

2

Using the Bash Command Line

Michael Marsh

ii

How to Read This Book

There’s a good chance you don’t really know how to read a reference book like
this. That’s OK! It’s a skill you need to learn, and reading this foreword is a
great place to start.

First, while you can read this book from start to finish, and that’s not an un-
reasonable thing to do, you don’t necessarily need to. You should definitely
start by reading the Introduction, though. This will establish the notation, in-
cluding formatting, that we use, so the rest of the book makes sense to you. It
will also introduce you to manual pages, which are typically your best source
of information on various commands, functions, and file formats.

Once you understand the notation, feel free to look through the Table of Con-
tents for topics of relevance to you. At the very least, read through this to see
what is and is not covered in this book. Refer to this frequently as issues come
up.

iii

iv

Contents

1 Introduction 1

1.1 Notation . 2

1.2 Manual Pages . 3

2 File and Directory Structure 9

2.1 Filesystems . 9

2.2 Moving Through the Filesystem 10

2.3 Disk Usage . 12

3 Files 13

3.1 Viewing File Contents . 14

3.2 Moving, Copying, and Extracting Pieces of Files 16

3.3 File Permissions . 18

3.4 Wildcards . 20

v

vi CONTENTS

3.5 Standard File Descriptors . 20

4 Shortcuts 23

4.1 Editing a Line . 23

4.2 Auto-Filling . 24

4.3 Aliasing . 26

5 Programs 27

5.1 Running Programs . 27

5.2 Processes . 30

5.2.1 Process Information 30

5.2.2 Background Processes 31

5.2.3 Terminating Processes 32

5.2.4 Setting Priorities . 33

5.3 Input and Output Redirection 34

5.4 Pipelines . 36

6 Shell Configuration 37

7 How to Find Things 39

7.1 locate . 39

7.2 grep and ack . 40

CONTENTS vii

7.3 find . 41

8 Variables 43

8.1 Basic Variable Usage . 43

8.2 Parameter Expansion . 45

8.3 Quoting . 46

9 Scripting 49

9.1 Running Scripts . 49

9.2 Working with Positional Parameters 51

9.3 Mathematical Expressions 52

9.4 Control Flow . 53

9.5 Functions . 55

9.6 Utility Programs . 56

9.6.1 true and false . 56

9.6.2 yes . 57

9.6.3 seq . 57

9.6.4 cut . 58

9.6.5 awk . 58

viii CONTENTS

Chapter 1

Introduction

This is intended as a short reference for working with the bash shell from the
command line. Many Computer Science courses rely on command-line usage,
but students often have a substantial gap between when they were first intro-
duced to the topic, and when it next comes up in their education.

In addition to acting as a refresher (or even initial reference), we also present
some more advanced topics. These include things like parameter expansion,
control flow, and writing complex scripts for bash. It’s well-worth familiarizing
yourself with these concepts, because automating tasks with bash scripts can
save you a lot of time. A set of principles worth keeping in mind:

1. Anything you have to do more than once is worth scripting.

2. Anything non-trivial that you have to do, you will probably have to do
again.

While this is focused on the bash, shell, most of what is presented here should
be applicable to other modern shells that share the same lineage as bash. For
example, everything here should be applicable to zsh as well, though zsh has

1

2 CHAPTER 1. INTRODUCTION

some additional functionality we do not cover, and some situations might be-
have slightly differently. It’s important to always test your scripts!

1.1 Notation

We will make heavy use of font type throughout this book, so it’s important to
introduce this as our principle method of notation. Much of this follows the
convention used in official documentation. Things that you will type into the
shell will be given in typewriter font. Arguments to commands will be
written in multiple ways, depending on the context. Let’s explain by example.

Consider the ls command. We might specify the calling “signature” of this as
(though there are many other options we can provide)

ls <dir>

In this case, we use the notation <dir> to indicate an argument that you would
provide. For example,

ls /bin

In general, an argument name enclosed in angle brackets is something that you
will replace when calling the command. We could, in text, refer to this argument
in italics, without the angle brackets. This means <dir> and dir would be
equivalent. Very rarely, we might write something like ls dir. You will also
see underlines instead of italics or angle brackets, so that <dir>, dir, and dir
all mean the same thing, but we will not use underlines.

Commands often take optional arguments. These are enclosed in square braces.
Since ls does not require a directory argument, we might change the above
signature to

1.2. MANUAL PAGES 3

ls [<dir>]

to indicate that dir is optional.

Sometimes an argument (typically the last one) can be replicatedmultiple times.
To indicate this, we use an ellipsis after the argument. For example, ls can take
multiple files or directories to list, so we could further amend our signature to

ls [<dir> ...]

Note that this is not the full command signature for ls. Here is a more typical
signature:

ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1%] [<file> ...]

Sometimes, we will show a command that you would type along with its output.
When running as a normal user, we will indicate this with a $ indicating a shell
prompt; for a privileged (root) user, we will use # as the prompt. For example,

$ ls /

bin dev home lib64 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr

1.2 Manual Pages

Manual pages (“manpages”, for short) are a particular type of documentation
common on Posix-compliant systems, like Linux or MacOS. Much of what’s
in this book can, in fact, be found in the various manpages for the commands

4 CHAPTER 1. INTRODUCTION

we’re presenting. They have a particular format (actually, several formats), so
it’s worth spending some time learning how to read these. The last few chapters
will build towards understanding and writing your own shell scripts, which are
a powerful automation tool, at which point being able to read manpages will
be pretty much essential. They’re extremely useful for interactive shell use, as
well.

The program to run is called man, and it has it’s own manpage! You can view
a manpage with

$ man ls

This will show you the manpage for the ls command. The manpage for man is

$ man man

Manpages are separated into sections. Each section holds a different sort of
documentation. Section 1 contains almost all of the commands you’ll run from
the command line. Sections 2 and 3 contain function documentation; section
2 for system functions (like open) and section 3 for “normal” functions (like
printf). Sections 4 and 5 contain file documentation, while 6 and 7 contain
miscellaneous documentation. Finally, section 8 contains documentation for
system administration tools and daemons (background services).

If you run man printf, you will probably get the manpage for the shell com-
mand, rather than the function. This is because man searches for pages starting
in section 1, and progressing through the sections. We can work around this by
specifying the section in which to look, by running

$ man 3 printf

1.2. MANUAL PAGES 5

You can also search for manpages using either man -k or apropos. For ex-
ample, to find manpages about timeouts, you could run

$ man -k timeout

aio_suspend (3) - wait for asynchronous I/O operation or timeout

timeout (1) - run a command with a time limit

XtAddInput (3) - register input, timeout, and workprocs

XtAddTimeOut (3) - register input, timeout, and workprocs

XtAddWorkProc (3) - register input, timeout, and workprocs

XtAppAddTimeOut (3) - register and remove timeouts

XtAppGetSelectionTimeout (3) - set and obtain selection timeout values

XtAppSetSelectionTimeout (3) - set and obtain selection timeout values

XtGetSelectionTimeout (3) - set and obtain selection timeout values

XtRemoveTimeOut (3) - register and remove timeouts

XtSetSelectionTimeout (3) - set and obtain selection timeout values

The number in parentheses is the particular manpage’s section. We often re-
fer to a manpage with this section, particularly when there are multiple man-
pages of that name. So printf(1) is the printf manpage in section 1, and
printf(3) is the version in section 3.

