pick up an exercise!

ethics in NLP

CS 585, Fall 2019

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

many slides from Yulia Tsvetkov

stuff from last class

- milestones due today!
- are we going to cover "natural language understanding"?

ullet

what are we talking about today?

- many NLP systems affect actual people
 - systems that interact with people (conversational agents)
 - perform some reasoning over people (e.g., recommendation systems, targeted ads)
 - make decisions about people's lives (e.g., parole decisions, employment, immigration)
- questions of *ethics* arise in all of these applications!

why are we talking about it?

- the explosion of data, in particular user-generated data (e.g., social media)
- machine learning models that leverage huge amounts of this data to solve certain tasks

Language and People

The common misconception is that language has to do with **words** and what they mean.

It doesn't.

It has to do with **people** and what **they** mean.

Dan Jurafsky's keynote talks at CVPR'17 and EMNLP'17

Learn to Assess AI Systems Adversarially

- Who could benefit from such a technology?
- Who can be harmed by such a technology?
- Representativeness of training data
- Could sharing this data have major effect on people's lives?
- What are confounding variables and corner cases to control for?
- Does the system optimize for the "right" objective?
- Could prediction errors have major effect on people's lives?

let's start with the data...

Online data is riddled with **SOCIAL STEREOTYPES**

Racial Stereotypes

June 2016: web search query "three black teenagers"

• June 2017: image search query "Doctor"

June 2017: image search query "Nurse"

June 2017: image search query "Homemaker"

• June 2017: image search query "CEO"

Consequence: models are biased

Gender Biases on the Web

- The dominant class is often portrayed and perceived as relatively more professional (Kay, Matuszek, and Munson 2015)
- Males are over-represented in the reporting of web-based news articles (Jia, Lansdall-Welfare, and Cristianini 2015)
- Males are over-represented in twitter conversations (Garcia, Weber, and Garimella 2014)
- Biographical articles about women on Wikipedia disproportionately discuss romantic relationships or family-related issues (Wagner et al. 2015)
- IMDB reviews written by women are perceived as less useful (Otterbacher 2013)

Biased NLP Technologies

- Bias in word embeddings (Bolukbasi et al. 2017; Caliskan et al. 2017; Garg et al. 2018)
- Bias in Language ID (Blodgett & O'Connor. 2017; Jurgens et al. 2017)
- Bias in Visual Semantic Role Labeling (Zhao et al. 2017)
- Bias in Natural Language Inference (Rudinger et al. 2017)
- Bias in Coreference Resolution (At NAACL: Rudinger et al. 2018; Zhao et al. 2018)
- Bias in Automated Essay Scoring (At NAACL: Amorim et al. 2018)

Zhao et al., NAACL 2018

Sources of Human Biases in Machine Learning

- Bias in data and sampling
- Optimizing towards a biased objective
- Inductive bias
- Bias amplification in learned models

Sources of Human Biases in Machine Learning

- Bias in data and sampling
- Optimizing towards a biased objective
- Inductive bias
- Bias amplification in learned models

Types of Sampling Bias in Naturalistic Data

Self-Selection Bias

Who decides to post reviews on Yelp and why?
 Who posts on Twitter and why?

Reporting Bias

 People do not necessarily talk about things in the world in proportion to their empirical distributions (Gordon and Van Durme 2013)

• Proprietary System Bias

 What results does Twitter return for a particular query of interest and why? Is it possible to know?

Community / Dialect / Socioeconomic Biases

What linguistic communities are over- or under-represented?
 leads to community-specific model performance (Jorgensen et al. 2015)

US Demographics of Yelp Users

credit: Brendan O'Connor

Example: Bias in Language Identification

 Most applications employ off-the-shelf LID systems which are highly accurate

	- 1	Fr	oll	01	N
_				-	

got the flu over the weekend and I didn't know until today, & I somehow managed to give it to FIVE of my friends!!!!!!

*Slides on LID by David Jurgens (Jurgens et al. ACL'17) McNamee, P., "Language identification: *a solved problem* suitable for undergraduate instruction" Journal of Computing Sciences in Colleges 20(3) 2005.

> "This paper describes [...] how even the most simple of these methods using data obtained from the World Wide Web achieve accuracy approaching 100% on a test suite comprised of ten European languages"

Follow

Follow

Taking place this week on the river Thames is 'Swan Upping' - the annual census of the swan population on the Thames.

da'Rah-zingSun @TIME7SS

@kimguilfoyle prblm I hve wit ur reporting is its 2 literal, evry1 knos pple tlk diffrnt evrywhere, u kno wut she means jus like we do!

"@Ecstatic_Mi: @bossmukky Ebi like say I wan dey sick sef wlh 'Flu' my whole body dey weak"uw gee ...

Ebenezer• @Physique cian

@Tblazeen R u a wizard or wat gan sef : in d mornin- u tweet, afternoon - u tweet, nyt gan u dey tweet.beta get ur IT placement wiv twitter

Language identification degrades significantly on African American Vernacular English (Blodgett et al. 2016) Su-Lin Blodgett is a UMass NLP PhD student!

 \sim

Follow

Follow

 \sim

LID Usage Example: Health Monitoring

2. Follow

got the flu over the weekend and I didn't know until today, & I somehow managed to give it to FIVE of my friends!!!!!!

Analytics Which symptoms? Are they hungover?

