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Introduction

The intended audience for this book is students currently taking CMSC414 — Computer and Network Security. This is not intended as a comprehensive guide to assembly, but rather as a simple reference to a handful of instructions, for both AMD64 (also known as x86_64) and AArch64 (also known as arm64). We will take a C-focused approach, showing simple C statements, the assembly they produce (using gcc) on both architectures, and a discussion of what those assembly instructions are doing. We are more interested in the assembly instructions than how they are generated, so the corresponding C code is more to guide our understanding of the assembly than to demonstrate the workings of the compiler.

Additionally, we will present summary tables to serve as a quick reference, including basic operations to/from assembly, variations on operations (such as multiplying a register by a literal vs. another register), and how the assembly in a .s file compares to what is displayed by gdb.

Our operations will focus on integers, and will use the following set of variables:

  int ia, ib, ic;
  unsigned int uia, uib, uic;
  char ca, cb, cc;
  unsigned char uca, ucb, ucc;
  long la, lb, lc;
  unsigned long ula, ulb, ulc;


We’ll be generating the assembly using

gcc -w -ggdb -S -o example.s example.c

and the binary using

gcc -w -ggdb -o example example.s

Please note that these commands might produce different assembly for you, depending on compiler version, operating system, and possibly other things. Again, the mapping of C to assembly is intended to help us understand what the assembly instructions are doing, not how the compiler generates assembly from C.

In gdb, we’ll generate assembly dumps with corresponding source code using

disassemble/s main

since all of our code is in main().

Our variables appear in the following locations on the stack:




	Variable
	AMD64 Stack Location
	AArch64 Stack Location





	ia
	rbp-8
	r11-8



	ib
	rbp-12
	r11-28



	ic
	rbp-16
	r11-48



	uia
	rbp-20
	r11-12



	uib
	rbp-24
	r11-32



	uic
	rbp-28
	r11-52



	ca
	rbp-29
	r11-13



	cb
	rbp-30
	r11-33



	cc
	rbp-31
	r11-53



	uca
	rbp-32
	r11-14



	ucb
	rbp-33
	r11-34



	ucc
	rbp-34
	r11-54



	la
	rbp-48
	r11-20



	lb
	rbp-56
	r11-40



	lc
	rbp-64
	r11-60



	ula
	rbp-72
	r11-24



	ulb
	rbp-80
	r11-44



	ulc
	rbp-88
	r11-64






AMD64 Registers

AMD64 has four general-purpose registers: A, B, C, and D. Each of these can be used as 64-bit (quad-length), 32-bit (word), 16-bit (half-word), or 8-bit (byte) values. These different sizes are named as follows:


	RAX — quad

	EAX — word (lowest 4 bytes of RAX)

	AX — half-word (lowest 2 bytes of RAX)

	AL — lowest byte of RAX

	AH — second-lowest byte of RAX



RSP and RBP are similar, without the AH equivalent:


	RSP

	ESP

	SP

	SPL



RIP is similar, except without the single-byte value.



AArch64 Registers

AArch64 has 31 general-purpose registers: R0–R30 or X0–X30 (these are equivalent). These are quad-length (64-bit) values, the lower halves (1 word, 32 bits) being accessible as W0–W30. Generally, you would use R0–R7 (arguments) or R9–R15 (temporary values). You should not use R29 or R30, and try to avoid using other registers.





Assignment

We’ll begin with simple assignment of integer types. In particular, we consider:

  ia = 3;
  uia = 3;
  ca = 3;
  uca = 3;
  la = 3;
  ula = 3;

  ib = 4;
  uib = 4;
  cb = 4;
  ucb = 4;
  lb = 4;
  ulb = 4;



AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ia = 3;
	
	



	
	movl    $3, -8(%rbp)
	movl   $0x3,-0x8(%rbp)



	uia = 3;
	
	



	
	movl    $3, -20(%rbp)
	movl   $0x3,-0x14(%rbp)



	ca = 3;
	
	



	
	movb    $3, -29(%rbp)
	movb   $0x3,-0x1d(%rbp)



	uca = 3;
	
	



	
	movb    $3, -32(%rbp)
	movb   $0x3,-0x20(%rbp)



	la = 3;
	
	



	
	movq    $3, -48(%rbp)
	movq   $0x3,-0x30(%rbp)



	ula = 3;
	
	



	
	movq    $3, -72(%rbp)
	movq   $0x3,-0x48(%rbp)



	ib = 4;
	
	



	
	movl    $4, -12(%rbp)
	movl   $0x4,-0xc(%rbp)



	uib = 4;
	
	



	
	movl    $4, -24(%rbp)
	movl   $0x4,-0x18(%rbp)



	cb = 4;
	
	



	
	movb    $4, -30(%rbp)
	movb   $0x4,-0x1e(%rbp)



	ucb = 4;
	
	



	
	movb    $4, -33(%rbp)
	movb   $0x4,-0x21(%rbp)



	lb = 4;
	
	



	
	movq    $4, -56(%rbp)
	movq   $0x4,-0x38(%rbp)



	ulb = 4;
	
	



	
	movq    $4, -80(%rbp)
	movq   $0x4,-0x50(%rbp)





Here we see that an integer assignment is a simple movl (for 4-byte values), movb (for 1-byte values), or movq (for 8-byte values), regardless of whether the variable is signed or unsigned. The literal value is preceded by a $, and registers are preceded by %. The syntax -8(%rbp) means offset by -8 bytes from the value of the register rbp. The literals and offsets are written (by default) in decimal in the assembly file, but hexadecimal in gdb. Otherwise, there is no difference.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ia = 3;
	
	



	
	mov     r3, #3
	mov     r3, #3



	
	str     r3, [fp, #-8]
	str     r3, [r11, #-8]



	uia = 3;
	
	



	
	mov     r3, #3
	mov     r3, #3



	
	str     r3, [fp, #-12]
	str     r3, [r11, #-12]



	ca = 3;
	
	



	
	mov     r3, #3
	mov     r3, #3



	
	strb    r3, [fp, #-13]
	strb    r3, [r11, #-13]



	uca = 3;
	
	



	
	mov     r3, #3
	mov     r3, #3



	
	strb    r3, [fp, #-14]
	strb    r3, [r11, #-14]



	la = 3;
	