Our notation is based on the notation used in manpages. That is, optional argu-
ments are surrounded by square braces, and vertical bars separate alternatives.
Here’s an example for a command, from the manpage for man:

MAN(1) Manual pager utils MAN(1)

NAME

man - an interface to the system reference manuals

SYNOPSIS

man [man options] [[section] page ...] ...

man -k [apropos options] regexp ...

man -K [man options] [section] term ...

man -f [whatis options] page ...

man -l [man options] file ...

man -w|-W [man options] page ...

The NAME section tells us the name and a brief description, and is typically
followed by a SYNOPSIS, showing the calling options. This is followed by a

6 CHAPTER 1. INTRODUCTION

potentially-lengthy DESCRIPTION section, which gives details about the com-
mand. Other common sections are OPTIONS, EXAMPLES, EXIT STATUS,
and SEE ALSO, though there are often other sections. The OPTIONS and EX-
AMPLES are often the most useful places to look, once you’re somewhat fa-
miliar with a command. SEE ALSO shows you other related manpages (which
may not actually be installed).

For a function, the format of the manpage looks different. For example, here’s
part of the printf(3) manpage:

PRINTF(3) Linux Programmer's Manual PRINTF(3)

NAME

printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vd-

printf, vsprintf, vsnprintf - formatted output conversion

SYNOPSIS

#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

int dprintf(int fd, const char *format, ...);

int sprintf(char *str, const char *format, ...);

int snprintf(char *str, size_t size, const char *format, ...);

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf(FILE *stream, const char *format, va_list ap);

int vdprintf(int fd, const char *format, va_list ap);

int vsprintf(char *str, const char *format, va_list ap);

int vsnprintf(char *str, size_t size, const char *format, va_list ap);

Often, these manpages will collect the documentation for multiple related func-
tions (command manpages sometimes do this, as well). As before, we have
NAME and SYNOPSIS sections. The latter includes (for C) the file includes
needed to call the functions. Since (again, in C) there is no concept of optional
or alternate arguments, it shows all of the various ways in which one of the
functions can be called individually. The DESCRIPTION section tends to be
the longest, and often there will also be an EXAMPLES section. Instead of

1.2. MANUAL PAGES 7

EXIT STATUS, you’ll see a RETURN VALUE section, telling you what to
expect the function to return, including for errors.

File format manpages tend to be less structured. If you want to see some exam-
ples, try sudoers(5) and crontab(5).

8 CHAPTER 1. INTRODUCTION

Chapter 2

File and Directory Structure

2.1 Filesystems

Everything on your computer is stored in a filesystem, which is divided into
a (large) number of directories. While modern operating systems and appli-
cations tend to hide this from you, when working with the command line it’s
important to understand the general structure. Your typical view is of some
folder, with all your files in it, possibly organized into subfolders. The filesys-
tem actually begins a few layers “above” this, in a directory called / (called
slash or root). How do folders and directories differ? They actually don’t, but
for the sake of exposition we use “folder” to refer to a GUI-focused organi-
zation of data, and “directory” to refer to the underlying filesystem structure.
They’re really the same thing, though.

Under the root directory are a bunch of other directories. The folder with all of
your stuff is a subdirectory of /home. If your username is mike, for example,
this would be /home/mike. Note the presence of slashes—this is how we
separate directory names in a path. mike is a subdirectory of home, which is a
subdirectory of the root. This is an absolute path.

9

10 CHAPTER 2. FILE AND DIRECTORY STRUCTURE

Command Result
ls List the directory contents

ls -l Long listing; lots of details
ls -a Include files/directories beginning with a dot
ls -A Like -a, omitting . and ..
ls -lt Long listing, sorted by modified time (latest first)
ls -ltr -lt with reversed order
ls -1 List in a single column
ls -m List as a single comma-delimited line
ls -F Add type indicators (/=directory,@=link,etc.)
ls -lh Sizes shown in friendly units
ls -ln Display owner and group as numbers, not names
ls -d Do not expand directories

All optionally take one or

more files/directories.

You can view the contents of a directory with the command ls. This hides the
names of files and directories beginning with a dot by default, but you can show
these with ls -a. If you run this, you’ll see every directory has two entries:
. and .. that refer to special directories. A single dot refers to the current
directory, which is very handy in some situations. A double dot refers to the
parent directory, with the root directory’s parent being itself. These special
directories allow us to construct relative paths, like ../foo for a subdirectory
foo under our parent directory.

2.2 Moving Through the Filesystem

cd Change the working directory to the user’s home directory

cd <dir> Change the working directory to dir

The principal command you’ll use to change directories is the cd command. It’s
usage is rather simple, typically taking one argument that is either an absolute
path (eg, cd /var/run/netns) or a relative path (eg, cd ..). There’s one

2.2. MOVING THROUGH THE FILESYSTEM 11

Command Result
cd Change the working directory to the user’s home directory
cd <dir> Change the working directory to dir
cd ~<user> Change the working directory to user’s home directory
cd - Change the working directory to the previous working directory
pushd <dir> Like cd <dir>, but adds dir to bash’s directory stack
popd Pop the top of the directory stack, cd’ing to the new top

other extremely useful way to call cd that most people are unware of, though:
cd - This moves you to the previous directory that you were in, and is a great
way to either work in two different directories from the same shell or to quickly
change to another directory for one or two commands, and then return to where
you were.

There are two special cases for cd: When run without arguments, it takes you
to your home directory (eg, /home/mike); and when you run cd ~other, it
will take you to the home directory for the user other. Technically, the latter
is not a special case, because Linux recognizes ~other as “the home directory
for other”.

There are other commands that move files and directories through the filesys-
tem: cp and mv. cp copies a file (or, with -r, a directory) to another location,
while mvmoves it (no additional argument required for a directory). Both com-
mands take the thing you’re copying/moving followed by where to place them.
You can specify this either as a file name, or just the parent directory, so

cp foo /etc/foo

and

cp foo /etc/

are equivalent.

12 CHAPTER 2. FILE AND DIRECTORY STRUCTURE

Command Result
df Display statistics for all mounted filesystems

df <dir> Display statistics for the filesystem on which dir is mounted
df -h Use friendly units for sizes

du <dir> Count the disk usage for the specified directory and subdirs
du -s Only show the total usage, not the subdir breakdown
du -h Use friendly units for sizes

2.3 Disk Usage

As you create or download files (including installing new libraries or applica-
tions), your disk will begin to fill. When it fills too much, you’ll need to figure
out where the space is being used, so you know what you need to delete. There
are two useful commands for this:

df Tells you how much space is free or in use for every filesystem

du Tells you the usage of directories or files

These will let you figure out how much space is used/available, and where that
used space is.

