LPT Codes used with ROAM Splitting Algorithm
CMSC451 Honors Project
Joseph Brosnihan

Mentor: Dave Mount
Fall 2015

Abstract

Simplicial meshes are commonly used to represent regular triangle grids. Of many areas, simplicial
meshes are useful in the area of terrain rendering within computer graphics. In this project, I write
an implementation of Atalay and Mount's LPT code representation of simplices. I implement part of
the ROAM terrain algorithm that splits simplices down to a desired level of detail. I make several
modifications to the LPT code representation. I test these varying representations in several
scenarios.

Introduction

The ROAM algorithm uses simplex decompositions to render a mesh in real time with an
adapting level of detail. The algorithm uses a priority queue of all currently visible triangles, sorted
in order of error (where error is some numerical metric for visual fidelity). The algorithm repeatedly
splits the triangle with the highest error to increase visual fidelity, while merging triangles with the
lowest error to increase performance. ROAM maintains that the visible triangulation is always
compatible, that is, no triangle has an edge bisected by a vertex of another triangle.

compatible compatible not compatible

My original goal of this project was to implement and optimize the triangle splitting and
merging processes of ROAM. When I learned about pointerless triangle representations, my goal
shifted to implementing and optimizing these pointerless representations.

LPT Codes

Atalay and Mount introduce the concept of an LPT code, an encoding that defines a unique
simplex in a simplex decomposition, in their paper Pointerless Implementation of Hierarchical
Simplicial Meshes and Efficient Neighbor Finding in Arbitrary Dimensions. As they define it, an
LPT code consists of three things: the level, permutation, and translation. The level is a number that
defines the depth of the simplex in the simplex decomposition tree. The permutation is a linear
transformation that when applied to the base simplex will give the orientation of the specific
simplex represented by the LPT code. The permutation is represented by a sequence IT={py, ..., pa}.
The i™ column of the matrix of the corresponding linear transformation is given by sign(TI[i]) - ey
where e is the vector whose j" entry is 1 and other entries are 0. The translation, known as the
orthant list, is a list of vectors that describe the path down the simplex decomposition tree to the
specific simplex. The sum of each orthant in the orthant list, where the i orthant in the list is
multiplied by (%), will give the location of the specific simplex.

When working with a simplex decomposition tree, one often needs to be able to traverse the
tree by finding the parent, child, or neighbor of a given simplex. This is the case with the ROAM
algorithm. Atalay and Mount present these operations on LPT codes in their paper. These operations
are not conceptually complicated, but they involve handling many cases. These operations are
covered in detail in their paper.

LPT codes provide a pointerless representation of simplices. These operations that traverse a
simplex decomposition tree can be performed using only the input LPT code without accessing an
external data structure (i.e. without pointers). The output LPT code may be used as an index into a
hash table, for example, to retrieve information associated with the corresponding simplex. In my
case, I used a hash table to look up whether a given simplex was part of the current triangulation.

Implementation

All of my code is available on Github at github.com/JoeBrosnihan/ROAM-Terrain

I wrote my implementation in C++. It builds on Unix. To represent triangles, I use a
struct. [use two alternate structs to represent a triangle LPT code: one in which the
parameters are stored as ints, and another in which the parameters are packed tightly into a binary
string. I explain the differences more below. The LPT codes for all active triangles are each stored
in a vector for quick iteration, and in a hash table (C++ unordered_set) for quick checks to see if a
triangle is active. I implemented ROAM's “force split” algorithm which splits a triangle,
maintaining the compatibility of the triangulation by recursively splitting neighbors if needed.

I set up several tests to compare the performance of when the LPT code parameters are
stored packed into a bit string versus unpacked as ints. My hypothesis was that packing LPT code
parameters would save space, but require more CPU clock cycles to unpack and process compared
to unpacked parameters. Under my hypothesis, a smaller struct would allow more LPT codes to
fit in the CPU cache, leading to an amortized increase in performance from fewer accesses to
slower levels of memory, such as RAM and lower levels of cache.

