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Introduction 
I began this project through a desire to simulate smoke and fire through the use of 

programming and graphics rendering.  To do this, I researched the concepts of vector calculus, 

fluid dynamics, and the Navier-Stokes equation.  Upon finding such useful and insightful 

information, the project evolved into a study of how the Navier-Stokes equation was derived and 

how it may be applied in the area of computer graphics. 

The Navier-Stokes equation is named after Claude-Louis Navier and George Gabriel 

Stokes.  This equation provides a mathematical model of the motion of a fluid.  It is an important 

equation in the study of fluid dynamics, and it uses many core aspects to vector calculus.   

 Before explaining the Navier-Stokes equation it is important to cover several aspects of 

computational fluid dynamics.  At the core of this is the notion of a vector field.  A vector field is 

defined as a mapping from each point in 2- or 3-dimensional real space to a vector. Each such 

vector can be thought of as being composed of a directional unit vector and a scalar multiplier. In 

the context of fluid dynamics, the value of a vector field at a point can be used to indicate the 

velocity at that point.  Vector fields are useful in the study of fluid dynamics, since they make it 

possible to discern the approximated path of a fluid at any given point [12].     

Vector Calculus 
 Vector calculus is the branch of mathematics that is involved with differentiation and 

integration over vector fields. In this section we present a brief overview of this area. We begin 

with a very important mathematical operator called del (∇).  Del is defined as the partial 

derivatives of a vector.  Letting i, k, and j denote the unit vectors for the coordinate axes in real 

3-space, the operator is defined [5]: 
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𝛻 =  𝑖
𝑑
𝑑𝑥

+ 𝑗
𝑑
𝑑𝑦

+ 𝑘
𝑑
𝑑𝑧

 . 

 With del defined, we may now look at four key differential operators that are based on 

del.  Note that we will be using uppercase letters to denote vector fields, and lower case letters to 

denote scalar fields. 

 First we have the gradient.  The gradient is defined as the measurement of the rate and 

direction of change in a scalar field.  The gradient maps a scalar field to a vector field.  So, for a 

scalar field f [6]: 

𝑔𝑟𝑎𝑑(𝑓) = ∇(𝑓) . 

 As an example of gradient, consider the scalar field 𝑓 = 𝑥𝑦2 + 𝑧.We take the partial 

derivatives with respect to x, y, and z. 

 𝑑
𝑑𝑥

= 𝑦2           𝑑
𝑑𝑦

= 2𝑥               𝑑
𝑑𝑥

= 1 

 So, the gradient is: 

𝑔𝑟𝑎𝑑(𝑓) = 𝑦2𝑖 + 2𝑥𝑗 + 𝑘 . 

At any point (x,y,z), there is a directional vector that is a part of this vector field.  For example, at 

(1,0,0), the vector would be 2j + k. 

 Next we have curl, which is defined as the measurement of the tendency to rotate about a 

point in a vector field.  The curl maps a vector field to another vector field.  For vector F, we 

define [6]: 

𝑐𝑢𝑟𝑙(𝐹) = ∇  × 𝐹 . 
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 For example, consider vector field 𝐹 = 𝑥𝑖 − 𝑥𝑦𝑗 + 𝑧2𝑘.  We can express the 𝑐𝑢𝑟𝑙(𝐹) 

symbolically as the following determinant:  

i j k 

𝑑
𝑑𝑥

 
𝑑
𝑑𝑦

 
𝑑
𝑑𝑧

 

𝑥 −𝑥𝑦  𝑧2 

Letting F1 = x, F2 = −𝑥𝑦, and F3 = 𝑧2this can be expressed using the cross product 

form as�𝑑𝐹3
𝑑𝑦

− 𝑑𝐹2
𝑑𝑧
� 𝑖 − �𝑑𝐹3

𝑑𝑥
− 𝑑𝐹1

𝑑𝑧
� 𝑗 + �𝑑𝐹2

𝑑𝑥
− 𝑑𝐹1

𝑑𝑦
� 𝑘.   

From this we obtain: 

(0 − 0)𝑖 − (0 − 0)𝑗 + (−𝑦 − 0)𝑘,    that is,    𝑐𝑢𝑟𝑙(𝐹) = −𝑦𝑘. 