Chapter 3

Files

Files store the actual stuff on your computer. This may seem obvious, but a
lot of operating systems try to hide this fact from you. In Linux, pretty much
everything is a file. That includes your keyboard!

One important thing to remember is that you don’t have to “be” in the same
directory as a file you want to work with. All of the file commands we will
look at take files as absolute or relative paths.

Command Result
cat Print one or more files to the terminal
head Print the first 10 lines of a file
tail Print the last 10 lines of a file
more Show one screen’s worth of a file at a time
less Like more, but with additional features
xxd Display a file as hexadecimal bytes

13

14 CHAPTER 3. FILES

3.1 Viewing File Contents

We’ll begin with text files. There are a number of ways to view a text file, and
all of these take optional arguments to control their behavior. In section 1.2,
you’ll learn more about how to discover these options and what they do.

The simplest program is cat, which concatenates files (or standard input), and
writes the result to standard output. A simple example of this is

cat ~/.bashrc

which will dump the contents of your shell configuration file to the terminal.
The programs head and tail do something similar, but only the first or last
lines (10 by default) of the file.

Except for very short files, you generally don’t want to write the entire contents
of a file to the terminal all at once. Instead, you want to use a program called a
pager. That is, a program that shows you one “page” of the file at a time (defined
as however many lines your terminal can display at once). The most common
one that people use is called less, which is admittedly a strange name for what
it does. The name is basically a pun based on the maxim “Less is more.” more
is the name of one of the earlier pagers, and is in fact still available on most
systems.

Both more and less have some similar functionality:

• You can scroll forward a page at a time with the space key.

• The “q” key quits the program.

That’s about all that more does, while less does more. In particular, less
allows you to scroll both forward and backward, both by page and by line.
While more generally exits when you reach the end of the file, less does not,

3.1. VIEWING FILE CONTENTS 15

and also has commands to jump to the first (“g”) or last (“G”) line of the file.
Another nice feature of less is that if you type “-N”, it will toggle the display
of line numbers.

Not all files are ASCII (that is, “normal” text). These display poorly with cat
and less (though it might know how to display useful information about the
file). In these cases, it’s useful to be able to view a hex dump of the file. There
are a number of utilities that can do this, but we’ll take a look at a fairly common
one, called xxd.

The first thing to note is that xxd behaves like cat, in that it writes everything
to the terminal all at once. For very short files, this is fine, but for longer ones,
you will want to pipe it to another program, like less:

xxd my_binary_file | less

We’ll look at pipelines in more detail in a later chapter.

The output of xxd typically begins with a byte offset for the line, in hex, fol-
lowed by a colon. After that, it will show 16 bytes of data, grouped in pairs,
again in hex. Finally, for any “printable” characters, it will display them as
ASCII, with a “.” for any non-printable characters.

Let’s make this clearer with an example. Consider the following file, which
we’ll call hello:

Hello, world!

If we run xxd hello, we will see:

00000000: 4865 6c6c 6f2c 2077 6f72 6c64 210a Hello, world!.

16 CHAPTER 3. FILES

Command Result
cp <a> Create a copy of file <a> named
mv <a> Rename a file <a> to

dd if=<a> of= Dump the contents of input file <a> to output file

If we look up a hexadecimal ASCII table, we see that character 0x48 is “H”,
0x65 is “e”, and so on. Character 0x0a is the newline character.

You can omit the byte offsets andASCII displaywith the -p option, so xxd -p hello

gives us

48656c6c6f2c20776f726c64210a

You can also run xxd in reverse with the -r option:

$ cat 48656c6c6f2c20776f726c64210a | xxd -r -p

Hello, world!

3.2 Moving, Copying, andExtracting Pieces of Files

Some programs will automatically place files in certain places, like ~/Down-
loads, but we might want them elsewhere. We also sometimes amass enough
files in one place that we want to reorganize things. For this, we can use the mv
command, which moves a file. The first argument is the file to move, and the
second is where to move this. If the second argument is an existing directory,
the file name will be preserved in the new directory; if not the name of the file
will be changed. Note that, by default, mv will overwrite (or clobber) an exist-
ing file at the destination. You can disable this with the -i option, which makes
the overwrite behavior interactive. Many people will alias the mv command to
always provide this argument.

3.2. MOVING, COPYING, AND EXTRACTING PIECES OF FILES 17

As an example, let’s say we downloaded a file test_file, and we want to
place it in the tests subdirectory of the current directory. We can do this with

mv ~/Downloads/test_file ./tests/

The cp command works much like mv, except that it makes a copy of the file
instead of moving it.

dd is an extremely powerful tool. Its basic syntax is

dd if=foo of=bar

This will copy the contents of input file foo to output file bar. if and of are
only the beginning of its options. Either can be omitted, and use STDIN or
STDOUT as the default. Here’s another simple example:

dd if=/dev/zero of=foo bs=1024 count=5

This will create a file foowith the first 5kB of /dev/zero, which will provide
you with as many NULL bytes as you request. Give this a try, and then run

xxd foo

See the documentation for dd for all options. It’s well worth your time to learn
more about this command! One thing worth noting is that it will take much
longer to copy a large number of small blocks than a small number of large
blocks, even if the total number of bytes copied is the same.

18 CHAPTER 3. FILES

3.3 File Permissions

Every file or directory has a user (owner) and group, and a set of permission
bits (the first column of ls -l). On most systems, your group will be the same
as your username, though other groups are likely to exist, and you may be a
member of some of them. The groups command will show you what groups
your account belongs to.

Here are some examples:

$ ls -ld utilities

drwxr-xr-x 15 mmarsh mmarsh 480 Dec 14 18:57 utilities

$ ls -ld .ssh

drwx------ 11 mmarsh mmarsh 352 Sep 10 13:32 .ssh

$ ls -l .ssh

total 52

-rw-r--r-- 1 mmarsh mmarsh 391 Jun 29 2017 authorized_keys

-rw-r--r-- 1 mmarsh mmarsh 40 Dec 29 2017 config

-rw------- 1 mmarsh mmarsh 3326 Jan 23 2017 id_rsa

-rw-r--r-- 1 mmarsh mmarsh 743 Jan 23 2017 id_rsa.pub

-rw-r--r-- 1 mmarsh mmarsh 18349 Oct 29 13:19 known_hosts

In all of these, mmarsh is the owner, and all files and directories are also as-
signed to the group mmarsh. The first column is 10-characters wide:
Character Meaning

0 File type: d=directory, l=symlink, c=char device
1 User (u) read (r) permission
2 User (u) write (w) permission
3 User (u) execute (x) permission
4 Group (g) read (r) permission
5 Group (g) write (w) permission
6 Group (g) execute (x) permission
7 Other (o) read (r) permission
8 Other (o) write (w) permission
9 Other (o) execute (x) permission

3.3. FILE PERMISSIONS 19

Anything not set is indicatedwith a-, which for character 0means a normal file.
We see that utilities is a directory, readable and executable by everyone
(user, group, and other), but writable only by user and group. For directories,
“executable” means a user with matching credentials can cd into that directory.
~/.ssh/id_rsa, a private key, has full permissions for the user, but no per-
missions for anyone else. ~/.ssh/id_rsa.pub is readable by everyone, but
only writable by the user.