LID Usage Example: Health Monitoring

Socioeconomic Bias in Language Identification

 Off-the-shelf LID systems under-represent populations in less-developed countries

Jurgens et al. ACL'17

Better Social Representation through Network-based Sampling

Re-sampling from strategically-diverse corpora

Jurgens et al. ACL'17

Sources of Human Biases in Machine Learning

- Bias in data and sampling
- Optimizing towards a biased objective
- Inductive bias
- Bias amplification in learned models

Optimizing Towards a Biased Objective

Northpointe vs ProPublica

Optimizing Towards a Biased Objective

"what is the probability that this person will commit a serious crime in the future, as a function of the sentence you give them now?"

Optimizing Towards a Biased Objective

"what is the probability that this person will commit a serious crime in the future, as a function of the sentence you give them now?"

COMPAS system

- balanced training data about people of all races
- race was *not* one of the input features

Objective function

- labels for "who will commit a crime" are unobtainable
- a proxy for the real, unobtainable data: "who is more likely to be convicted"

what are some issues with this proxy objective?

Sources of Human Biases in Machine Learning

- Bias in data and sampling
- Optimizing towards a biased objective
- Inductive bias
- Bias amplification in learned models

what is inductive bias?

- the assumptions used by our model. examples:
 - recurrent neural networks for NLP assume that the sequential ordering of words is meaningful
 - features in discriminative models are assumed to be useful to map inputs to outputs

Bias in Word Embeddings

 Caliskan, A., Bryson, J. J. and Narayanan, A. (2017) Semantics derived automatically from language corpora contain human-like biases. Science

what is the inductive bias in word2vec-style embeddings?

$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

Biases in Embeddings: Another Take

$\min \cos(he - she, \ x - y) \ s.t. \ ||x - y||_2 < \delta$

 Extreme she 1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser 	 Extreme he 1. maestro 2. skipper 3. protege 4. philosopher 5. captain 6. architect 	sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football	Gender stereotype she-he and registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar l cupcakes-pizzas	housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant
 7. nanny 8. bookkeeper 9. stylist 10. housekeeper 	 financier warrior broadcaster magician 	queen-king waitress-waiter	Gender appropriate she-he a sister-brother ovarian cancer-prostate cance	malogies mother-father r convent-monastery

Figure 1: Left The most extreme occupations as projected on to the she-he gender direction on w2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded. Right Automatically generated analogies for the pair *she-he* using the procedure described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether or not it reflects gender stereotype.

Towards Debiasing

1. Identify gender subspace: B

Gender Subspace

Towards Debiasing

- 1. Identify gender subspace: B
- 2. Identify gender-definitional (S) and gender-neutral words (N)

Gender-definitional vs. Gender-neutral Words

Towards Debiasing

- 1. Identify gender subspace: B
- Identify gender-definitional (S) and gender-neutral words
 (N)
- 3. Apply transform matrix (T) to the embedding matrix (W) such that
 - a. Project away the gender subspace B from the gender-neutral words N
 - b. But, ensure the transformation doesn't change the embeddings too much

$$\begin{array}{ll} min_{T} [|(TW)^{T}(TW) - W^{T}W||_{F}^{2} + \lambda [|(TN)^{T}(TB)||_{F}^{2} \\ & \text{Don't modify} \\ & \text{embeddings too} \\ & \text{much} \end{array}$$

- T the desired debiasing transformation B biased space
- W embedding matrix
- N embedding matrix of gender neutral words

Does Debiasing Reduce Utility?

The performance does not degrade after debiasing

	RG	WS	analogy
Dafara	62.2	515	57.0
Hard-debiased	62.5	54.5 54 1	57.0 57.0
Soft-debiased	62.4	54.2	56.8

RG: Synonymy; Rubenstein & Goodenough (1965) WS: Word Similarity

Sources of Human Biases in Machine Learning

- Bias in data and sampling
- Optimizing towards a biased objective
- Inductive bias
- Bias amplification in learned models

Bias Amplification

Zhao, J., Wang, T., Yatskar, M., Ordonez, V and Chang, M.-W. (2017) Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraint. *EMNLP*

imSitu Visual Semantic Role Labeling (vSRL)

Slides by Mark Yatskar https://homes.cs.washington.edu/~my89/talks/ZWYOC17_slide.pdf

imSitu Visual Semantic Role Labeling (vSRL)

Conditional Random Field

Dataset Gender Bias

Model Bias After Training

Why does this happen?

Algorithmic Bias

woman cooking

man fixing faucet

Quantifying Dataset Bias

$$bias(activity, gender) = \frac{cooc(activity, gender)}{\Sigma_{gender' \in G} cooc(activity, gender')}$$
$$b(0,g)$$

Quantifying Dataset Bias

Training Gender Ratio (verb)

Quantifying Dataset Bias: Dev Set

Predicted Gender Ratio (verb)

Model Bias Amplification

Reducing Bias Amplification (RBA)

Results

Results

Discussion

- Applications that are built from online data, generated by people, learn also real-world stereotypes
- Should our ML models represent the "real world"?
- Or should we artificially skew data distribution?
- If we modify our data, what are guiding principles on what our models should or shouldn't learn?

Considerations for Debiasing Data and Models

Ethical considerations

- Preventing discrimination in AI-based technologies
 - in consumer products and services
 - in diagnostics, in medical systems
 - in parole decisions
 - in mortgage lending, credit scores, and other financial decisions
 - in educational applications
 - in search \rightarrow access to information and knowledge
- Practical considerations
 - Improving performance particularly where our model's accuracy is lower