 Third, we have divergence.  Divergence is models the magnitude of a source or sink at a 

given point in a vector field.  Divergence maps a vector field to a scalar field.  For a vector filed 

F [6]: 

𝑑𝑖𝑣(𝐹) = ∇ ∙ 𝐹 

At any point in a vector field, divergence is positive if there is an outflow, negative if there is an 

inflow, and zero if there is no convergence or divergence [12].  For example, the upper left 

vector field, F = xi +yj, where 𝑑𝑖𝑣(𝐹) = 1 + 1 = 2, there is an outflow, which makes sense as 

the divergence is positive.  If we now look at the bottom left vector field, F = yi +xj, where 

𝑑𝑖𝑣(𝐹) = 0 + 0, there is neither outflow or inflow, which again makes sense due to the 

divergence being 0.  
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[13] 

Figure 1. 

 As an example, consider once again 𝐹 = 𝑥𝑖 − 𝑥𝑦𝑗 + 𝑧2𝑘. 

 ∇  ∙ 𝐹 = 𝑑𝑓1
𝑑𝑥

+ 𝑑𝐹2
𝑑𝑦

+ 𝑑𝐹3
𝑑𝑧

= 𝑖 − 𝑥𝑗 + 2𝑧𝑘. 

And finally, we have the Laplacian, represented as ∆.  The Laplacian is defined as the 

composition of the divergence and gradient operations.  This maps a scalar field onto another 

scalar field.  The Laplacian of f is defined as [6]: 

∆𝑓 =  ∇2𝑓 =  ∇ ∙ ∇𝑓   

 For example, consider field 𝑓 = 𝑥𝑦2 + 𝑧3 

 ∇2𝑓 = 𝑑2𝑓
𝑑𝑥2

+ 𝑑2𝑓
𝑑𝑦2

+ 𝑑2𝑓
𝑑𝑧2

= 𝑑
𝑑𝑥

(𝑦2 + 0)  + 𝑑
𝑑𝑦

(2𝑥𝑦 + 0) + 𝑑
𝑑𝑧

(0 + 3𝑧2) = 2𝑥 + 6𝑧 
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The Navier-Stokes Equation 
Let us now consider the Navier-Stokes equation, what it means, and how it can be used to 

simulate something physical phenomena like smoke and fire.  As observed in [1], the Navier-

Stokes equation can be viewed as an application of Newton’s second law, F = ma, which states 

that force is the product of the mass of an object times its acceleration. (Note, we will now be 

using f to represent forces, not scalar or vector fields.)  In this equivalent equation, we see the 

use of density and shear stress.  Density is a measurement of an objects mass per unit volume, 

while shear stress is defined as the component of stress coplanar with a material cross section, 

where the force vector component runs parallel to the cross section.  Consider [1]: 

𝜌 �
𝑑𝑢
𝑑𝑡

+ 𝑢 ∙ ∇𝑢� =  ∇ ∙ 𝜎 + 𝑓 

where 𝜌 denotes the density of the fluid and is equivalent to mass, 𝑑𝑢
𝑑𝑡

+ 𝑢 ∙ ∇𝑢 is the acceleration 

and u is velocity, and ∇ ∙ 𝜎 + 𝑓 is the total force, with ∇ ∙ 𝜎 being the shear stress and f being all 

other forces.  We may also write this as 

   

𝜌 �
𝑑𝑢
𝑑𝑡

+ 𝑢.∇𝑢� =  −∇𝑝 +  µ∇2𝑢 + 𝑓    [1] 

Where 𝜌 is pressure and µ is dynamic viscosity.  Viscosity is defined as the measure of the 

resistance of a fluid which is being deformed by the shear stress.  Finally, by dividing out 𝜌 and 

subtracting 𝑢 ∙ ∇𝑢, we obtain the traditional form of the Navier-Stokes equation [10]: 

𝑑𝑢
𝑑𝑡

=  −(𝑢 ∙ ∇) ∙ 𝑢 −
1
𝜌
∇𝑝 +  𝛾∇2𝑢 + 𝑓              
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 Notice that Navier-Stokes explicitly models changes in the directional velocity using four 

components. 