Here are the packed and non-packed versions of the Iptcode struct, respectively:

struct lptcode { struct lptcode {

//The length of the simplex code //the length of the simplex code

int len p; uint8_t len p;

//1 = |p| mod d, the simplex's level //permutation is 1,2 if bit0 is 0; 2,1 if

int 1; //bit0 is 1

//Permutation stored as {+/-1, +/-2} //first entry of transform is positive iff
// or {+/-2, +/-1} //bitl is 0

int permutation[2]; //second entry ... bit2

//1list of orthants (always +/-1, +/-1) //starting with bit4, every two bits store

int orthant list[MAX ORTH_LIST LEN * 2]; //the sign of the orthant's x and y coords

//respectively. 0 => positive, 1 => neg
uint8 t data[DATA LEN];
}

* len p isthe length of the binary string that represents the simplex. It's length is equal to
the number of times the simplex has been split (i.e. its depth in the decomposition tree).

* MAX ORTH LIST LEN is a predefined integer that determines how many orthants an LPT
code struct must be able to hold in its orthant list. This determines the size of the struct.

e The DATA LEN seen above is a predefined integer for the packed struct only equal to the
number of bytes the struct must store for the permutation and orthant list. DATA LEN is
defined to be the ceiling of (4 + 2 * MAX ORTH LIST LEN) / 8.

The unpacked struct takes up 16+8*MAX ORTH LIST LEN bytes. The packed struct
takesup 4+2*MAX ORTH LIST LEN bits rounded up to the nearest byte.
Note that for even for the small value of MAX ORTH_LIST LEN=10, the packed struct takes 4
bytes while the non-packed struct takes 96 bytes.

Experiment

I constructed a test scenario to split a triangle mesh in the same way that ROAM's split process
would. Every time a triangle is split, its children are checked against a function
needs_split(struct lptcode), which returns true if the child needs to be split further to
reach the test's target level of detail. Triangles that need to be split are put in a queue. The program
repeatedly splits the triangle at the head of the queue until the queue is empty.

There are several parameters for each test:
* Whether the LPT codes are Non-Packed or Packed

* The criteria to split a triangle (i.e. the needs split function)
* The value of MAX ORTH LIST LEN

I created three different needs split functions, each of which splits some subset of triangles
down to a given level of detail. This is a predefined integer, TARGET LOD, which I varied in the
tests. Here are the three types of needs_split functions I used and some examples:

Test Corner — Every triangle touching the upper right corner of the triangulation is split, until the
only triangles touching it have been split TARGET _LOD number of times.

TARGET_LOD =4 TARGET_LOD = 32
Test Wall — Every triangle touching the rightmost edge of the triangulation is split, until the only
triangles touching it have been split TARGET LOD number of times.

TARGET_LOD =4 TARGET_LOD =16
Test Constant — Every triangle is split until all triangles have been split TARGET LOD number of
times.

TARGET_LOD =4 TARGET_LOD =8
Test Circle — Triangles are split to a level of detail based on how close they are to the border of a
unit circle.
Triangles are checked against a function that takes in the x, y coordinates of a triangle's centroid and
outputs an integer k. If the triangle has been split less than k times, it needs to be split further. In this
test, k is a function of r, the distance from (X, y) to the center of the square, where the square is 2
units long along one side. The function k(r) is shown.

TARGET
LOD

Test Corner Results

TARGET_LOD =7

TARGET_LOD =12

MAX ORTH LIST LEN setto a constant value of 32 for these tests.

TARGET_LOD Non-packed time (sec) Packed time (sec)
32 0.000663665 0.000405657

48 0.00104406 0.000403242

56 0.00127275 0.00064073

60 0.00147073 0.000815593

64 0.0015829 0.00093135

MAX ORTH LIST LENSsettoa

constant value of 126 for these tests.

TARGET_LOD

Non-packed time (sec)

Packed time (sec)

32 0.000926171 0.000609156
64 0.00200532 0.00105725
128 0.00584485 0.00319287
192 0.00833885 0.00569061
252 0.0114909 0.00758006
Test Wall Results

MAX ORTH LIST LEN set to a constant value of 16 for these tests.

TARGET_LOD Non-packed time (sec) Packed time (sec)
12 0.00230837 0.00165184

16 0.0162633 0.00911186

20 0.133308 0.0839384

24 2.08587 1.11794

26 11.6616 4.36122

28 53.1481 17.227

MAX ORTH LIST LEN setto a constant value of 32 for these tests.

