Understanding Representations from Pre-trained Language Models

CS 585, Fall 2019

Introduction to Natural Language Processing

Tu Vu

College of Information and Computer Sciences University of Massachusetts Amherst

Nov 14, 2019

what kinds of knowledge are encoded in BERT?

overview

★ BERT News!

★ BERTology

★ understanding contextualized representations

• linguistic probe tasks

overview

★ BERT News!

★ BERTology

★ understanding contextualized representations

• linguistic probe tasks

BERT News! T5: Text-to-Text Transfer Transformer

T5: key ideas

1) treat every NLP problem as a "text-to-text" problem, one seq2seq model to learn them all

(Raffel et al., 2019)

T5: key ideas

2) a denoising objective results in better downstream task performance

(Raffel et al., 2019)

T5: key ideas

- 3) larger model on more data, insane scale!
 - 11 billion parameters
 - ~31x as large as RoBERTa (355 million parameters)
 - ~33x as large as BERT (335 million parameters)
 - 750GB text ~ 190 billion words?
 - ~5x as much as RoBERTa (160GB)
 - ~60x as much as BERT (13GB, 3.3 billion words)

(Raffel et al., 2019)

other models

- denoising autoencoder for pretraining sequence-to-sequence models
- sentence shuffling + text infilling
- comparable to RoBERTa on GLUE and SQuAD, state-of-the-art results on abstractive dialogue, question answering, and summarization

(Lewis et al., 2019)

other models (cont.)

XLM-R

- XLM + RoBERTa
- 2.5TB of text from 100 languages!
- state-of-the-art results on cross-lingual benchmarks
- comparable to XLNet on GLUE

(Conneau et al., 2019)

BERT News!

a super competitive area

dozens of new BERT models every month

not only NLP, but also CV

Xin (Eric) Wang @xwang_lk

A list of V*BERT papers: VideoBERT: arxiv.org/abs/1904.01766 ViLBERT: arxiv.org/abs/1904.01766 LXMERT: arxiv.org/abs/1908.07490 VisualBERT: arxiv.org/abs/1908.03557 Unicoder-VL: arxiv.org/abs/1908.06066 B2T2: arxiv.org/abs/1908.05054 VL-BERT: arxiv.org/abs/1908.08530

 \sim

things change

shortly

Replying to @zhansheng and @sleepinyourhat

BERT on STILTs was also the SOTA (82.0) on GLUE for a very brief 6 hours because this is NLP in 2019 😛

... ...

stay up-to-date

- NLP progress
 <u>https://github.com/sebastianruder/NLP-progress</u>
- NLP News!

Your email address...

Subscribe now

http://newsletter.ruder.io/

- arXiv, ACL Anthology
- Twitter (the best)

overview

★ BERT News!

★ BERTology

★ understanding contextualized representations

• linguistic probe tasks

BERTology

BERTology

studying the inner working of large-scale Transformer language models like BERT

 what are captured in different model components, e.g., attention / hidden states?

tools & examples

BERTology - HuggingFace's Transformers https://huggingface.co/transformers/bertology.html

- accessing all the hidden-states of BERT
- accessing all the attention weights for each head of BERT
- retrieving heads output values and gradients

BERTology tools & examples (cont.)

Are Sixteen Heads Really Better than One? Michel et al., NeurIPS 2019

large percentage of attention heads can be removed at test time without significantly impacting performance

What Does BERT Look At? An Analysis of BERT's Attention, Clark el al., BlackBoxNLP 2019

substantial syntactic information is captured in BERT's attention

BERTology

tools & examples

AllenNLP Interpret https://allennlp.org/interpret

Allen Institute for Al

AllenNLP

Simple Gradients Visualization	Mask 1 Predictions:
See saliency man interpretations generated by visualizing the gradient	47.1% nurse
See saliency map interpretations generated by visualizing the gradient.	16.4% woman
Saliency Map:	10.0% doctor
	3.4% mother
[CLS] The [MASK] rushed to the <mark>emergency</mark> room to see <mark>her</mark> patient . [SEP]	3.0% girl

overview

★ BERT News!