• The first of these is −(𝑢 ∙ ∇) ∙ 𝑢, which is the divergence on a velocity, or in simpler 

terms, it is how the divergence affects the velocity.  One image that may help explain this 

is that of a river.  When the river converges, the narrowing acts like a funnel, and the 

overall velocity of the flow increases (see Figure 2).  Conversely, if the river diverges, the 

particles spread out, and the overall speed of the flow decreases (see Figure 3).     

[3] 

Figure 2. 

[7] 

Figure 3. 
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• Second, there is − 1
𝜌
∇𝑝 .  This may be thought of as how the particles move as pressure 

changes, specifically, the tendency to move away from areas of higher pressure.  

Consider a flock of birds flying together, and imagine a hawk attacking them.  Think of 

the hawk as a source of “pressure” being applied to the “fluid” of birds.  Those birds 

would want to move away from an area of high pressure (see Figure 4).  If there is a 

dense group, it will be harder for all of them to get away.  So, the less dense a group, the 

more of the units that can move rapidly when pressure is exerted.   

[11] 

Figure 4. 

We may also look at this from the perspective of placing pressure on a polymer versus a 

solid.  On a polymer, which is less dense than a solid, the pressure forces the material to 

spread out (see Figure 5).   
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[8] 

Figure 5. 

Now, for the solid, the material stays together (see Figure 6). 

[2] 

Figure 6. 

• Next we consider the term  𝛾∇2𝑢 .   The two key parts are viscosity (𝛾) and Laplacian 

(∇2).  It may be a little hard to make sense of this part, but think of it as the difference 

between what a particle does and what its neighbors do.  Think of a high viscous 

substance, such as syrup.  The motion of a particle in a pool of thick syrup will tend to 

induce nearby particles to move (see Figure 7).  In contrast, in a less viscous fluid, such 

as water, the motion of a particle induces a lower effect on its neighbors (see Figure 8).   
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[9] 

Figure 7. 

[4] 

Figure 8. 

• And last we have f, which again, is any other forces acting on the substance. 

Application 
An application of the Navier-Stokes equation may be found in Joe Stam’s paper, Stable 

Fluids, which proposes a model that can produce complex fluid like flows [10].  It begins by 

defining a two-dimensional or three-dimensional grid using the dimensions origin O[NDIM] and 

length L[NDIM] of each side of the grid, and the number of cells in each coordinate N[NDIM], 

with the size of each voxel being D[i] = L[i]/N[i].  Next, two cell-centered grids 

U0[NDIM] and U1[NDIM] are created, where at each step of the algorithm, one grid represents 
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the result of the previous grid, with the new solution stored in the second grid, after which the 

grids are swapped.  Grids S0 and S1 are created to hold scalar fields corresponding to 

substances transported by the flow.  The variable dt represents the speed of interactivity.  

Lastly, the variable visc is the viscosity, kS is the diffusion rate, and aS is the dissipation 

rate.  The forces that set the fluid into motion are given in the array F[NDIM], along with an 

array Ssource for the scalar field. 

 In the simulator, there are two key steps, Vstep and Sstep.  Vstep, a velocity solver, 

takes grids U0 and U1, visc, F (the forces) and dt.  As described in the paper, forces are 

added to the field, the field is advected by itself, the field diffuses due to viscous friction within 

the fluid, and in the final step the velocity is forced to conserve mass [10].   

 Sstep, a scalar solver, takes the scalar grids S0 and S1, diffusion constant kS, 

dissipation constant aS, a grid U1, a source variable Ssource, and dt.  It has four steps: 

adding Ssource, transporting the particles in field U, diffusing the field, and dissipating the 

field.  The aforementioned transport is used to resolve the non-linearity of the Navier-Stokes 

equations, by tracing a path back starting at X (which is, given Origin O, cell (i, j, k), and size D, 

𝑋 = 𝑂 + (𝑖 + 0.5, 𝑗 +  0.5,𝑘 + 0.5) ∗ 𝐷) through the field U over time –dt.  The function 

LinInterp is then called to linearly interpolate the value of the scalar field S at location X0. 

 
 In the end, this allows for the movement of the fluid particles in the grid, allowing for 

complex animations, such as fire and smoke, to occur.  Hopefully, this now gives a better 

understanding to how the Navier-Stokes equation works. 
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[10] 

Figure 9 – Smoke simulated using the Navier-Stokes application. 

[10] 

Figure 10 – Fire simulated using the Navier-Stokes application. 
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