	



	
	mov     r3, #3
	mov     r3, #3



	
	str     r3, [fp, #-20]
	str     r3, [r11, #-20]



	ula = 3;
	
	



	
	mov     r3, #3
	mov     r3, #3



	
	str     r3, [fp, #-24]
	str     r3, [r11, #-24]



	ib = 4;
	
	



	
	mov     r3, #4
	mov     r3, #4



	
	str     r3, [fp, #-28]
	str     r3, [r11, #-28]



	uib = 4;
	
	



	
	mov     r3, #4
	mov     r3, #4



	
	str     r3, [fp, #-32]
	str     r3, [r11, #-32]



	cb = 4;
	
	



	
	mov     r3, #4
	mov     r3, #4



	
	strb    r3, [fp, #-33]
	strb    r3, [r11, #-33]



	ucb = 4;
	
	



	
	mov     r3, #4
	mov     r3, #4



	
	strb    r3, [fp, #-34]
	strb    r3, [r11, #-34]



	lb = 4;
	
	



	
	mov     r3, #4
	mov     r3, #4



	
	str     r3, [fp, #-40]
	str     r3, [r11, #-40]



	ulb = 4;
	
	



	
	mov     r3, #4
	mov     r3, #4



	
	str     r3, [fp, #-44]
	str     r3, [r11, #-44]





The instructions on the ARM platform are more complex. Where before we had a direct write to the variables’ stack locations, we now begin with a mov instruction to write the value to register r3. We then store this register on the stack using str or strb (for 1-byte values). The frame pointer is given by register fp, and we use the syntax [fp, #-8] to indicate an offset of -8 bytes from the value of the register fp.

In gdb, we see the same pattern of mov and str (or strb), again with arguments in the same order. The register fp from the .s file is now shown as r11 instead, though they refer to the same thing. gdb will recognize fp as the name of a register, but it is identical to r11. You can try this yourself with the command info reg fp r11.





Addition

We are going to look at addition in five ways:


	Adding two variables, assigning them to a third;

	Adding a variable and a literal, assigning them to a second;

	Adding a literal and a variable, assigning them to a second;

	Additive assignment of a variable; and

	Additive assignment of a literal.




Adding Two Variables

We will consider this block of code:

  ic = ia + ib;
  uic = uia + uib;
  cc = ca + cb;
  ucc = uca + ucb;
  lc = la + lb;
  ulc = ula + ulb;


For each line, we will treat it as c = a + b.


AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia + ib;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	addl    -12(%rbp), %eax
	add    -0xc(%rbp),%eax



	
	movl    %eax, -16(%rbp)
	mov    %eax,-0x10(%rbp)



	uic = uia + uib;
	
	



	
	movl    -20(%rbp), %eax
	mov    -0x14(%rbp),%eax



	
	addl    -24(%rbp), %eax
	add    -0x18(%rbp),%eax



	
	movl    %eax, -28(%rbp)
	mov    %eax,-0x1c(%rbp)



	
	
	



	cc = ca + cb;
	
	



	
	movsbl  -29(%rbp), %eax
	movsbl -0x1d(%rbp),%eax



	
	movsbl  -30(%rbp), %ecx
	movsbl -0x1e(%rbp),%ecx



	
	addl    %ecx, %eax
	add    %ecx,%eax



	
	movb    %al, -31(%rbp)
	mov    %al,-0x1f(%rbp)



	ucc = uca + ucb;
	
	



	
	movzbl  -32(%rbp), %eax
	movzbl -0x20(%rbp),%eax



	
	movzbl  -33(%rbp), %ecx
	movzbl -0x21(%rbp),%ecx



	
	addl    %ecx, %eax
	add    %ecx,%eax



	
	movb    %al, -34(%rbp)
	mov    %al,-0x22(%rbp)



	lc = la + lb;
	
	



	
	movq    -48(%rbp), %rax
	mov    -0x30(%rbp),%rax



	
	addq    -56(%rbp), %rax
	add    -0x38(%rbp),%rax



	
	movq    %rax, -64(%rbp)
	mov    %rax,-0x40(%rbp)



	ulc = ula + ulb;
	
	



	
	movq    -72(%rbp), %rax
	mov    -0x48(%rbp),%rax



	
	addq    -80(%rbp), %rax
	add    -0x50(%rbp),%rax



	
	movq    %rax, -88(%rbp)
	mov    %rax,-0x58(%rbp)





How we perform the addition and assignment differs depending on the types of the variables. For integers and long integers, we move the value of a to a register (eax for integers and rax for long integers), add the value of b to the register, and then move the register to c. Just as we have movl and movq, we also have addl and addq. In both cases, we begin with the new value as the first argument, and the destination as the second. For addl and addq, the second argument is both an addend and the sum.

Things are a little more complicated for one-byte types. Here we move the value of a to eax and the value of b to ecx. To make things more complicated, we have to account for the fact that we’re dealing with 1-byte values, while registers like eax are 4-byte values. That’s what the instructions movsbl and movzbl are for. The move a single-byte from the least-significant part of the register (ie, the first byte). They also differ in that movsbl moves a signed byte, while movzbl moves an unsigned byte. We then add the two registers together, storing the result in eax, and then use movb to copy one byte back to the variable’s location on the stack. Here’s we use al as the register, instead of eax, because al is the least-significant side of eax. Similarly, cl would be the least-significant side of ecx.