We can change the permissions on a file (a directory is just a type of file) using
chmod. Here are some options
Option Meaning
u+rwx Add read, write, and execute permissions for the user
g+rwx The same, for the group
o+rwx The same, for others
o-w Remove write permissions for others

go-rwx Remove all permissions for the group and others
ugo+x Add execute permissions for all users
a+x The same as the previous
700 Set the permissions to -rwx------
655 Set the permissions to -rwxr-xr-x
-R Apply the permissions recursively, when given a directory

The numeric versions set permissions exactly, and use octal to specify the bits
(1=x, 2=w, 4=r) in the order (user, group, other). After writing a lot of scripts,
chmod a+x <file> will become part of your muscle memory.

You can also change the ownership of files, using chown. The syntax is

chown <user>:<group> <file>

When you run things as root, you often have to run this (using sudo) to fix
the file ownership. As with chmod, you can provide -R to change ownership
recursively.

20 CHAPTER 3. FILES

3.4 Wildcards

Many commands that take files or directories accept multiple files. For exam-
ple, you can move files foo and bar to directory baz with

mv foo bar baz/

In this case, if the final argument is a directory, you can move as many files as
you like.

To make this easier, you can use wildcards, which are expanded to all matching
filenames. The common wildcards are * and ?. These behave similarly to
their common regular expression forms, but with an implied “any character.”
That is, the regular expression file.*\.txt would, in the shell, be written
file*.txt The wildcard * matches zero or more of any character, while ?
matches any single character.

When writing scripts, you might find yourself doing the following frequently:

chmod a+x *.sh

3.5 Standard File Descriptors

Programs interact through open files using file descriptors, which are integers.
Every process is assigned three automatically:

0 Standard input (stdin or STDIN)

1 Standard output (stdout or STDOUT)

3.5. STANDARD FILE DESCRIPTORS 21

2 Standard error (stderr or STDERR)

Typically, the first file that a program opens will be assigned file descriptor 3.
A process can only read from standard input, and can only write to standard
output and standard error.

We will look at these again when we discuss how to run programs and pipelin-
ing.

22 CHAPTER 3. FILES

Chapter 4

Shortcuts

4.1 Editing a Line

Many users new to the command line tend to type out their commands, and if
there’s a mistake, they use backspace to erase everything and re-type it. This
is time-consuming, and can introduce other mistakes. Fortunately, the shell
provides a number of keyboard bindings that make this process easier.

The first is to simply note that the left and right arrow keys allow you to move
back and forth through the line, so you can add or delete characters only where
they are needed. There’s a way to skip over entire words, though! If you hold
down the Alt or Option key, the arrows will take you through the line much
faster (unless you have a lot of non-alphanumeric characters).

You can also use a lot of common Emacs key bindings, like Ctrl-A and Ctrl-E
to move to the start or end of a line. Deleting characters and words also uses
Emacs key bindings, like Ctrl-W, Ctrl-D, and Ctrl-K.

23

24 CHAPTER 4. SHORTCUTS

Key Moves the cursor...
Left left one character
Right right one character
Alt-Left left one word
Alt-Right right one word
Ctrl-A to the beginning of the line
Ctrl-E to the end of the line

Key Deletes...
Backspace the previous character
Ctrl-D the current character
Ctrl-W the previous word
Ctrl-K to the end of the line

4.2 Auto-Filling

The bash shell provides you with a couple of different mechanisms to reduce
the amount of typing you have to do (in addition to wildcards). The first is
tab-completion, and the second is a history of prior commands.

Bash defines a variable called PATH, which is a colon-separated list of directo-
ries. This is where it looks for executables that are not preceded by a path (for
example, chmod rather than /bin/chmod). If you start typing a command, and
then hit the tab key, bash will expand this to the full command name, as long
as it’s unique. If it’s not unique, hit tab again, and it will display all of the po-
tential matches. For example, on my machine, if I type ch<TAB>, the terminal
bell rings and no expansion is done. Hitting tab a second time results in

$ ch

chardetect checkcites chflags chktex chpass

chat checkgid chfn chkweb chroot

chcon checklistings chg chmod chsh

checkUpstream checknr chgrp chown

Now, I can type the few characters needed to expand fully. For chmod, this

4.2. AUTO-FILLING 25

would just be adding m<TAB>. For checkgid, this would be adding e<TAB>g<TAB>.

Bash will also provide tab-completion for filenames, and in some cases options
(this is less common). The filename completion behaves similarly to command
completion, but only for files in the currently-specified directory. That is, you
can find all files beginning with l in /etc with ls /etc/l<TAB>. (Note that
this example could also be accomplished with ls /etc/l*.)

If you hit the up arrow, you will notice that the last command you ran appears.
This is because bash maintains a command history. If you exit the shell grace-
fully (by running exit instead of closing the window), it will typically even
save this in a file called ~/.bash_history, though this tends to get overwrit-
ten fairly frequently. This history can save you a lot of time when you have to
run the same command multiple times.

You can modify the command line from the history, which is very helpful when
you have to do essentially the same thing with slightly different options. An-
other useful way to do this is to test what a commandwould look like by preced-
ing it with echo. If you’re expanding variables or using subshell output (we’ll
discuss both of these later), then you can verify that you’re seeing what you ex-
pect. Then you simply hit the up arrow until the command appears again (down
arrow will go in the opposite direction through the history), remove the echo,
and hit <RETURN>. It doesn’t matter where your cursor is in the line when you
hit <RETURN>.

If you know a command is probably in your history, but you don’t know where,
or you know that you’d have to hit the up arrow many times, there’s another
shortcut to help you. Ctrl-R will start a reverse search through the history; start
typing any part of the command, including arguments, and it will find the most
recent matching entry. You can continue to hit Ctrl-R to find older matches.

26 CHAPTER 4. SHORTCUTS

4.3 Aliasing

There will often be fairly simple things that you do often enough you’d rather
not type all of the options each time. It’s also possible that you’ll have a pre-
ferred set of options you always want to provide for a specific command. For
both of these cases, bash allows you do define aliases.

The syntax is simple:

alias ls='ls -FC'

With this defined, any time I type ls, it will automatically add the options -FC,
which decorates file names to indicate things like whether they are directories,
symbolic links, or executables, as well as ensuring a multi-column layout for
the listing.

Another useful alias is:

alias ltr='ls -ltr'

This alias lets me quickly get a long listing (with details), sorted bymodification
time, in reverse order (oldest to newest). When trying to find the recently-
modified files in a directory, this is extremely handy.

These aliases are literal replacements. That is, if I type ls foo, it will be
executed as ls -FC foo, and if I type ls -l foo, it will be executed as ls
-FC -l foo.

Obviously, you don’t want to have to type these alias commands all the time,
so bash lets you put them in a special file ~/.bashrc, which is executed every
time a new shell is created. We’ll look at shell configuration in more detail in
Chapter 6.

Chapter 5

Programs

In this chapter, we’re going to take a deeper look into how to run and manage
processes. We’ll also look at how we can capture or otherwise redirect input
and output.