★ BERTology

★ understanding contextualized representations

• linguistic probe tasks

understanding contextualized representations

two most prominent methods

- visualization
- linguistic probe tasks

linguistic probe tasks

Credit: Alexis Conneau

what is a linguistic probe task?

given an encoder model (e.g., BERT) pretrained on a certain task, we use the representations it produces to train a classifier (without further fine-tuning the model) to predict a linguistic property of the input text

example 1

example 2

(Liu et al., 2019)

example 3

(Tenney et al., 2019)

motivation of probe tasks

- if we can train a classifier to predict a property of the input text based on its representation, it means the property is encoded in the representation in a readable way
- if we cannot train a classifier to predict a property of the input text based on its representation, it means the property is not encoded in the representation or not encoded in a useful way, considering how the representation is likely to be used

characteristics of probe tasks

- usually classification problems that focus on simple linguistic properties
- ask simple questions, minimizing interpretability problems
- because of their simplicity, it is easier to control for biases in probing tasks than in downstream tasks
- the probing task methodology is agnostic with respect to the encoder architecture, as long as it produces a vector representation of input text
- does not necessarily correlate with downstream performance

(Conneau et al., 2018)

probe approach

an analogy

Recent results

lowest layers focus on local syntax, while upper layers focus more semantic content

BERT represents the steps of the traditional NLP pipeline: POS tagging \rightarrow parsing \rightarrow NER \rightarrow semantic roles \rightarrow coreference

the expected layer at which the probing model correctly labels an example

a higher center-of-gravity means that the information needed for that task is captured by higher layers

2 () 8 1()12 16 6 3.39 11.68 POS 3.79 13.06 Consts. 5.69 13.75 Deps. 4.64 13.16 Entities 6.54 13.63 SRL 9.47 15.80 Coref. 9.93 12.72 SPR 9.40 12.83 Relations

Expected layer & center-of-gravity

(Tenney et al., 2019)

does BERT know the structure of syntax trees?

understanding the syntax of the language may be useful in language modeling

how to probe for trees?

trees as distances and norms

the distance metric—the path length between each pair of words—recovers the tree *T* simply by identifying that nodes *u*, *v* with distance $d_{T(u, v)} = 1$ are neighbors

the node with greater norm—depth in the tree—is the child

a structural probe

- probe task 1 distance: predict the path length between each given pair of words
- probe task 2 depth/norm: predict the depth of a given word in the parse tree

learn a linear transformation

 $h \to Bh$

squared distance

$$d(h_i, h_j)^2 = (h_i - h_j)^T (h_i - h_j)$$

$$d_B(h_i, h_j)^2 = d(Bh_i, Bh_j)^2 = (B(h_i - h_j))^T (B(h_i - h_j))$$

squared L2 norm

$$\|h\|^2 = h^T h$$

$$||h||_B^2 = (Bh)^T (Bh)$$

Yes, BERT knows the structure of syntax trees

	Dista	ance	Dep	oth
Method	UUAS	DSpr.	Root%	NSpr.
ELM01	77.0	0.83	86.5	0.87
BERTBASE7	79.8	0.85	88.0	0.87
BERTLARGE15	82.5	0.86	89.4	0.88
BERTLARGE16	81.7	0.87	90.1	0.89

does BERT know numbers?

probing for numeracy

(Wallace et al., 2019)

Oh no! BERT struggles, But ELMo excels

Interpolation	List Ma	aximum (5-classes)	Dee	coding (R	MSE)	Addition (RMSE)			
Integer Range	[0,99]	[0,999]	[0,9999]	[0,99]	[0,999]	[0,9999]	[0,99]	[0,999]	[0,9999]	
Random Vectors	0.16	0.23	0.21	29.86	292.88	2882.62	42.03	410.33	4389.39	
Untrained CNN	0.97	0.87	0.84	2.64	9.67	44.40	1.41	14.43	69.14	
Untrained LSTM	0.70	0.66	0.55	7.61	46.5	210.34	5.11	45.69	510.19	
Pre-trained										
Word2Vec	0.90	0.78	0.71	2.34	18.77	333.47	0.75	21.23	210.07	
GloVe	0.90	0.78	0.72	2.23	13.77	174.21	0.80	16.51	180.31	
ELMo	0.98	0.88	0.76	2.35	13.48	62.20	0.94	15.50	45.71	
BERT	0.95	0.62	0.52	3.21	29.00	431.78	4.56	67.81	454.78	