In gdb, now that we’re dealing with registers, movl, movb, and movq just become mov, and similarly addl and addq are just add.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia + ib;
	
	



	
	ldr     r2, [fp, #-8]
	ldr     r2, [r11, #-8]



	
	ldr     r3, [fp, #-28]
	ldr     r3, [r11, #-28]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	str     r3, [fp, #-48]
	str     r3, [r11, #-48]



	uic = uia + uib;
	
	



	
	ldr     r2, [fp, #-12]
	ldr     r2, [r11, #-12]



	
	ldr     r3, [fp, #-32]
	ldr     r3, [r11, #-32]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	str     r3, [fp, #-52]
	str     r3, [r11, #-52]



	cc = ca + cb;
	
	



	
	ldrb    r2, [fp, #-13]
	ldrb    r2, [r11, #-13]



	
	ldrb    r3, [fp, #-33]
	ldrb    r3, [r11, #-33]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	strb    r3, [fp, #-53]
	strb    r3, [r11, #-53]



	ucc = uca + ucb;
	
	



	
	ldrb    r2, [fp, #-14]
	ldrb    r2, [r11, #-14]



	
	ldrb    r3, [fp, #-34]
	ldrb    r3, [r11, #-34]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	strb    r3, [fp, #-54]
	strb    r3, [r11, #-54]



	lc = la + lb;
	
	



	
	ldr     r2, [fp, #-20]
	ldr     r2, [r11, #-20]



	
	ldr     r3, [fp, #-40]
	ldr     r3, [r11, #-40]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	str     r3, [fp, #-60]
	str     r3, [r11, #-60]



	ulc = ula + ulb;
	
	



	
	ldr     r2, [fp, #-24]
	ldr     r2, [r11, #-24]



	
	ldr     r3, [fp, #-44]
	ldr     r3, [r11, #-44]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	str     r3, [fp, #-64]
	str     r3, [r11, #-64]





In all cases, we first load a and b into registers r2 and r3 with ldr (or ldrb for a one-byte variable), then add the registers, storing them in r3, and finally store the value of r3 into c. The add instruction has the result register as the first argument, followed by the addends. This is in contrast to AMD64, which always stores the result in the register that is one of the addends. Aside from fp versus r11, there is no difference between how this is written in an assembly code file and how gdb displays it.




Adding a Variable and a Literal

We will consider this block of code:

  ic = ia + 2;
  uic = uia + 2;
  cc = ca + 2;
  ucc = uca + 2;
  lc = la + 2;
  ulc = ula + 2;



AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia + 2;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	addl    $2, %eax
	add    $0x2,%eax



	
	movl    %eax, -16(%rbp)
	mov    %eax,-0x10(%rbp)



	uic = uia + 2;
	
	



	
	movl    -20(%rbp), %eax
	mov    -0x14(%rbp),%eax



	
	addl    $2, %eax
	add    $0x2,%eax



	
	movl    %eax, -28(%rbp)
	mov    %eax,-0x1c(%rbp)



	cc = ca + 2;
	
	



	
	movsbl  -29(%rbp), %eax
	movsbl -0x1d(%rbp),%eax



	
	addl    $2, %eax
	add    $0x2,%eax



	
	movb    %al, -31(%rbp)
	mov    %al,-0x1f(%rbp)



	ucc = uca + 2;
	
	



	
	movzbl  -32(%rbp), %eax
	movzbl -0x20(%rbp),%eax



	
	addl    $2, %eax
	add    $0x2,%eax



	
	movb    %al, -34(%rbp)
	mov    %al,-0x22(%rbp)



	lc = la + 2;
	
	



	
	movq    -48(%rbp), %rax
	mov    -0x30(%rbp),%rax



	
	addq    $2, %rax
	add    $0x2,%rax



	
	movq    %rax, -64(%rbp)
	mov    %rax,-0x40(%rbp)



	ulc = ula + 2;
	
	



	
	movq    -72(%rbp), %rax
	mov    -0x48(%rbp),%rax



	
	addq    $2, %rax
	add    $0x2,%rax



	
	movq    %rax, -88(%rbp)
	mov    %rax,-0x58(%rbp)





This is very similar to what we saw when adding two variables, though we can see that the literal value is the first argument to add/addl/addq. The order in which we add the values (ia + 2 or 2 + ia) makes no difference in the generated assembly.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia + 2;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	add     r3, r3, #2
	add     r3, r3, #2



	
	str     r3, [fp, #-48]
	str     r3, [r11, #-48]



	uic = uia + 2;
	
	



	
	ldr     r3, [fp, #-12]
	ldr     r3, [r11, #-12]



	
	add     r3, r3, #2
	add     r3, r3, #2



	
	str     r3, [fp, #-52]
	str     r3, [r11, #-52]



	cc = ca + 2;
	
	



	
	ldrb    r3, [fp, #-13]
	ldrb    r3, [r11, #-13]



	
	add     r3, r3, #2
	add     r3, r3, #2



	
	strb    r3, [fp, #-53]
	strb    r3, [r11, #-53]



	ucc = uca + 2;
	
	



	
	ldrb    r3, [fp, #-14]
	ldrb    r3, [r11, #-14]



	
	add     r3, r3, #2
	add     r3, r3, #2



	
	strb    r3, [fp, #-54]
	strb    r3, [r11, #-54]



	lc = la + 2;
	
	



	
	ldr     r3, [fp, #-20]
	ldr     r3, [r11, #-20]



	
	add     r3, r3, #2
	add     r3, r3, #2



	
	str     r3, [fp, #-60]
	str     r3, [r11, #-60]



	ulc = ula + 2;
	
	



	
	ldr     r3, [fp, #-24]
	ldr     r3, [r11, #-24]



	
	add     r3, r3, #2
	add     r3, r3, #2



	
	str     r3, [fp, #-64]
	str     r3, [r11, #-64]





This is also extremely similar to the previous example of adding two variables, except that we do not have a second load instruction, since there is only one variable, and the add instruction accepts literal addends. The literal value is always the second addend, regardless of the order in which they are specified in C.




Additive Assignment

Having established patterns between different integer types, we will begin limiting ourselves to a single statement or block, unless something interesting is illustrated by using multiple types. For additive assignment, we will only consider this statement:

ia += ib;


The version involving a literal (ia += 2) is identical to adding a variable and a literal, with the exception of the result, so we will not include any details here.


AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ia += ib;
	
	



	
	movl    -12(%rbp), %eax
	mov    -0xc(%rbp),%eax



	
	addl    -8(%rbp), %eax
	add    -0x8(%rbp),%eax



	
	movl    %eax, -8(%rbp)
	mov    %eax,-0x8(%rbp)





We can see from the assembly for ic = ia + ib how this is constructed. Because we are using ia (-8(%rbp)) as the result, as well as an addend, it makes sense that we are moving the value of ib into the register eax. We could have performed the exact same first two instructions, however, without impacting the result, though we might gain some cache speed-up by making the accesses of -8(%rbp) sequential here.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ia += ib;
	
	



	
	ldr     r2, [fp, #-8]
	ldr     r2, [r11, #-8]



	
	ldr     r3, [fp, #-28]
	ldr     r3, [r11, #-28]



	
	add     r3, r2, r3
	add     r3, r2, r3



	
	str     r3, [fp, #-8]
	str     r3, [r11, #-8]





Aside from the store instruction, this is identical to ic = ia + ib.