5.1 Running Programs

We briefly discussed the PATH variable in Section 4.2. We’ll look at variables
more generally Chapter 8. For now, all you need to know is that you can set a
variable with

PATH=some_value

and you can get its value with either of the following:

$PATH

${PATH}

27

28 CHAPTER 5. PROGRAMS

The version with curled braces makes your statements clearer, and we’ll see
how to use this in building more complex statements.

The PATH variable defines a search path for the shell to find executables. The
first matching entry “wins,” since there’s no reason for the shell to keep looking
once it’s found something. That means the order of directories in your path
is very important. Typically, you will install new programs somewhere like
/usr/local/bin, while system programs will be in /usr/bin or /bin.

Here’s an example of a path:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

This shows us that bash will first look for an executable in /usr/local/sbin,
which holds third-party system administration executables. It will then continue
looking until it reaches the last path entry, /bin. If it still hasn’t found an
executable with a matching name, it will fail with command not found. The
directories in the path are separated with a colon, which cannot normally be
used in a file or directory name.

Bash has built-in commands, as well. These are always selected before anything
on the path. If you want a specific version of a program (other than a built-in),
you can always call it with the path to the program included. This will also
override aliases:

$ alias ls='ls -FC'

$ ls

bin@ dev/ home/ lib32@ libx32@ mnt/ proc/ run/ srv/ tmp/ var/

boot/ etc/ lib@ lib64@ media/ opt/ root/ sbin@ sys/ usr/

$ /bin/ls

bin dev home lib32 libx32 mnt proc run srv tmp var

boot etc lib lib64 media opt root sbin sys usr

The current directory is always ., and some people like to add this to their PATH
variable. The advantage of this is that when you start writing scripts, you can

5.1. RUNNING PROGRAMS 29

just call them if they’re in the current directory. There are some potentially
serious security implications for this, though (consider a local program named
ls). If you want to put . in your PATH, you should make it the last entry in the
list. It’s better not to include it, and just call a program my_app in the current
directory as ./my_app.

When a program exits, it returns some value. By convention, successful execu-
tion should exit with the value 0. A non-0 value generally indicates some error
condition, and depends on the specific program. You can view the exit status
of the last program to run with the variable ?, typically with something like

$ echo $?

There are multiple ways to run a program, and which you use will depend on
what you’re trying to do. Consider an executable foo:

Invocation Effect
foo foo is run as a subprocess normally
foo & foo is run in the background, as execution continues
. foo foo is run in the current shell
(foo) a subshell is started, and foo is run as a subprocess of it
`foo` foo is run as a subprocess, and its STDOUT is returned
$(foo) Same as the above

The last two are equivalent, but the $() form is preferable, because it is clearer
and can be nested.

The dot-execution is useful for snippets of bash code which set environment
variables or define functions. Think of it like an “include” statement.

The advantage of running in a subshell is that it doesn’t impact the current shell.
Here’s an example:

30 CHAPTER 5. PROGRAMS

for d in * # "*" expands to the contents of the current directory

do

if [-d $d] # Test that $d is a directory

then

(cd $d; git pull origin master)

fi

done

If we ran in the parent shell, we would have to make this longer:

cwd=$(pwd)

for d in * # "*" expands to the contents of the current directory

do

if [-d $d] # Test that $d is a directory

then

cd $d

git pull origin master

cd $cwd

fi

done

We could use .. instead of $cwd, but then we’d have to worry about cd $d

failing. With a subshell, we don’t need to worry about this at all.

5.2 Processes

5.2.1 Process Information

We can get a list of running processes with the ps command. By default, it only
lists processes “of interest,” which typically means subprocesses of the current
shell. Often, you want to see more than that. There are actually two common
sets of options, one from the BSD family of Posix systems, and the other from
the UNIX family. What does this mean for you? It means the documentation
is frequently confusing. Consult the manpage for ps for details, but here are

5.2. PROCESSES 31

some useful invocations for the UNIX-style options (result descriptions are ap-
proximate in some cases):

Invocation Displays
ps -a all processes attached to a terminal
ps -ae all processes
ps -f more information on selected processes
ps -aef more information on all processes
ps -u root all processes owned by the user root

These can be combined in any order with a single dash.

Another way to view processes is with top. This is a full-terminal program that
updates its display every 5 seconds, with the processes sorted by CPU usage.
It’s possible to change the sorting used, as well, but CPU is often what you’re
most interested in. It will also report on memory usage for each process and
the system as a whole. If all you want is the total CPU load, you can use the
uptime command. The load is the number of effective CPU cores being used
by every process in the system. If all you want is the memory usage, you can
use the free command, on some systems (like Linux).

5.2.2 Background Processes

A single shell can run multiple subprocesses in parallel, as long as at most one
is in the foreground. A foreground process has access to STDIN. A process in
the background does not have access to STDIN, but can still write to STDOUT
and STDERR. You can run a process in the background either by appending
& to the end (as shown above), or by starting it in the foreground, then hitting
Ctrl-Z to pause it, and then running bg. A process in the background can be
brought to the foreground with fg.

With multiple background processes, how do we know which one to bring to
the foreground? For this, we use the jobs command. Consider the following:

32 CHAPTER 5. PROGRAMS

$ sleep 20 &

[1] 292

$ sleep 30 &

[2] 293

$ jobs

[1]- Running sleep 20 &

[2]+ Running sleep 30 &

We have two process running sleep, for different amounts of time. When we
start them, bash gives us a number, [1] and [2]. These are job handles, and can
be used as a shorthand for the process (prepended with a %). The process with
a + in the first column is the one that will be passed by default to a command
like fg. If we want to bring the other process to the foreground, we would run
fg %1.

Sometimes we want to start a process in the background, and then exit the shell.
We might do this if we’ve logged into a remote system, and we want to start a
long-running program. By default, when the shell exits it will terminate all of
the running subprocesses, even if they’re in the background. We can prevent
this by telling the shell not to hang-up on a process by preceding it with the
nohup command. The new process will then ignore the HUP signal. The output
from the process will be written to a file called nohup.out in the directory
from which you started it, assuming you have write permission.

5.2.3 Terminating Processes

When a program is out of control, or if it’s running in the background, you will
probably need to fall back on the kill command to terminate it. This takes
one or more process IDs (PIDs) as arguments, and optionally the signal to use.
SIGTERM is the default (this is what Ctrl-C sends), and is usually what you
want, though sometimes you want SIGKILL (which is sent with Ctrl-\):

5.2. PROCESSES 33

$ kill 1234 # kill PID 1234 with TERM signal

$ kill -9 1234 # kill PID 1234 with KILL signal

Note that the TERM signal can be caught by the process being killed, allowing
it to clean up after itself. The KILL signal cannot be caught, and causes the
process to terminate immediately.

The killall program matches command names, rather than PIDs. It is poten-
tially error-prone, but sometimes very useful.

