
Lessons learned from 25 years of process improvement:
The Rise and Fall of the

NASA Software Engineering Laboratory

Victor R. Basi l i *÷, F rank E. McGar ry ' , Rose Pajerski* , Marv in V. Ze lkowi t z *÷
* Fraunhofer Center for Experimental Software Engineering, Maryland, College Park, Maryland

+ Dept. Computer Science & Inst. for Advanced Computer Studies, University of Maryland, College Park,
Maryland

. Computer Sciences Corporation, Lanham, Maryland
basili @ cs.umd .edu, fmcgarry @ csc.com, pajerski @ fc-md.umd.edu, marv@ zelkowitz.org

Abstract

For 25 years the NASA/GSFC Software Engineering Laboratory
(SEL) has been a major resource in software process
improvement activities. But due to a changing climate at NASA,
agency reorganization, and budget cuts, the SEL has lost much
of its impact. In this paper we describe the history of the SEL
and give some lessons learned on what we did right, what we did
wrong, and what others can learn from our experiences. We
briefly describe the research that was conducted by the SEL,
describe how we evolved our understanding of software process
improvement, and provide a set of lessons learned and
hypotheses that should enable future groups to learn from and
improve on our quarter century of experiences.

1. Introduction

If one thinks of the Software Engineering Laboratory (SEL), the
joint activity of NASA Goddard Space Flight Center (GSFC),
the University of Maryland, and Computer Sciences
Corporation, one may think of a well-known software
development environment at the forefront of software process
improvement activities and the first recipient of the IEEE-SEI
Software Process Achievement Award in 1994. But all that is in
the past. The SEL as we knew it is gone. In this paper we present
a history of the 25-year lifetime of the SEL along with our
lessons learned on what was done correctly and what was done
incorrectly as our legacy to future software process improvement
activities.

We present this overview from an historical perspective. In
Section 2 we give an overview of the SEL from its inception in
1976 until today and describe the impact that it had. We briefly
summarize the changes over this period in our understanding of
software process improvement. The SEL went through three
distinct phases, where each phase changed our view of process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the flail citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1CSE'02, May 19-25, 2002, Orlando, Florida, USA.
Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

improvement from an early naive view that was data-centfic to a
more mature view that addresses the needs of the organization as
a driver for appropriate improvement activities.

In Sections 3 through 5 we present a discussion of each phase of
SEL evolution: from its inception in 1976 through the early
1980s, from the mid-1980s until the mid-1990s, and then from
1995 until today. We describe each phase from the points of
view of the activities carried out, the management of the SEL,
funding issues, and research conducted. We offer a series of
lessons learned from our quarter-century of experiences as well
as a concluding series of points that we believe reflect some of
the issues that future improvement groups need to address.

2. SEL Overview

In April of 1976 personnel from NASA/GSFC began discussions
with faculty at the University of Maryland for a research
program in software engineering. These discussions resulted in a
University of Maryland grant in August 1976 between GSFC's
Systems Development Section (the precursor to the Flight
Dynamics Division) and the University of Maryland's (UMD)
Computer Science Department.

The original goals of the SEL were "to analyze the software
development process and the software produced in order to
understand the development process, the software product itself,
the effect of various ' improvements' on the process with respect
to the methodology, and to develop quantitative measures that
correlate well with intuitive notions of good software"
[Basili77]. Thus the SEL's original objectives were to promote
an understanding of
• the underlying principles involved in software and the

development process,
• the factors that affect the development of software and their

interrelationships,
• the characteristics of classes of problems and products:

types of problems encountered and errors made in
developing a particular class of products, whether or not a
particular methodology helps in exposing or minimizing the
number or effect of a class of errors, what the relationship
is between methodology and management control.

69

PACKAGING

~ S Rocommended ~p~o~hes I
I Tralning material I

Cleanroom process model
I ~ - 1 1 -a°s°,s man°al I

/ I terate / Man~er's handbook I
/ " I P'°~'~me"s hand.co. I

/ ASSESSING

/ ~ I compare test techniques Evaluate O0
/ / 16°als 4uesti°ns- Metrics m°de' I I Evaluate c'eanr°°m I
I I I ~sess desi~ncrite"a
.I / Evaluate~a I I Domalnanal.,s I
V t' IQuality Improvement Paradigm

i Evalu~tocost ~d.so°r. mode,s I I~.pe,ence ~tory mode, I
UNDERSTANDING

Fpro~h to dataco,,oot,on] ~ I,n,t,al o,eanroom study I
I Initial Ada-FORTRAN study I I Reuse analysis I

I E.o~ ~d ch~ge profiles I I Environments

I ,n,t,al oo study I I Doo'gnmo~u--moots I
I Relationship among development measures I

peso.roe~de.o.p.ofi,es I I~ubiect,vo measures I I Malntonance ch~te,i=ation

1976-1980 1980-1985

2.1 Research focus

From the beginning, the basic methodology of the SEL was to
experiment by observing projects under development at NASA
and collecting relevant data to be able to address the above
objectives.