Subtraction

For both

ic = ia - ib;


and

ic = ia - 2;


The assembly is identical for both AMD64 and AArch64 to addition, but replacing add with sub. This includes as substrings (eg, addl becomes subl).





Multiplication

We are going to look at multiplication in 3 ways:


	Multiplying two variables, assigning them to a third;

	Multiplying a variable by 2, assigning the to a second; and

	Multiplicative assignment by 5.




Multiplying Two Variables

We will consider this block of code:

  ic = ia * ib;
  uic = uia * uib;
  cc = ca * cb;
  ucc = uca * ucb;
  lc = la * lb;
  ulc = ula * ulb;


As with addition, we will treat each line as c = a × b.


AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia * ib;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	imull   -12(%rbp), %eax
	imul   -0xc(%rbp),%eax



	
	movl    %eax, -16(%rbp)
	mov    %eax,-0x10(%rbp)



	uic = uia * uib;
	
	



	
	movl    -20(%rbp), %eax
	mov    -0x14(%rbp),%eax



	
	imull   -24(%rbp), %eax
	imul   -0x18(%rbp),%eax



	
	movl    %eax, -28(%rbp)
	mov    %eax,-0x1c(%rbp)



	
	
	



	cc = ca * cb;
	
	



	
	movsbl -29(%rbp), %eax
	movsbl  -0x1d(%rbp),%eax



	
	movsbl -30(%rbp), %ecx
	movsbl  -0x1e(%rbp),%ecx



	
	imull   %ecx, %eax
	imul   %ecx,%eax



	
	movb    %al, -31(%rbp)
	mov    %al,-0x1f(%rbp)



	ucc = uca * ucb;
	
	



	
	movzbl -32(%rbp), %eax
	movzbl  -0x20(%rbp),%eax



	
	movzbl -33(%rbp), %ecx
	movzbl  -0x21(%rbp),%ecx



	
	imull   %ecx, %eax
	imul   %ecx,%eax



	
	movb    %al, -34(%rbp)
	mov    %al,-0x22(%rbp)



	lc = la * lb;
	
	



	
	movq    -48(%rbp), %rax
	mov    -0x30(%rbp),%rax



	
	imulq   -56(%rbp), %rax
	imul   -0x38(%rbp),%rax



	
	movq    %rax, -64(%rbp)
	mov    %rax,-0x40(%rbp)



	ulc = ula * ulb;
	
	



	
	movq    -72(%rbp), %rax
	mov    -0x48(%rbp),%rax



	
	imulq   -80(%rbp), %rax
	imul   -0x50(%rbp),%rax



	
	movq    %rax, -88(%rbp)
	mov    %rax,-0x58(%rbp)





This follows the same general pattern as addition of variables:


	Copy the local variable a to eax/rax (movl, movsbl, movzbl, movq)

	For single-byte variables, do the same for b and ecx/rcx

	Multiply the two using either imull or imulq, storing in eax/rax

	Copy the register value back to c on the stack



The instructions imull and imulq (or just imul in gdb) are the only differences.

Multiplicative assignment ia *= ib is identical, except for the final mov. This is the same as we saw with additive assignment.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia * ib;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	ldr     r2, [fp, #-28]
	ldr     r2, [r11, #-28]



	
	mul     r3, r2, r3
	mul     r3, r2, r3



	
	str     r3, [fp, #-48]
	str     r3, [r11, #-48]



	uic = uia * uib;
	
	



	
	ldr     r3, [fp, #-12]
	ldr     r3, [r11, #-12]



	
	ldr     r2, [fp, #-32]
	ldr     r2, [r11, #-32]



	
	mul     r3, r2, r3
	mul     r3, r2, r3



	
	str     r3, [fp, #-52]
	str     r3, [r11, #-52]



	cc = ca * cb;
	
	



	
	ldrb    r2, [fp, #-13]
	ldrb    r2, [r11, #-13]



	
	ldrb    r3, [fp, #-33]
	ldrb    r3, [r11, #-33]



	
	smulbb  r3, r2, r3
	smulbb  r3, r2, r3



	
	strb    r3, [fp, #-53]
	strb    r3, [r11, #-53]



	ucc = uca * ucb;
	
	



	
	ldrb    r2, [fp, #-14]
	ldrb    r2, [r11, #-14]



	
	ldrb    r3, [fp, #-34]
	ldrb    r3, [r11, #-34]



	
	smulbb  r3, r2, r3
	smulbb  r3, r2, r3



	
	strb    r3, [fp, #-54]
	strb    r3, [r11, #-54]



	lc = la * lb;
	
	



	
	ldr     r3, [fp, #-20]
	ldr     r3, [r11, #-20]



	
	ldr     r2, [fp, #-40]
	ldr     r2, [r11, #-40]



	
	mul     r3, r2, r3
	mul     r3, r2, r3



	
	str     r3, [fp, #-60]
	str     r3, [r11, #-60]



	ulc = ula * ulb;
	
	



	
	ldr     r3, [fp, #-24]
	ldr     r3, [r11, #-24]



	
	ldr     r2, [fp, #-44]
	ldr     r2, [r11, #-44]



	
	mul     r3, r2, r3
	mul     r3, r2, r3



	
	str     r3, [fp, #-64]
	str     r3, [r11, #-64]





The process for AArch64 is similarly almost identical to addition. We replace the add instruction with mul, except for single-byte variables, for which we use smulbb. Multiplicative assignment ia *= ib follows the same pattern we have seen elsewhere.




