe, 2000; Wiebe et al., 2001). 
However, although an isolated adjective may indi-
cate subjectivity, there may be insufficient context 
to determine semantic orientation. For example, 
the adjective “unpredictable” may have a negative 
orientation in an automotive review, in a phrase 
such as “unpredictable steering”, but it could have 
a positive orientation in a movie review, in a 
phrase such as “unpredictable plot”. Therefore the 
algorithm extracts two consecutive words, where 
one member of the pair is an adjective or an adverb 
and the second provides context. 

First a part-of-speech tagger is applied to the 
review (Brill, 1994).3 Two consecutive words are 
extracted from the review if their tags conform to 
any of the patterns in Table 1. The JJ tags indicate 
adjectives, the NN tags are nouns, the RB tags are 
adverbs, and the VB tags are verbs.4 The second 
pattern, for example, means that two consecutive 
words are extracted if the first word is an adverb 
and the second word is an adjective, but the third 
word (which is not extracted) cannot be a noun. 
NNP and NNPS (singular and plural proper nouns) 
are avoided, so that the names of the items in the 
review cannot influence the classification. 
Table 1. Patterns of tags for extracting two-word 
phrases from reviews.  

 First Word Second Word Third Word  
(Not Extracted) 

1. JJ NN or NNS anything 
2. RB, RBR, or 

RBS 
JJ not NN nor NNS 

3. JJ JJ not NN nor NNS 
4. NN or NNS JJ not NN nor NNS 
5. RB, RBR, or 

RBS 
VB, VBD, 
VBN, or VBG 

anything 

The second step is to estimate the semantic ori-
entation of the extracted phrases, using the PMI-IR 
algorithm. This algorithm uses mutual information 
as a measure of the strength of semantic associa-
tion between two words (Church & Hanks, 1989). 
PMI-IR has been empirically evaluated using 80 
synonym test questions from the Test of English as 
a Foreign Language (TOEFL), obtaining a score of 
74% (Turney, 2001). For comparison, Latent Se-
mantic Analysis (LSA), another statistical measure 
of word association, attains a score of 64% on the 

                                                           
3 http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z 
4 See Santorini (1995) for a complete description of the tags. 

same 80 TOEFL questions (Landauer & Dumais, 
1997).  

The Pointwise Mutual Information (PMI) be-
tween two words, word1 and word2, is defined as 
follows (Church & Hanks, 1989): 

                                             p(word1 & word2) 
PMI(word1, word2) = log2 
                                             p(word1) p(word2) 

 

(1) 

Here, p(word1 & word2) is the probability that 
word1 and word2 co-occur. If the words are statisti-
cally independent, then the probability that they 
co-occur is given by the product p(word1) 
p(word2). The ratio between p(word1 & word2) and 
p(word1) p(word2) is thus a measure of the degree 
of statistical dependence between the words. The 
log of this ratio is the amount of information that 
we acquire about the presence of one of the words 
when we observe the other.  

The Semantic Orientation (SO) of a phrase, 
phrase, is calculated here as follows: 

     SO(phrase) = PMI(phrase, “excellent”)  
                          - PMI(phrase, “poor”) (2) 

The reference words “excellent” and “poor” were 
chosen because, in the five star review rating sys-
tem, it is common to define one star as “poor” and 
five stars as “excellent”. SO is positive when 
phrase is more strongly associated with “excellent” 
and negative when phrase is more strongly associ-
ated with “poor”.   

PMI-IR estimates PMI by issuing queries to a 
search engine (hence the IR in PMI-IR) and noting 
the number of hits (matching documents). The fol-
lowing experiments use the AltaVista Advanced 
Search engine5, which indexes approximately 350 
million web pages (counting only those pages that 
are in English). I chose AltaVista because it has a 
NEAR operator. The AltaVista NEAR operator 
constrains the search to documents that contain the 
words within ten words of one another, in either 
order. Previous work has shown that NEAR per-
forms better than AND when measuring the 
strength of semantic association between words 
(Turney, 2001). 

Let hits(query) be the number of hits returned, 
given the query query. The following estimate of 
SO can be derived from equations (1) and (2) with 

                                                           
5 http://www.altavista.com/sites/search/adv 

some minor algebraic manipulation, if co-
occurrence is interpreted as NEAR: 

SO(phrase) = 

          hits(phrase NEAR “excellent”) hits(“poor”) 
log2 
          hits(phrase NEAR “poor”) hits(“excellent”) 

 
 

(3) 

Equation (3) is a log-odds ratio (Agresti, 1996). 
To avoid division by zero, I added 0.01 to the hits. 
I also skipped phrase when both hits(phrase 
NEAR “excellent”) and  hits(phrase NEAR 
“poor”) were (simultaneously) less than four. 
These numbers (0.01 and 4) were arbitrarily cho-
sen. To eliminate any possible influence from the 
testing data, I added “AND (NOT host:epinions)” 
to every query, which tells AltaVista not to include 
the Epinions Web site in its searches. 

The third step is to calculate the average seman-
tic orientation of the phrases in the given review 
and classify the review as recommended if the av-
erage is positive and otherwise not recommended.  