1985-1990 1990-1995

Figure 1. Some SEL studies

Group (ESEG). Many studies were funded by many
organizations (e.g., government grants from Air Force Office of
Scientific Research and National Science Foundation, and
industrial sponsors such as IBM, and Burroughs Corporation,
among others). Often these pure research studies were conducted
as experiments using students at the University. If the
experiment was successful, a more extensive experiment or case
study was built around a SEL activity at NASA.

By viewing every project as a research activity, the research staff
(principally from the University) was able to work with
development personnel to improve their procedures. While a
controlled experiment is desirable in order to understand the
different impact from alternative models of development, the
costs of replication are prohibitive. For this reason, the basic
model was the case study.

In this model, the standard NASA approach was used to develop
a project, with the research staff proposing minor modifications
to that process. By running repeated case studies, each differing
slightly, a large database of related projects were collected. Such
projects are known as in vivo multi-project experiments since
the impact on live projects that will be used on NASA missions
is being studied.

From the University's perspective the SEL was not viewed as an
isolated research activity, but instead was the center of an
activity called the Experimental Software Engineering Research

For some technologies that can be isolated in the laboratory, the
University provided a good testbed. Various analytic strategies
(e.g., structural testing, functional testing, Cleauroom,
perspective-based reading) were first isolated and tested using
university students. When these techniques proved effective in
the laboratory, small projects at NASA were the next testbed.
Gradually such processes were incorporated into the NASA
environment and became part of the general software
development process. Both types of testbeds are needed to test
out ideas in the small, and then transition them into industrial
practices.

2.2 Impact of the SEL

The many research accomplishments of the SEL have been
reported elsewhere. We only briefly summarize them here. The
SEL has been at the forefront in software process improvement

70

research. Some of the studies undertaken by the SEL are given
in Figure 1. The SEL has contributed to knowledge of
measurement, defect detection, IV&V, Ada, object-oriented
design, COTS (Commercial off the shelf) software, as well as
developing experimental methods for performing empirical
software engineering research.

3. 1976-1983: Emphasis on data collection

Early SEL activities centered on data collection as a means to
extract information from ongoing projects. The SEL personnel
roster in early 1977 listed ten names: four from GSFC and six
from UMD, none of whom would be fulltime on SEL activities.
Initially, twelve ongoing development projects were to be
monitored, measured, and analyzed to begin the work of
understanding process and product within this one GSFC
development environment. Seven data collection forms were
designed to provide data on the projects' software characteristics
(overall and at a component level), changes and errors dunng all
phases of development, and effort and computer resources used.
The data was collected at GSFC from NASA developers and the
main development contractor, Computer Sciences Corporation
(CSC). The data was then manually reviewed at GSFC before
being sent to UMD for entry into the project measures database
using a UNIX-based Ingres system.

From 1976 through 1978, SEL activities focused on validating,
and analyzing the 2000 forms collected from project personnel
in order to support experiments in the form of
• screening experiments (understand what's going on now) -

baselining current GSFC projects,
• semi-controlled experiments comparing different

methodologies on different related projects,
• controlled experiments - replicating the same project using

different methods at GSFC and UMD.

The naive simplicity in which data was collected broke down by
1978 and a more rigorous set of processes were instituted. This
could not be a part-time activity by faculty using undergraduate
employees. Lesson 1: Data collection requires a rigorous
process and professional staff. In addition, we had to
compromise on the amount of data we wanted versus the amount
of data that realistically could be collected. Lesson 2: You must
compromise in asking for only as much information as is
feasible to obtain. Forms were shortened to allow for more
complete collection.

The data collection process for the 20 projects then under study
became more rigorous with this 5-step approach:
1. Programmers and managers completed forms
2. Forms initially verified at CSC
3. Forms encoded for entry at GSFC
4. Encoded data checked by validation program at GSFC
5. Encoded data revalidated and entered into database at

UMD. (After several years, CSC took over total
management of the database.)

To obtain contractor cooperation, a 10% overhead cost to
projects was allocated for data collection and processing. But
this was rarely needed. These costs initially were about 5 % and
over time dropped to 1% to 2 % of development costs. However,

with the analysis function of the SEL added in, total costs
remained about 10%. This included experimental analysis,
measurement, and report generation.

3.1 Management

The SEL began as a relatively simple grant between two
university faculty members and the Systems Development
Section of GSFC. However the complexity of data collection
and entry soon overwhelmed the university.

In 1978, the SEL partnership formally expanded to include CSC,
the prime flight dynamics application development contractor.
Since that time the SEL has always been a partnership of these 3
organizations: NASA/GSFC, UMD, and CSC.