Multiplying by 2

This is almost identical for all of our variable types, so we will only consider the following statement:

ic = ia * 2;



AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia * 2;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	shll    %eax
	shl    $1,%eax



	
	movl    %eax, -16(%rbp)
	mov    %eax,-0x10(%rbp)





Here we see that, rather than calling imull, we call shll, which is a left-shift. In the assembly file, we don’t provide the amount by which we want to shift — it uses 1 as the default. In gdb, we see the value of 1 explicitly. For long integers, shll is replaced by shlq.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ic = ia * 2;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	lsl     r3, r3, #1
	lsl     r3, r3, #1



	
	str     r3, [fp, #-48]
	str     r3, [r11, #-48]





As with AMD64, on AArch64 we replace the multiplication by 2 with a left shift. In this case, the instruction is lsl, and is the same for all of our integer types.




Multiplicative Assignment by 5

Since we multiplication by a power of 2 is a simple shift, we will look at multiplying by a value that is not a power of 2. We will also do this as a multiplicative assignment, just to have that as a concrete example. Consider the following statement:

ia *= 5;



AMD64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ia *= 5;
	
	



	
	imull   $5, -8(%rbp), %eax
	imul   $0x5,-0x8(%rbp),%eax



	
	movl    %eax, -8(%rbp)
	mov    %eax,-0x8(%rbp)





Here we see a very simple pair of instructions. The version of imull here has three arguments, instead of the two we saw previously. We only use one register, eax, and directly reference the stack location of a. The first argument is the literal $5. We then move eax back to a’s location on the stack.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	ia *= 5;
	
	



	
	ldr     r2, [fp, #-8]
	ldr     r2, [r11, #-8]



	
	mov     r3, r2
	mov     r3, r2



	
	lsl     r3, r3, #2
	lsl     r3, r3, #2



	
	add     r3, r3, r2
	add     r3, r3, r2



	
	str     r3, [fp, #-8]
	str     r3, [r11, #-8]





This is considerably more complex than the AMD64 case. Looking at the instructions, we note that the literal #5 never appears. Instead, the compiler decomposed this to a left shift by 2 (multiplication by 4) followed by an addition. Because multiplication is considerably slower than addition, and shifting is extremely fast, this ends up being faster than using the mul instruction, even though it is more instructions.

Going through instruction-by-instruction:


	We begin by loading the register r2 with the value of a.

	Next we copy r2 to another register, r3.

	We then shift r3 left by 2 bits, storing the result back in r3.

	Now we add r3 (4a) and r2 (a), storing the result in r3.

	Finally, we store the register r3 back into a on the stack.








Branching and Calling Functions

We can see all of the relevant combinations of instructions with the following block of code:

  if ( ia ) { printf("x\n"); } else { printf("y\n"); }
  if ( ca ) { printf("x\n"); } else { printf("y\n"); }
  if ( la ) { printf("x\n"); } else { printf("y\n"); }
  if ( ca == 0 ) { printf("x\n"); } else { printf("y\n"); }
  if ( uca == 0 ) { printf("x\n"); } else { printf("y\n"); }

  if ( ia == ib ) { printf("x\n"); } else { printf("y\n"); }
  if ( ca == cb ) { printf("x\n"); } else { printf("y\n"); }
  if ( uca == ucb ) { printf("x\n"); } else { printf("y\n"); }
  if ( la == lb ) { printf("x\n"); } else { printf("y\n"); }

  if ( ia == 2 ) { printf("x\n"); } else { printf("y\n"); }
  if ( ca == 2 ) { printf("x\n"); } else { printf("y\n"); }
  if ( uca == 2 ) { printf("x\n"); } else { printf("y\n"); }
  if ( la == 2 ) { printf("x\n"); } else { printf("y\n"); }

  if ( 2 == ia ) { printf("x\n"); } else { printf("y\n"); }
  if ( 2 == ca ) { printf("x\n"); } else { printf("y\n"); }
  if ( 2 == uca ) { printf("x\n"); } else { printf("y\n"); }
  if ( 2 == la ) { printf("x\n"); } else { printf("y\n"); }

  if ( 0 == ia ) { printf("x\n"); } else { printf("y\n"); }
  if ( 0 == ca ) { printf("x\n"); } else { printf("y\n"); }
  if ( 0 == uca ) { printf("x\n"); } else { printf("y\n"); }
  if ( 0 == la ) { printf("x\n"); } else { printf("y\n"); }


For brevity, in the assembly we will only show the printf calls and else clause for the first case.


AMD64

The equivalent assembly is shown in the following tables, organized by related statements:




	C
	.s file
	gdb





	if ( ia ) {
	
	



	
	cmpl    $0, -8(%rbp)
	cmpl   $0x0,-0x8(%rbp)



	
	je      LBB0_2
	je     0x100000a1d



	printf("x\n");
	
	



	
	leaq    L_.str(%rip), %rdi
	lea    0x58e(%rip),%rdi



	
	movb    $0, %al
	mov    $0x0,%al



	
	callq   _printf
	call   0x100000f9c



	}
	
	



	
	jmp     LBB0_3
	jmp    0x100000a2b



	else {
	
	



	
	LBB0_2:
	



	printf("y\n");
	
	



	
	leaq    L_.str.1(%rip), %rdi
	lea    0x581(%rip),%rdi



	
	movb    $0, %al
	mov    $0x0,%al



	
	callq   _printf
	call   0x100000f9c



	}
	
	



	
	LBB0_3:
	



	if ( ca ) {
	
	



	
	cmpb    $0, -29(%rbp)
	cmpb   $0x0,-0x1d(%rbp)



	
	je      LBB0_8
	je     0x100000a65



	if ( la ) {
	
	



	
	cmpq    $0, -48(%rbp)
	cmpq   $0x0,-0x30(%rbp)



	
	je      LBB0_14
	je     0x100000aae



	if ( ca == 0 ) {
	
	



	
	movsbl  -29(%rbp), %eax
	movsbl -0x1d(%rbp),%eax



	
	cmpl    $0, %eax
	cmp    $0x0,%eax



	
	jne     LBB0_62
	jne    0x100000d12



	if ( uca == 0 ) {
	
	



	
	movzbl  -32(%rbp), %eax
	movzbl -0x20(%rbp),%eax



	
	cmpl    $0, %eax
	cmp    $0x0,%eax



	
	jne     LBB0_65
	jne    0x100000d39





Here, we see that evaluating an integer as a boolean expression is equivalent to comparing with 0. The comparison instruction is cmpl, cmpb, or cmpq. This tests for equality, and is typically followed by a jump instruction (je for “jump if equal” or jne for “jump if not equal”).