5.2.4 Setting Priorities

Modern operating systems are almost universallymultiprocessing systems. That
means multiple programs can be running at the same time, often more than the
number of physical processors available on the machine. The kernel has to de-
termine what gets to run when, but we don’t necessarily want everything to be
scheduled equally. For example, the kernel itself should have a higher priority
than anything else, while a process that does some cleanup of unused resources
in the background might only need to have a low priority.

We control process priorities with the nice and renice commands. We use
nice when starting a process to set a priority, which ranges from -20 (highest)
to 19 (lowest). Without this, a process will have priority 0. If we call

$ nice my_program

the resulting process will have a priority of 10 instead. If we want to set the
priority explicitly, we can instead use

34 CHAPTER 5. PROGRAMS

$ nice -n 15 my_program

to set the priority to 15. Note that only the superuser (root on a Posix system,
like Linux or MacOS) can set negative priorities.

If we want to change the priority of a running process, we use the renice com-
mand. The exact behavior of this depends on your specific version of renice,
so you’ll want to consult the manpage. Here are some example usages, for
changing the priority of process 1234:

$ renice 10 1234 # sets the priority of 1234 to 10

$ renice -n 10 1234 # either sets the priority to 10 or increases it by 10

One important thing to note about renice is that you can only run it on pro-
cesses that you own, unless you are running as the superuser.

5.3 Input and Output Redirection

We introduced the standard file descriptors STDIN, STDOUT, and STDERR in
Section 3.5. The normal thing for a program to do is read from STDIN and
write to STDOUT. Many programs will also write to STDERR, but if all you have
is the terminal, it’s hard to tell STDOUT from STDERR. However, the shell still
knows, and lets us treat these differently. Here’s an example. First, try (we’ll
look at grep in Chapter 7):

$ grep bash /etc/*

Now, try this:

5.3. INPUT AND OUTPUT REDIRECTION 35

$ grep bash /etc/* 2>/dev/null

The second form told the shell that STDERR (2) should be redirected to (>) the
special file /dev/null. We could also do:

$ grep bash /etc/* 2>/dev/null >bash_in_etc

You shouldn’t see any output now, but take a look at the new file bash_in_etc,
which will contain the matches. If unspecified, output redirection applies to
STDOUT.

We can also merge STDOUT and STDERR:

$ grep bash /etc/* 2>&1

Here, we’ve specified the redirection target as &1, which means “whatever file
descriptor 1 points to”.

To append, instead of overwriting, we can use >> instead of >.

We can also redirect STDIN, by using <:

$ wc -l <bash_in_etc # This counts the number of lines in the file

In this particular case, wc can take a filename instead of reading from STDIN,
so this is not generally the way we’d accomplish this particular task.

There’s a special form of input redirection, called a HERE document, using <<:

36 CHAPTER 5. PROGRAMS

$ wc <<EOFWC

this

is

a

test

EOFWC

The string EOFWC is arbitrary, but EOF<command> is fairly common. We can
also pass a single string as STDIN with <<<:

$ wc <<<"this is a test"

5.4 Pipelines

The Unix philosophy is that a given tool should do one thing, and if you have to
do multiple things, you should compose different tools. Pipelines are the shell’s
way to do this. In short:

$ foo | bar | baz

takes STDOUT from foo, redirects that to the STDIN of bar, and redirects bar’s
STDOUT to baz’s STDIN.

You should become comfortable with this pattern, because it is one of the keys
to creating powerful scripts. We can also combine with other things we’ve seen:

$ echo "grep produced $(grep bash /etc/* 2>&1 >/dev/null|wc -l) errors"

Chapter 6

Shell Configuration

We took a look at aliases and search paths in Chapter 4. These are things we
want to configure once, rather than having to do them every time we start a new
shell. Bash gives us a couple of ways to do this.

The first way is to run some configuration when a new login is created. This
typically occurs when we first log into a system or open a new terminal. This is
when we want to set things like PATH. We can also run more complex programs,
like ssh-agent. The critical thing to note is that these are things we don’t
want to do every time we create a new shell, which happens more often than
you might realize.

Bash will look for a file in your home directory called .bash_profile. If it
doesn’t find this, it will look for .profile. If this is also not found, it will
execute a system-wide profile, probably /etc/profile. It’s a good idea to
execute the system profile in your user profile, with

. /etc/profile

Note the dot and space before the filename. As we saw in Section 5.1, this will
execute the file in the current shell, rather than creating a new shell.

37

38 CHAPTER 6. SHELL CONFIGURATION

For things we want to run for every shell we create, we put our configuration in
the .bashrc file in our home directory. This is where you set aliases and some
variables like your Java search path (this could also be done in the profile). As
with the profile, there’s a system-wide configuration file, so you should add

. /etc/bashrc

often at the start of your own .bashrc. These configuration files are bash
scripts, so you can technically do anything in them that you’d do in any other
script. See Chapter 9 for more details on this.

There is typically a system-defined path, which youwill obtain from/etc/profile.
Let’s say we have our own directory called ~/bin that we want to add to the
start of our path. We could do this in our .bash_profile with

PATH="~/bin:$PATH"

There’s one other wrinkle we must consider when setting our path. By default,
shell variables are only defined for the shell in which you set them, and aren’t
passed to subprocesses. We can tell the shell that we want to pass these to sub-
processes using the export command. You should always have the following
after you finish defining your PATH variable:

export PATH

You can always re-execute a configuration file with

$. ~/.bash_profile

$. ~/.bashrc

Chapter 7

How to Find Things

Being able to find something specific is extremely useful. That might mean a
particular file, or some text within a file. You might even have more complex
search criteria.

7.1 locate

The locate command finds files by name, including as substrings. It requires
an index database, so it’s not always installed and configured, but it’s very useful
when it is. Let’s say you run a command, either from the command line or in
something like an IDE. You know it created a file called C7B16B6C-DB04-

41C1-83CE-D622BCB93ABA.log, but you have no idea where. You would
then run

$ locate C7B16B6C-DB04-41C1-83CE-D622BCB93ABA.log

If it’s in the database, you’ll see the full path to the file.

39

40 CHAPTER 7. HOW TO FIND THINGS

7.2 grep and ack

One of the most useful commands is grep, to the extent that it has become a
common verb. The basic usage is:

$ grep <pattern> <file>...

The pattern might be a simple string, or it can be a regular expression (the
command is short for “get regular expression”). You can provide multiple files,
or even directories with the -d option. Here are some of the options:

Option Meaning
-E Interpret <pattern> as an extended regular expression
-r Recursively grep directories
-A <n> Include <n> lines of context after a matching line
-B <n> Include <n> lines of context before a matching line
-C <n> Include <n> lines of context before and after a matching line
-H Prepend matching lines with the name of the file
-i Ignore case in matches
-l Only print the names of files with matches
-L Only print the names of files without matches
-n Prepend the matching line number
-q Don’t print matches, just return 0 (match) or -1 (no match)
-v Match lines not including <pattern*>

ack isn’t as commonly installed, but it’s very good for searching directories re-
cursively. The arguments are similar to grep (it expects directories, not regular
files), but you should check the documentation.

$ ack <pattern> [<directory>...]