Table 2 shows an example for a recommended 
review and Table 3 shows an example for a not 
recommended review. Both are reviews of the 
Bank of America. Both are in the collection of 410 
reviews from Epinions that are used in the experi-
ments in Section 4. 
Table 2. An example of the processing of a review that 
the author has classified as recommended.6 

Extracted Phrase Part-of-Speech 
Tags 

Semantic 
Orientation 

online experience  JJ NN  2.253 
low fees  JJ NNS  0.333 
local branch  JJ NN  0.421 
small part  JJ NN  0.053 
online service  JJ NN  2.780 
printable version  JJ NN -0.705 
direct deposit  JJ NN  1.288 
well other  RB JJ  0.237 
inconveniently  
located  

RB VBN -1.541 

other bank  JJ NN -0.850 
true service  JJ NN -0.732 
Average Semantic Orientation  0.322 

 

                                                           
6 The semantic orientation in the following tables is calculated 
using the natural logarithm (base e), rather than base 2. The 
natural log is more common in the literature on log-odds ratio. 
Since all logs are equivalent up to a constant factor, it makes 
no difference for the algorithm. 



POS patterns: simple noun phrases

• Quick and dirty noun phrase identification  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Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Modals

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM 
Italy

cat / cats 
snow

see 
registered

can 
had

old   older   oldest

slowly

to with

off   up

the some

and or

he its

Numbers

122,312 
one

Interjections Ow  Eh
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Open vs. Closed classes
• Open vs. Closed classes 
• Closed:  
• determiners: a, an, the 

• pronouns: she, he, I 

• prepositions: on, under, over, near, by, … 

• Q: why called “closed”? 
• Open:  
• Nouns, Verbs, Adjectives, Adverbs. 
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Many Tagging Standards

• Penn Treebank (45 tags) … this is the most common one 
• Brown corpus (85 tags) 
• Coarse tagsets 

• Universal POS tags (Petrov et. al. https://github.com/slavpetrov/
universal-pos-tags) 

• Motivation: cross-linguistic regularities
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Penn Treebank POS 

• 45 possible tags  

• 34 pages of tagging guidelines

https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf
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Ambiguity in POS Tagging
• Words often have more than one POS: back 

• The back door = JJ 
• On my back = NN 
• Win the voters back = RB 
• Promised to back the bill = VB 

• The POS tagging problem is to determine the POS tag for a 
particular instance of a word.
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POS Tagging
• Input:       Plays          well                  with  others 

• Ambiguity:  NNS/VBZ    UH/JJ/NN/RB     IN    NNS 

• Output:     Plays/VBZ well/RB with/IN others/NNS

Penn 
Treebank 
POS tags
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POS Tagging Performance
• How many tags are correct?  (Tag Accuracy) 
• About 97% currently 
• But baseline is already 90% 
• Baseline is performance of stupidest possible method 
• Tag every word with its most frequent tag 
• Tag unknown words as nouns 

• Partly easy because 
• Many words are unambiguous 
• You get points for them (the, a, etc.) and for punctuation marks!
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How difficult is POS tagging?
• About 11% of the word types in the Brown corpus are 

ambiguous with regard to part of speech 

• But they tend to be very common words. E.g., that 
• I know that he is honest = IN 

• Yes, that play was nice = DT 

• You can’t go that far = RB 

• 40% of the word tokens are ambiguous

Token vs. Type 

Token is instance or individual occurrence of a type.
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Stanford CoreNLP Toolkit
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HMM Intuition

Generative Model

• Probabilistic generative model for sequences.

• Assume an underlying set of hidden (unobserved) states in which
the model can be (e.g. parts of speech).

• Assume probabilistic transitions between states over time (e.g.
transition from POS to another POS as sequence is generated).

• Assume a probabilistic generation of tokens from states (e.g. words
generated for each POS).

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 23 of 35

different from RNN hidden states!
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are HMMs generative or discriminative models?
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HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

⇡ A distribution over start states (vector of length K ):
⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K ):
✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V ):
�j ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 26 of 35

Markov assumption! 
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HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
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Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 26 of 35

today: estimation
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HMM Estimation

Reminder: How do we estimate a probability?

• For a multinomial distribution (i.e. a discrete distribution, like over
words):

✓i =
ni + ↵iP
k nk + ↵k

(1)

• ↵i is called a smoothing factor, a pseudocount, etc.

• When ↵i = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial distributions.

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 28 of 35

just like in naive Bayes, we’ll be 
counting to estimate these probabilities!
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HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 29 of 35

x = tokens 
z = POS tags
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HMM Estimation

Initial Probability ⇡

POS Frequency Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234
N 0.1 0.021

PREP 0.1 0.021
PRO 0.1 0.021
V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 30 of 35

let’s use add-alpha smoothing with alpha = 0.1
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HMM Estimation

Training Sentences
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and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35
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HMM Estimation

Transition Probability ✓

• We can ignore the words; just look at the parts of speech. Let’s
compute one row, the row for verbs.

• We see the following transitions: V ! MOD, V ! CONJ, V ! V,
V ! PRO, and V ! PRO

POS Frequency Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193
N 0.1 0.018

PREP 0.1 0.018
PRO 2.1 0.368
V 1.1 0.193

• And do the same for each part of speech ...

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 32 of 35

how many transition probability distributions do we have?
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HMM Estimation

Training Sentences
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MOD V MOD N
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Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 33 of 35
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Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 33 of 35
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HMM Estimation

Emission Probability �

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1
Probability 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability 0.0125 0.0125 0.0125 0.1375 0.1375

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 34 of 35how many emission probability distributions do we have?
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HMM Estimation

Next time . . .

• Viterbi algorithm: dynamic algorithm discovering the most likely
pos sequence given a sentence

•
em algorithm: what if we don’t have labeled data?

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 35 of 35

what if we don’t have any labeled data to estimate an HMM? 
we can still learn a model using the expectation-maximization 

algorithm. but we won’t cover this in class :(