The argument to the jump instruction is a label in the assembly code, which when run becomes the address of the target instruction. Because of the else clause, the first block ends with a jump (jmp) to the instruction after the if/else statement. The gcc compiler is generating slightly different code for if (ia) than if (ia == 0), choosing a je for the former and jne for the latter, reversing the true and false blocks.

To call a function, we set up the arguments to the function, and then execute the callq instruction. In the assembly, we specify the symbol for the target function, and when run this is replaced with the address of the first instruction of the function. This is similar to what we saw for jmp in the conditional.

The instructions preceding callq will vary greatly, but it is worth taking a quick look at the leaq (load effective address) instruction. While movl -8(%rbp), -12(%rbp) would move the value of ia to ib, the instruction leaq -8(%rbp), -12(%rbp) would move the address rbp-8 to ib.




	C
	.s file
	gdb





	if ( ia == ib ) {
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	cmpl    -12(%rbp), %eax
	cmp    -0xc(%rbp),%eax



	
	jne     LBB0_20
	jne    0x100000af9



	if ( ca == cb ) {
	
	



	
	movsbl  -29(%rbp), %eax
	movsbl -0x1d(%rbp),%eax



	
	movsbl  -30(%rbp), %ecx
	movsbl -0x1e(%rbp),%ecx



	
	cmpl    %ecx, %eax
	cmp    %ecx,%eax



	
	jne     LBB0_26
	jne    0x100000b49



	if ( uca == ucb ) {
	
	



	
	movzbl  -32(%rbp), %eax
	movzbl -0x20(%rbp),%eax



	
	movzbl  -33(%rbp), %ecx
	movzbl -0x21(%rbp),%ecx



	
	cmpl    %ecx, %eax
	cmp    %ecx,%eax



	
	jne     LBB0_29
	jne    0x100000b73



	if ( la == lb ) {
	
	



	
	movq    -48(%rbp), %rax
	mov    -0x30(%rbp),%rax



	
	cmpq    -56(%rbp), %rax
	cmp    -0x38(%rbp),%rax



	
	jne     LBB0_32
	jne    0x100000b9b





For variable comparisons, we see familiar patterns. One or both variables is loaded into a register, and then we do a comparison and conditional jump as in the previous block of statements.




	C
	.s file
	gdb





	if ( ia == 2 ) {
	
	



	
	cmpl    $2, -8(%rbp)
	cmpl   $0x2,-0x8(%rbp)



	
	jne     LBB0_38
	jne    0x100000be7



	if ( ca == 2 ) {
	
	



	
	movsbl  -29(%rbp), %eax
	movsbl -0x1d(%rbp),%eax



	
	cmpl    $2, %eax
	cmp    $0x2,%eax



	
	jne     LBB0_44
	jne    0x100000c32



	if ( uca == 2 ) {
	
	



	
	movzbl  -32(%rbp), %eax
	movzbl -0x20(%rbp),%eax



	
	cmpl    $2, %eax
	cmp    $0x2,%eax



	
	jne     LBB0_47
	jne    0x100000c59



	if ( la == 2 ) {
	
	



	
	cmpq    $2, -48(%rbp)
	cmpq   $0x2,-0x30(%rbp)



	
	jne     LBB0_50
	jne    0x100000c7e



	if ( 2 == ia ) {
	
	



	
	movl    $2, %eax
	mov    $0x2,%eax



	
	cmpl    -8(%rbp), %eax
	cmp    -0x8(%rbp),%eax



	
	jne     LBB0_74
	jne    0x100000dab



	if ( 2 == ca ) {
	
	



	
	movsbl  -29(%rbp), %ecx
	movsbl -0x1d(%rbp),%ecx



	
	movl    $2, %eax
	mov    $0x2,%eax



	
	cmpl    %ecx, %eax
	cmp    %ecx,%eax



	
	jne     LBB0_80
	jne    0x100000dfe



	if ( 2 == uca ) {
	
	



	
	movzbl  -32(%rbp), %ecx
	movzbl -0x20(%rbp),%ecx



	
	movl    $2, %eax
	mov    $0x2,%eax



	
	cmpl    %ecx, %eax
	cmp    %ecx,%eax



	
	jne     LBB0_83
	jne    0x100000e29



	if ( 2 == la ) {
	
	



	
	movl    $2, %eax
	mov    $0x2,%eax



	
	cmpq    -48(%rbp), %rax
	cmp    -0x30(%rbp),%rax



	
	jne     LBB0_86
	jne    0x100000e52





Here we see that comparing a variable with a literal integer value, we have very similar code to when we were doing a comparison with 0. The order in which we compare (ia == 2 vs 2 == ia) produces the same assembly.




	C
	.s file
	gdb





	if ( 0 == ia ) {
	
	



	
	xorl    %eax, %eax
	xor    %eax,%eax



	
	cmpl    -8(%rbp), %eax
	cmp    -0x8(%rbp),%eax



	
	jne     LBB0_92
	jne    0x100000ea0



	if ( 0 == ca ) {
	
	



	
	movsbl  -29(%rbp), %ecx
	movsbl -0x1d(%rbp),%ecx



	
	xorl    %eax, %eax
	xor    %eax,%eax



	
	cmpl    %ecx, %eax
	cmp    %ecx,%eax



	
	jne     LBB0_98
	jne    0x100000eed



	if ( 0 == uca ) {
	
	



	
	movzbl  -32(%rbp), %ecx
	movzbl -0x20(%rbp),%ecx



	
	xorl    %eax, %eax
	xor    %eax,%eax



	
	cmpl    %ecx, %eax
	cmp    %ecx,%eax



	
	jne     LBB0_101
	jne    0x100000f15



	
	
	



	if ( 0 == la ) {
	
	



	
	xorl    %eax, %eax
	xor    %eax,%eax



	
	cmpq    -48(%rbp), %rax
	cmp    -0x30(%rbp),%rax



	
	jne     LBB0_104
	jne    0x100000f3b





The comparison 0 == ia interestingly produces different instructions. Instead of using a literal $0, we instead use xorl to set the value of eax to 0, and compare with that. The result of the xor is stored in the second argument.