7.3. FIND 41

7.3 find

The find command recursively searches a directory for files/directories match-
ing a set of criteria, and can optionally perform actions on those files. If locate
isn’t installed, or you need to search by more than just the filename, then find
is a great option. Once you gain some familiarity with it, you will likely use it
more often than you might expect.

The first argument is the directory in which to begin the search. After that, you
specify what you want to find, and what to do with things that you find. find
has a lot of options, far too many to go into detail here. Some of the more useful
ones:

Option Meaning
-name <n> Match files containing <n>
-iname <n> Case-insensitive version of -name
-type <t> Match files of type <t> (f=normal file, d=directory, etc.)
-depth <d> Limit the depth of the search
-size <s> Match files with size matching <s>, like 10, 20k, 32M, etc.
-size -<s> Match files smaller than <s>
-size +<s> Match files larger than <s>
-newer <f> Match files modified more recently than file <f>
-mtime <t> Match files modified within time *t*, default unit days

Also, -<t> or +<t>
-ctime and -atime do same thing for file creation and access

-print Print the name of a matched file (default)
-ls Print ls -l-like lines for matching files
-exec ... Execute a command on matches (see below)
-delete Removes files and directories - USE WITH EXTREME CAUTION

For matches, the order can matter, especially for performance. You want to run
-exec as late in the filtering process as possible, for example, since it runs an
external program for each file.

42 CHAPTER 7. HOW TO FIND THINGS

-exec is very powerful, because it allows you to extend find’s already-considerably
functionality. Here’s an illustrative example:

$ find . -name *.txt -exec grep -H foo {} \;

This will start from the current directory, match all files ending in ”.txt”,
and run grep on them. The string ”{}” is replaced with the name of the cur-
rent match. The -exec command must be terminated with ”\;”, regardless of
whether any other commands are provided. This is essentially the same as:

$ grep --include *.txt -Hr foo .

Chapter 8

Variables

8.1 Basic Variable Usage

You set a variable with

my_var=123

Referencing variables is done with a dollar sign, but there is more than one way
to do this. These are equivalent:

$HOME

${HOME}

Why would we use the longer version? Try the following:

for f in *; do echo $f0; done

43

44 CHAPTER 8. VARIABLES

Now try:

for f in *; do echo ${f}0; done

The braces give us considerable more control, and some extra features, as we’ll
see.

The following table contains many useful shell variables, both interactively and
in scripts.

Variable Contents
$$ Current process (shell) PID
$! PID of last subprocess started in the background
$? Return value of the last completed subprocess
$0 Name with which the shell/script was invoked
$1, $2, ... Positional parameters to the shell/script
$# Number of positional parameters to shell/script
$ Positional parameters, expanded as separate words
$* Positional parameters, expanded as a single word
$HOME The current user’s home directory
$OLDPWD The previous working directory (see cd -)
$PATH The directories searched for commands
$PPID The PID of the shell/script’s parent process
$PWD The current working directory
$RANDOM A random int in the range [0,32767]
$EUID The current effective user numeric ID
$UID The current user numeric ID
$USER The current username

It is possible to set variables for a single command. There are two ways to do
this:

8.2. PARAMETER EXPANSION 45

/usr/bin/env a=foo my_command

a=foo my_command

Both of these set the variable a to the value foo, but only for the environment
seen by my_command. This is used frequently to override default variables
without changing them:

JAVA_HOME=${HOME}/my_java some_java_program

LD_LIBRARY_PATH=${HOME}/build/lib my_c_program

By convention, script-local variables are lowercase, and more global variables
(like HOME) are uppercase.

Subprocesses typically don’t get passed the variables you define. To change
this, you need to export the variable:

export PATH

8.2 Parameter Expansion

See the ”Parameter Expansion” section of the bash manpage for more details
and other expansion options.

46 CHAPTER 8. VARIABLES

Expansion Effect
${#var} The length of var
${var:-def} var, if set, otherwise def
${var:=def} As above, but var will be set to def if not set
${var:off} Substring of var, beginning with character off
${var:o:l} As above, but at most kodel characters
${var/p/s} Expand var, replace pattern p with string s

If s not provided, remove the pattern
and % perform prefix and suffix matches

We can use this in a script along with variable overriding for handling script
inputs symbolically, rather than positionally:

${target:=foo.txt}

grep foobar ${target}

We would call this (assuming it’s called myscript):

$ target=/etc/hosts myscript

8.3 Quoting

How a language handles single- vs double-quotes varies quite a bit. Python
treats them equivalently, while C only allows a single character between single-
quotes. Bash works a bit differently: single-quoted strings do not have param-
eters expanded, while double-quoted strings do. For example, compare:

echo '${HOME}'

echo "${HOME}"

8.3. QUOTING 47

You will most often want double-quotes, but single-quotes are very useful when
preparing input to another program. For example:

find . -name '*.txt'

which is equivalent to

find . -name *.txt

48 CHAPTER 8. VARIABLES

Chapter 9

Scripting

9.1 Running Scripts

Most shells, bash included, treat executable text files specially. Given no other
information, they run them as scripts for the current shell. Do not assume that
file extensions mean anything. At the very least, bash does not care about the
name of your file, it only cares about the content. Naming a file foo.py does
not mean bash will treat it as a python file, for instance.

To run the script correctly, there’s an easy way and a hard way. The hard way
is to call the appropriate interpreter explicitly:

$ bash my_shell_script.sh

$ python my_python_script.py

Note forWindows users: In PowerShell, this way will work correctly for you.
The following “easy way” will not!

The easy way is to use a convention called shebang (short for “hash-bang”).
The shell will look at the first line of an executable ASCII file. If that line

49

50 CHAPTER 9. SCRIPTING

begins with a shebang, the arguments to that provide the program with which
to run the script:

#! /bin/bash

You can even provide options:

#! /bin/bash -x

For python, there’s a better way to call it:

#! /usr/bin/env python

What does this do? We’re not actually invoking python directly. Instead, we
invoke env, which passes the parent environment. In particular, this means it’s
also using the parent shell’s $PATH variable to determine how to find python.
This has a couple of advantages:

• The location of python may vary from installation to installation, but
env’s location is always predictable.

• If you use python virtual environments, this will pick up your virtualenv
python.

As a final note, make sure your scripts are executable! See Section 3.3 for
details, but 99 times out of 100, you will want to run chmod a+x on your script.
git keeps track of file permissions in addition to the contents, so see a reference
on git for information about keeping these in sync with git update-index

and git ls-files.

9.2. WORKING WITH POSITIONAL PARAMETERS 51

9.2 Working with Positional Parameters

Sometimes, $* or $ are good enough:

foo $* # Pass all parameters to this other command

for a in $*; do ... # Loop over the parameters

If the parameters have different meanings, we can do the following:

a=$1

b=$2

We can make this more robust, with defaults:

a=${1:-foo}

b=${2:-bar}

We can also use shift, which pops the first positional parameter:

a=$1

shift

b=$1

shift

or, more compactly:

a=$1; shift

b=$1; shift

The advantage of the $1; shift form is that we can add more positional pa-
rameters without having to keep count. We’ll see other uses later.