TARGET_LOD

Non-packed time (sec)

Packed time (sec)

12 0.00242425 0.00152279
16 0.0195514 0.0111852
20 0.175738 0.0856738
24 3.94088 1.1535

26 19.4543 4.50609

28 84.3511 17.8824

Test Constant Results

MAX ORTH LIST LEN setto a constant value of 8 for these tests.

TARGET_LOD Non-packed time (sec) Packed time (sec)
8 0.00404213 0.00210322

10 0.0276484 0.0302133

12 0.289768 0.0401933

14 6.30998 0.301363

15 36.9348 0.980773

16 168.135 3.44733

17 N/A 12.6146

18 N/A 13.1483

MAX ORTH_LIST LEN set to a constant value of 32 for these tests.

TARGET_LOD Non-packed time (sec) Packed time (sec)
8 0.00693997 0.00255633

10 0.0672615 0.0104625

12 1.07764 0.0667466

14 34.9159 0.574979

15 146.21 2.04815

16 593.212 7.70545

17 N/A 45.1937

18 N/A 290.965

Test Circle Results

MAX ORTH LIST LEN set to a constant value of 16 for these tests.

TARGET_LOD Non-packed time (sec) Packed time (sec)
12 0.0206431 0.0101204

14 0.182777 0.0667745

16 1.95789 0.635462

17 11.924 2.13183

18 47.8254 7.43074

19 186.189 26.4802

20 N/A 94.7061

MAX ORTH LIST LEN setto a constant value of 32 for these tests.

TARGET_LOD Non-packed time (sec) Packed time (sec)
12 0.0335484 0.013921

14 0.271488 0.0713894

16 5.49222 0.670409

17 23.4691 2.27119

18 84.1936 7.81761

19 322.863 28.15

20 N/A 105.603
Conclusions

Overall, the packed LPT code structs outperformed the non-packed structs by far in every test case.
This is primarily due to the size of the packed structs. The benefit of small size is apparent when we
examine the effects of padding the structs with extra space for unused orthants.

In the Wall test with TARGET_LOD = 28, Non-packed structs took 58% longer when
MAX_ORTH_LIST_LEN was changed from 16 to 32. Packed structs took only 3.8% longer.
In the Constant test with TARGET_LOD = 16, Non-packed structs took 252% longer when
MAX_ORTH_LIST_LEN was changed from 8 to 32. Packed structs took only 123% longer.

There are several memory related reasons for this speedup. 1) smaller structs means more structs
can fit in fast levels of memory at once, requiring fewer accesses to slower levels of memory on
average over time. 2) LPT codes are well suited to be compact. For example, if the compiler is
smart enough to make this optimization, the bytes containing an LPT code's permutation and
orthant list can be loaded into a single register in the CPU, in which most or all of the orthant list
can be processed, changed, perhaps even compared to another LPT orthant list, without making a
single memory access. This is usually not possible if the orthant list is stored as an array.

I realized when writing the packed LPT code implementation that there weren't as many extra
instructions as I thought. In fact, I found that many if-statements in my non-packed implementation
could be replaced with bit manipulations that were not conditional. This, perhaps, also had some
benefit on performance through avoiding conditional jumps.

References

1. F. B. Atalay and D. M. Mount, Pointerless implementation of hierarchical simplicial meshes
and efficient neighbor finding in arbitrary dimensions, Proc. 13th Int. Meshing Roundable,
2004.

2. M. Duchaineau et al, ROAMing terrain: real-time optimally adapting meshes, Proc. 8th
conference on Visualization, 1997.

3. J. M. Maubach, Local bisection refinement for N-simplicial grids generated by reflection,
SIAM J. Sci. Stat. Comp. 16 (1995) 210-227.

4. J. M. Maubach, The efficient location of neighbors for locally refined n-simplicial grids,
Proc. 5th Int. Meshing Roundable, 1996.

5. T. Chilimbi, M. D. Hill and J. R. Larus, Cache-conscious structure layout, in Programming
Languages Design and Implementation, 1999.