AArch64

The equivalent assembly is shown in the following table:




	C
	.s file
	gdb





	if ( ia ) {
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	cmp     r3, #0
	cmp     r3, #0



	
	beq     .L2
	beq     0x10890



	printf("x\n");
	
	



	
	ldr     r0, .L75
	ldr     r0, [pc, #1220]



	
	bl      puts
	bl      0x102e4



	
	b       .L3
	b       0x10898



	}
	
	



	else {
	
	



	
	.L2:
	



	printf("y\n");
	
	



	
	ldr     r0, .L75+4
	ldr     r0, [pc, #1212]



	
	bl      puts
	bl      0x102e4



	}
	
	



	
	.L3:
	



	if ( ca ) {
	
	



	
	ldrb    r3, [fp, #-13]
	ldrb    r3, [r11, #-13]



	
	cmp     r3, #0
	cmp     r3, #0



	
	beq     .L6
	beq     0x108d0



	if ( la ) {
	
	



	
	ldr     r3, [fp, #-20]
	ldr     r3, [r11, #-20]



	
	cmp     r3, #0
	cmp     r3, #0



	
	beq     .L10
	beq     0x10910



	if ( ca == 0 ) {
	
	



	
	ldrb    r3, [fp, #-13]
	ldrb    r3, [r11, #-13]



	
	cmp     r3, #0
	cmp     r3, #0



	
	bne     .L42
	bne     0x10b28



	if ( uca == 0 ) {
	
	



	
	ldrb    r3, [fp, #-14]
	ldrb    r3, [r11, #-14]



	
	cmp     r3, #0
	cmp     r3, #0



	
	bne     .L44
	bne     0x10b48





For the comparisons, we see the same pattern as for AMD64: compare with 0 and then either “branch-if-equal” (beq) or “branch-if-not-equal” (bne), depending on whether we are doing if(ia) or if(ia==0). The main difference is that, as is often the case, for AArch64 we first load (with ldr or ldrb) the variable’s value into a register.

When calling a function, we again prepare the stack, and then “branch with link” (bl) to the function, which is the equivalent of callq on AMD64. For the conditional flow, the “branch” (b) instruction is the equivalent of jmp.




	C
	.s file
	gdb





	if ( ia == ib ) {
	
	



	
	ldr     r2, [fp, #-8]
	ldr     r2, [r11, #-8]



	
	ldr     r3, [fp, #-28]
	ldr     r3, [r11, #-28]



	
	cmp     r2, r3
	cmp     r2, r3



	
	bne     .L14
	bne     0x10954



	if ( ca == cb ) {
	
	



	
	ldrb    r2, [fp, #-13]
	ldrb    r2, [r11, #-13]



	
	ldrb    r3, [fp, #-33]
	ldrb    r3, [r11, #-33]



	
	cmp     r2, r3
	cmp     r2, r3



	
	bne     .L18
	bne     0x1099c



	if ( uca == ucb ) {
	
	



	
	ldrb    r2, [fp, #-14]
	ldrb    r2, [r11, #-14]



	
	ldrb    r3, [fp, #-34]
	ldrb    r3, [r11, #-34]



	
	cmp     r2, r3
	cmp     r2, r3



	
	bne     .L20
	bne     0x109c0



	if ( la == lb ) {
	
	



	
	ldr     r2, [fp, #-20]
	ldr     r2, [r11, #-20]



	
	ldr     r3, [fp, #-40]
	ldr     r3, [r11, #-40]



	
	cmp     r2, r3
	cmp     r2, r3



	
	bne     .L22
	bne     0x109e4





When comparing two integer variables, we see almost the same pattern, but instead of comparing a register with a literal, we load the values into two registers and compare those. Other than for int, the pattern is identical to what we saw with AMD64.




	C
	.s file
	gdb





	if ( ia == 2 ) {
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L26
	bne     0x10a28



	if ( ca == 2 ) {
	
	



	
	ldrb    r3, [fp, #-13]
	ldrb    r3, [r11, #-13]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L30
	bne     0x10a68



	if ( uca == 2 ) {
	
	



	
	ldrb    r3, [fp, #-14]
	ldrb    r3, [r11, #-14]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L32
	bne     0x10a88



	if ( la == 2 ) {
	
	



	
	ldr     r3, [fp, #-20]
	ldr     r3, [r11, #-20]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L34
	bne     0x10aa8



	if ( 2 == ia ) {
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L50
	bne     0x10ba8



	if ( 2 == ca ) {
	
	



	
	ldrb    r3, [fp, #-13]
	ldrb    r3, [r11, #-13]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L54
	bne     0x10be8



	if ( 2 == uca ) {
	
	



	
	ldrb    r3, [fp, #-14]
	ldrb    r3, [r11, #-14]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L56
	bne     0x10c08



	if ( 2 == la ) {
	
	



	
	ldr     r3, [fp, #-20]
	ldr     r3, [r11, #-20]



	
	cmp     r3, #2
	cmp     r3, #2



	
	bne     .L58
	bne     0x10c28





Comparing with a non-zero literal looks the same as comparing with zero. We still load the value into a register, and compare that register with the literal.




	C
	.s file
	gdb





	if ( 0 == ia ) {
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	cmp     r3, #0
	cmp     r3, #0



	
	bne     .L62
	bne     0x10c68



	if ( 0 == ca ) {
	
	



	
	ldrb    r3, [fp, #-13]
	ldrb    r3, [r11, #-13]



	
	cmp     r3, #0
	cmp     r3, #0



	
	bne     .L66
	bne     0x10ca8



	if ( 0 == uca ) {
	
	



	
	ldrb    r3, [fp, #-14]
	ldrb    r3, [r11, #-14]



	
	cmp     r3, #0
	cmp     r3, #0



	
	bne     .L68
	bne     0x10cc8



	if ( 0 == la ) {
	
	



	
	ldr     r3, [fp, #-20]
	ldr     r3, [r11, #-20]



	
	cmp     r3, #0
	cmp     r3, #0



	
	bne     .L70
	bne     0x10ce8





Reversing the order of the variable and literal have no effect on the generated assembly, in contrast with the equivalent assembly generated for AMD64.