52 CHAPTER 9. SCRIPTING

9.3 Mathematical Expressions

Many mathematical operations can be put in $(()). This will only perform
integer math, however. Here’s an example:

total=0

for thing in $*

do

total=$((${total} + ${#thing}))

done

echo ${total}

This will sum the lengths of the positional parameters, and print the result to
STDOUT.

Bash supports a number of mathematical operators:

+ - Addition and subtraction

++ -- Pre- and post-increment and decrement

! Binary and bitwise negation

* / % Multiplication, division, and modulo

** Exponentiation

<< >> Bit shifting

== != < > <= >= Standard comparators

& ˆ | && || Bitwise and logical operators

:? Ternary operator

= *= ... Assignment, including compounds

9.4. CONTROL FLOW 53

Note again that these are all integer operations. For floating-point math, we
have to use other options (such as awk).

9.4 Control Flow

The simplest form of control flow uses boolean operators to combine commands

Combination Execution
foo ; bar Execute foo, then execute bar
foo && bar Execute foo; if successful execute bar
foo || bar Execute foo; if not successful execute bar

The return status

is always the status of the last command executed.

Bash has an if/then/elif/else/fi construction. The minimal version is
if/then/fi, as in:

if $foo

then

echo "foo"

fi

The full form would be:

if $foo

then

echo "foo"

elif $bar

then

echo "bar"

else

echo "baz"

fi

The if statement uses command return codes, so you can put a command in
the test, or use the test command (usually written [):

54 CHAPTER 9. SCRIPTING

grep foo /etc/hosts

have_foo=$?

grep localhost /etc/hosts

have_local=$?

if [0 -eq ${have_foo}]

then

echo "We have foo"

elif [0 -eq ${have_local}]

then

echo "We have localhost"

fi

See the test manpage for details; there are many tests you can perform, and
the manpage is fairly compact.

We can also construct loops in bash, as we’ve already seen briefly. There are
for loops and while loops, and they behave as you’d expect. Both have the
format:

<for or while>

do

...

done

A for statement looks like

for loop_var in <sequence>

The sequence can be something like $*, or $a $b $c, or $(ls /etc). If you
want to iterate over numbers, you can do something like

for loop_var in $(seq 10)

do

echo "foo${loop_var}"

done

9.5. FUNCTIONS 55

The while statement takes a conditional, much like if. We can loop indefi-
nitely with it:

while true

do

...

if $condition

then

break

fi

done

Finally, bash has a case statement:

case ${switch_var} in

foo) echo "foo";;

bar|baz) echo "bar"; echo "baz";;

*) echo "default";;

esac

Let’s combine this for command-line argument parsing:

a="foo"

b="bar"

c=""

while [$# -gt 0]

do

case $1 in

-a) shift; a=$1; shift;;

-b) shift; b=$1; shift;;

*) c="$c $1"; shift;;

esac

done

9.5 Functions

Defining a function is fairly simple:

56 CHAPTER 9. SCRIPTING

function my_func {

local a=$1

echo $a

}

Functions begin with the function keyword, then a name, and then the body
of the function, in curled braces. The local keyword defines a variable in the
function’s scope. If not used, the variable will be defined in the global scope,
and hence visible outside of the function. Positional parameters are redefined
for the function’s scope.

Once defined, the function behaves like any other command:

my_func "hello"

You can define particularly useful functions in your ~/.bashrc, which will be
executed (using .) whenever you start a new shell.

9.6 Utility Programs

9.6.1 true and false

There are two commands, true and false, which are very useful in scripts.
true exits with status 0, and does nothing else. false exits with a non-0 status
(often -1), and does nothing else. These can be used as nops, or to create infinite
loops:

while true

do

...

9.6. UTILITY PROGRAMS 57

done

until false

do

...

done

9.6.2 yes

This program is similar to the file /dev/zero, in that it will keep providing
output as long as you read it. Rather than producing nulls, it produces an infinite
stream of lines containing the character y. This can be useful for scripting with
tools that require confirmation.

9.6.3 seq

This produces a sequence of numbers, optionally with a starting point and in-
crement. Compare the following:

seq 5

seq 1 5

seq 1 2 5

seq 5 1

seq 5 -2 1

See the manpage for other options, including more complex formatting.

This is useful in scripts to provide a loop over indices:

for a in $(seq 0 5)

do

echo $a

done

58 CHAPTER 9. SCRIPTING

9.6.4 cut

This is a workhorse for splitting lines of text.

cut -d, -f2 foo.csv # get column 2 from a comma-separated list

cut -d, -f2,4-7 foo.csv # get columns 2, 4, 5, 6, and 7

ifconfig | grep flags | cut -d< -f2 | cut -d> -f1

9.6.5 awk

cut is somewhat limited, so a more powerful tool is frequently useful. awk has
a full programming language, but you’ll typically only need a few pieces of it.

By default, awk splits onwhitespace, but you can change this with the -F option,
which takes a regex, rather than a single character. A typical invocation would
look like:

awk '{ print $1,$3 }' foo.txt

to print columns 1 and 3 from foo.txt.

You can also do math in awk, which makes it a useful supplement to bash’s
integer math (Section 9.3). For example:

total=$(echo ${total} ${s} | awk '{ print $1 + $2 }')

This allows us to sum potentially floating-point numbers. We could also do this
by assigning values to variables:

9.6. UTILITY PROGRAMS 59

total=$(echo | awk -v a=${total} b=${s} '{print a + b }')

We still have to pass a file to awk, because it’s expecting to operate on a file.
Fortunately, echo is fairly light-weight.

Here’s an example from a script that updates a single column in a CSV, re-sums
the values, and dumps the results. It also strips off a trailing comma, using
another utility called sed (see the manpage).

echo $LINE | awk -v s=${score} -F, '{

$5=s

for (i=3; i<=7; i++) SUM+=$i;

for (i=1; i<=NF; i++){

if(i == 2) $i=SUM

printf "%s,",$i

}

print ""

}' | sed 's/,$//g'

This overwrites one of the input fields in the line

$5=s

The first time we add to the variable SUM, it’s initialized to 0. The printf
command works pretty much the same as in C.

	Introduction
	Notation
	Manual Pages

	File and Directory Structure
	Filesystems
	Moving Through the Filesystem
	Disk Usage

	Files
	Viewing File Contents
	Moving, Copying, and Extracting Pieces of Files
	File Permissions
	Wildcards
	Standard File Descriptors

	Shortcuts
	Editing a Line
	Auto-Filling
	Aliasing

	Programs
	Running Programs
	Processes
	Process Information
	Background Processes
	Terminating Processes
	Setting Priorities

	Input and Output Redirection
	Pipelines

	Shell Configuration
	How to Find Things
	locate
	grep and ack
	find

	Variables
	Basic Variable Usage
	Parameter Expansion
	Quoting

	Scripting
	Running Scripts
	Working with Positional Parameters
	Mathematical Expressions
	Control Flow
	Functions
	Utility Programs
	true and false
	yes
	seq
	cut
	awk