Interpolation	List Maximum (5-classes)					
Float Range	[0.0,99.9]	[0.0,999.9]				
Rand. Vectors	0.18 ± 0.03	0.21 ± 0.04				
ELMo	0.91 ± 0.03	0.59 ± 0.01				
BERT	0.82 ± 0.05	0.51 ± 0.04				
Char-CNN	0.87 ± 0.04	0.75 ± 0.03				
Char-LSTM	0.81 ± 0.05	0.69 ± 0.02				

Interpolation List Maximum (5-classes) Integer Range [-50, 50]Rand. Vectors 0.23 ± 0.12 Word2Vec 0.89 ± 0.02 0.89 ± 0.03 GloVe ELMo 0.96 ± 0.01 BERT 0.94 ± 0.02 Char-CNN 0.95 ± 0.07 Char-LSTM 0.97 ± 0.02

(Wallace et al., 2019)

please give me a reason!

character-level CNNs are the best architecture for capturing numeracy

subword pieces is a poor method to encode digits, e.g., two numbers which are similar in value can have very different sub-word divisions

Can BERT serve as a structured knowledge base?

LAMA (LAnguage Model Analysis) probe

(Petroni et al., 2019)

LAMA (LAnguage Model Analysis) probe (cont.)

- manually define templates for considered relations, e.g., "[S] was born in [O]" for "place of birth"
- find sentences that contain both the subject and the object, then mask the object within the sentences and use them as templates for querying
- create cloze-style questions, e.g., rewriting "Who developed the theory of relativity?" as "The theory of relativity was developed by [MASK]"

(Petroni et al., 2019)

examples

	Relation	Query	Answer	Generation
	P54	Dani Alves plays with	Barcelona	Santos [-2.4], Porto [-2.5], Sporting [-3.1], Brazil [-3.3], Portugal [-3.7]
	P106	Paul Toungui is a by profession .	politician	lawyer [-1.1], journalist [-2.4], teacher [-2.7], doctor [-3.0], physician [-3.7]
	P527	Sodium sulfide consists of	sodium	water [-1.2], sulfur [-1.7], sodium [-2.5], zinc [-2.8], salt [-2.9]
X	P102	Gordon Scholes is a member of the political party.	Labor	Labour [-1.3], Conservative [-1.6], Green [-2.4], Liberal [-2.9], Labor [-2.9]
-Re	P530	Kenya maintains diplomatic relations with	Uganda	India [-3.0], Uganda [-3.2], Tanzania [-3.5], China [-3.6], Pakistan [-3.6]
Ĥ	P176	iPod Touch is produced by	Apple	Apple [-1.6], Nokia [-1.7], Sony [-2.0], Samsung [-2.6], Intel [-3.1]
	P30	Bailey Peninsula is located in	Antarctica	Antarctica [-1.4], Bermuda [-2.2], Newfoundland [-2.5], Alaska [-2.7], Canada [-3.1]
	P178	JDK is developed by	Oracle	IBM [-2.0], Intel [-2.3], Microsoft [-2.5], HP [-3.4], Nokia [-3.5]
	P1412	Carl III used to communicate in	Swedish	German [-1.6], Latin [-1.9], French [-2.4], English [-3.0], Spanish [-3.0]
	P17	Sunshine Coast, British Columbia is located in	Canada	Canada [-1.2], Alberta [-2.8], Yukon [-2.9], Labrador [-3.4], Victoria [-3.4]
	AtLocation	You are likely to find a overflow in a	drain	sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], drain [-3.6]
	CapableOf	Ravens can	fly	fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]
	CausesDesire	Joke would make you want to	laugh	cry [-1.7], die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]
Vet	Causes	Sometimes virus causes	infection	disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]
ptl	HasA	Birds have	feathers	wings [-1.8], nests [-3.1], feathers [-3.2], died [-3.7], eggs [-3.9]
nce	HasPrerequisite	Typing requires	speed	patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]
S	HasProperty	Time is	finite	short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]
	MotivatedByGoal	You would celebrate because you are	alive	happy [-2.4], human [-3.3], alive [-3.3], young [-3.6], free [-3.9]
	ReceivesAction	Skills can be	taught	acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]
	UsedFor	A pond is for	fish	swimming [-1.3], fishing [-1.4], bathing [-2.0], fish [-2.8], recreation [-3.1]

(Petroni et al., 2019)

BERT contains relational knowledge competitive with symbolic knowledge bases and excels on open-domain QA