Bit Shifting

For bit shifting operators, we will only look at simple ints with the following code:

  ic = ia << 2;
  ic = ia >> 2;
  ia <<= 2;
  ia >>= 2;



AMD64

The equivalent assembly is shown in the following tables, organized by related statements:




	C
	.s file
	gdb





	ic = ia << 2;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	shll    $2, %eax
	shl    $0x2,%eax



	
	movl    %eax, -16(%rbp)
	mov    %eax,-0x10(%rbp)



	ic = ia >> 2;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	sarl    $2, %eax
	sar    $0x2,%eax



	
	movl    %eax, -16(%rbp)
	mov    %eax,-0x10(%rbp)



	ia <<= 2;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	shll    $2, %eax
	shl    $0x2,%eax



	
	movl    %eax, -8(%rbp)
	mov    %eax,-0x8(%rbp)



	ia >>= 2;
	
	



	
	movl    -8(%rbp), %eax
	mov    -0x8(%rbp),%eax



	
	sarl    $2, %eax
	sar    $0x2,%eax



	
	movl    %eax, -8(%rbp)
	mov    %eax,-0x8(%rbp)





Here we see a single pattern: First, we load the value of our variable into a register, then we call either shll/shl for a left-shift or sarl/sar for a right-shift, and then copy the value of the shifted register to the target location in memory. The shift operators take the number of bits by which to shift as the first argument, followed by the register to shift. The shifted value is written back to the register.



AArch64

The equivalent assembly is shown in the following tables, organized by related statements:




	C
	.s file
	gdb





	ic = ia << 2;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	lsl     r3, r3, #2
	lsl     r3, r3, #2



	
	str     r3, [fp, #-48]
	str     r3, [r11, #-48]



	ic = ia >> 2;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	asr     r3, r3, #2
	asr     r3, r3, #2



	
	str     r3, [fp, #-48]
	str     r3, [r11, #-48]



	ia <<= 2;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	lsl     r3, r3, #2
	lsl     r3, r3, #2



	
	str     r3, [fp, #-8]
	str     r3, [r11, #-8]



	ia >>= 2;
	
	



	
	ldr     r3, [fp, #-8]
	ldr     r3, [r11, #-8]



	
	asr     r3, r3, #2
	asr     r3, r3, #2



	
	str     r3, [fp, #-8]
	str     r3, [r11, #-8]





As with AMD64, all four statements produce the same pattern, where we load the variable’s value into a register with ldr, perform either a left-shift with lsl or a right-shift with asr, and then store the result back to the appropriate variable with str. The biggest difference is that the AArch64 shift instructions take two registers (destination and source), followed by the the number of bits to shift.





Appendix: AMD64 Instructions









	Instruction
	Arguments
	Comments





	Copying data
	
	src is an address, register, or literal



	
	
	dst is an address or register



	movb
	src, dst
	1 byte



	movl
	src, dst
	up to 4 bytes



	movsbl
	src, dst
	src is 1 signed byte, dst is 4 bytes



	movzbl
	src, dst
	src is 1 unsigned byte, dst is 4 bytes



	movq
	src, dst
	8 bytes



	
	
	



	Binary operators
	
	a is an address, register, or literal



	
	
	b is a register



	
	
	c is a literal



	addl
	a, b
	b = b + a, up to 4 bytes



	addq
	a, b
	b = b + a, 8 bytes



	subl
	a, b
	b = b - a, up to 4 bytes



	subq
	a, b
	b = b - a, 8 bytes



	imull
	a, b
	b = b × a, up to 4 bytes



	imull
	c, a, b
	b = a × c, up to 4 bytes



	imulq
	a, b
	b = b × a, 8 bytes



	imulq
	c, a, b
	b = a × c, 8 bytes



	xorl
	a, b
	b = b ^ a



	
	
	



	Bit shifting
	
	a is an address, register, or literal



	
	
	b is a register



	shll
	a, b
	b = b << a



	sarl
	a, b
	b = b >> a



	
	
	



	Compare and Branch
	
	x and y are addresses, registers, or literals



	
	
	z is an address or label



	cmpb
	x, y
	eax = 1 if x == y, 0 otherwise, 1 byte



	cmpl
	x, y
	eax = 1 if x == y, 0 otherwise, up to 4 bytes



	cmpq
	x, y
	eax = 1 if x == y, 0 otherwise, 8 bytes



	je
	z
	rip = z if eax == 0



	jne
	z
	rip = z if eax != 0



	jmp
	z
	rip = z



	
	
	



	Calling functions
	
	a is an address or label



	
	
	b is an 8 byte register



	
	
	z is an address or label



	leaq
	a, b
	b = address of a



	callq
	z
	rip = z, new frame created








Appendix: AArch64 Instructions









	Instruction
	Arguments
	Comments





	Copying data
	
	src is an address, register, or literal



	
	
	dst is an address or register



	ldr
	dst, src
	2 or more bytes



	ldrb
	dst, src
	1 byte



	str
	src, dst
	2 or more bytes



	strb
	src, dst
	1 byte



	
	
	



	Binary operators
	
	a is a register



	
	
	b is an address, register, or literal



	
	
	c is an address, register, or literal



	add
	a, b, c
	a = b + c



	sub
	a, b, c
	a = b - c



	mul
	a, b, c
	a = b × c



	smulbb
	a, b, c
	a = b × c, 1 byte



	
	
	



	Bit shifting
	
	a is a register



	
	
	b is an address, register, or literal



	
	
	c is an address, register, or literal



	lsl
	a, b, c
	a = b << c



	asr
	a, b, c
	a = b >> c



	
	
	



	Compare and Branch
	
	x and y are addresses, registers, or literals



	
	
	z is an address or label



	cmp
	x, y
	r3 = 1 if x == y, 0 otherwise



	beq
	z
	pc = z if r3 == 0



	bne
	z
	pc = z if r3 != 0



	b
	z
	pc = z



	
	
	



	Calling functions
	
	z is an address or label



	bl
	z
	pc = z, new frame created
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