Compus	Delation	Statis	tics	Base	elines	K	В			L	Μ		
Corpus	Relation	#Facts	#Rel	Freq	DrQA	RE _n	RE _o	Fs	Txl	Eb	E5B	Bb	B 1
	birth-place	2937	1	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
Coorle DE	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
Google-KE	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5
	1-1	937	2	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5
TDE	<i>N</i> -1	20006	23	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2
I-KEX	<i>N-M</i>	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3
	Total	34039	41	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3
ConceptNet	Total	11458	16	4.8	-	-	-	3.6	5.7	6.1	6.2	15.6	19.2
SQuAD	Total	305	-	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4

are probe tasks a perfect tool?

probe complexity

arguments for "simple" probes

we want to find easily accessible information in a representation

arguments for "complex" probes

useful properties might be encoded nonlinearly

(Hewitt et al., 2019)

control tasks

Sentence 1	The	cat	ran	quickly	•
Part-of-speech	DT	NN	VBD	RB	•
Control task	10	37	10	15	3
Sentence 2	The	dog	ran	after	!
Sentence 2 Part-of-speech	The DT	dog NN	ran VBD	after IN	!

(Hewitt et al., 2019)

designing control tasks

- independently sample a control behavior C(v) for each word type v in the vocabulary
- specifies how to define $y_i \in Y$ for a word token x_i with word type v
- control task is a function that maps each token x_i to the label specified by the behavior C(x_i)

 $f_{\text{control}}(\mathbf{x}_{1:T}) = f(C(x_1), C(x_2), \dots C(x_T))$

(Hewitt et al., 2019)

selectivity: high linguistic task accuracy + low control task accuracy

measures the probe model's ability to make output decisions independently of linguistic properties of the representation

be careful about probe accuracies

Part-of-speech Tagging										
	Li	near	MI	LP-1						
Model Ac	curacy	Selectivity	Accuracy	Selectivity						
Proj0 ELMo1 ELMo2	$96.3 \\ 97.2 \\ 96.6$	$20.6 \\ 26.0 \\ 31.4$	97.1 97.3 97.0	1.6 4.5 8.8						

how to use probe tasks to improve downstream task performance?

- what kinds of linguistic knowledge are important for your task?
- probe BERT for them
- if BERT struggles then fine-tune it with additional probe objectives

$$\mathcal{L}_{new} = \mathcal{L}_{BERT} + \alpha \mathcal{L}_{probe}$$

example: KnowBERT

(Peters et al., 2019)

Thank you!

References

- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Raffel et al., 2019. https://arxiv.org/abs/1910.10683
- BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. Lewis et al., 2019. https://arxiv.org/abs/1910.13461
- Unsupervised Cross-lingual Representation Learning at Scale. Conneau et al., 2019. https://arxiv.org/ abs/1911.02116
- Are Sixteen Heads Really Better than One? Michel et al., NeurIPS 2019. https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention, Clark el al., BlackBoxNLP 2019. https:// arxiv.org/abs/1906.04341
- Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks. Adi et al., ICLR 2017. https://arxiv.org/abs/1608.04207
- Linguistic Knowledge and Transferability of Contextual Representations. Liu et al., NAACL 2019. https:// arxiv.org/abs/1903.08855
- What do you learn from context? Probing for sentence structure in contextualized word representations. Tenney et al., ICLR 2019. https://arxiv.org/abs/1905.06316

References

- What you can cram into a single vector: Probing sentence embeddings for linguistic properties. Conneau et al., ACL 2018. https://arxiv.org/abs/1805.01070
- Dissecting Contextual Word Embeddings: Architecture and Representation. Peters et al., EMNLP 2018. https://arxiv.org/abs/1808.08949
- BERT Rediscovers the Classical NLP Pipeline. Tenney et al., ACL 2019. https://arxiv.org/abs/1905.05950
- A Structural Probe for Finding Syntax in Word Representations, Hewitt and Manning, NAACL 2019. https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
- Do NLP Models Know Numbers? Probing Numeracy in Embeddings, Wallace et al., EMNLP 2019. https://arxiv.org/abs/1909.07940
- Language Models as Knowledge Bases?, Petroni et al., EMNLP 2019. https://arxiv.org/abs/1909.01066
- Designing and Interpreting Probes with Control Tasks, Hewitt and Liang, EMNLP 2019. https://arxiv.org/ abs/1909.03368
- Knowledge Enhanced Contextual Word Representations, Peters et al., EMNLP 2019. https://arxiv.org/ abs/1909.04164