We quickly learned that success required the cooperation of all
three partners:
• NASA was needed to provide the management structure to

see that the appropriate spacecraft software was developed
and to ensure that the necessary data was collected. NASA
provided the basic questions (i.e., the areas that needed
improvement) that drove SEL research.

• The University was needed to oversee the research
questions under study, provide research hypotheses to test,
and analyze the data.

• CSC, the support contractor, was brought into the process
to help with two major activities: process conformance and
data collection.

Many of the day-to-day activities of the SEL involved the data
capture activities of the developers. Getting their support was an
important early step. At first there was considerable reluctance
to cooperate:
• There was fear that the data collected would be used for

personnel evaluation. We constantly assured the staff that
this was not so.

• There was also a fear that data collection would cost too
much. For example, when CSC initially stated that data
collection would substantially increase the cost of software
production, NASA's reply was that they would cover the
cost of measurement and process improvement. CSC was
told to take whatever time was necessary to process the
forms. In the end the additional cost was only a couple of
percent and we believe well justified for the results
obtained.

Dunng the early days in the late 1970s we ran many workshops
training the staff to fill out the forms in a reasonably consistent
manner. Because of staff turnover, this problem disappeared in
several years. Later hires filled out the forms from day one and
assumed it was part of their normal activities. However, there
was a tendency to grow complacent and not be as thorough in
training on data collection. Lesson 3: Staff training in data
collection is a never-ending vigil.

In order to keep staff interest, there was a need to provide
feedback to project managers. At first the complete cycle took
several months from filling out forms, to data processing, to
analysis. We were constantly working on methods to provide
information back to project managers in a timely manner. We

71

finally developed the SEL library as a mechanism for providing
a continuing series of reports on our activities. Also, when there
was a critical time problem on some project, much like other
organizations, data collection was suspended while the staff
worked on other crises. Lesson 4: As important as data
collection is, it still takes second place to deadlines. The data we
collected was useful, but not always complete. Accounting for
missing and incomplete data had to become part of our data
collection and improvement process.

3.2 Research Funding

The SEL began as a one-year NASA grant (NSG5-123) to the
University of Maryland for $50,000. This was extended to
become the longest running grant at GSFC, ending in 1996 when
new accounting procedures forced its replacement with a new
grant. In 1976, $25,000 covered a faculty summer salary and a
graduate student for a year (plus university overhead); at today's
rates, this would cost about $90,000. Rates for CSC technical
staff averaged $50,000 during the initial years and have almost
tripled over the 25-year period.

Figure 2 shows the distribution of approximately $5.7M funding
for the UMD over 25 years in both annual allocations and
constant 1976-dollars. Beginning at $50K annually, the effective
rate (inflation adjusted) was never more than 3 to 4 times that
amount.

Several times we were asked by other researchers how they
could share in the SEL's millions of research dollars. The
impression of large annual grants was generated by our ability to
capitalize on other funded research activities. However, funding
for the University's share of SEL activities rarely exceeded
$300K per year.

Annual funding

400000 i i i

:.,"- ,,li_li illll o i l
. ' i

~•Annual totals •constant 1976 dollars

Figure 2. UMD Funding

3.3 Research

From the beginning the SEL was envisioned as a research
organization, with research on process improvement being a
major activity. It is just about impossible to count the number of
papers that have been written by SEL personnel, but one

measure is the number of papers that have appeared in the
annual Software Engineering Workshops or have been cited in
the set of 17 volumes of collected papers that appeared between
1981 and 2000.

A total of 265 papers and reports have been written. Of these, 92
presentations have been given at the Software Engineering
Workshops from 1976 through 2000, and 38 were technical
reports, most of which later appeared as conference and journal
papers elsewhere. Figure 3 shows the distribution of papers over
the lifetime of the SEL.

I I S E L Workshop
25 [: papers

• Technical reports

15 i I • Book chapters

5 i BJourna art c e s

~o o~ ~ m oo '¢ ~ Q I • C o n f e r e n c e s
03

03 03 03 O~ O~ 03 03 O~ 0

. ¢q i •Workshop s

Figure 3. Papers produced by SEL personnel

As expected, there were few research results during the first few
years. Most of the early activities centered on learning about
data collection and developing our model of how to collect and
process data. The first major paper was written in 1978 for the
3 ~d International Conference on Software Engineering, which
was on resource estimation models using two early ground
support software systems [Basil•78]. From the mid-1980s
onward, the SEL produced between 10 and 20 papers annually.
The drop in the graph for 2000 is due a decrease in research
findings as SEL activities have declined.

Projects in SB.. Database

140

100 i

6 0 i

4 0 +

2 0

0 " -

i • Total number of projects • New projects !

Figure 4. Growth of SEL database

Early research activities centered on learning how to collect data
and run empirical experiments in the NASA environment:

72

Data collection: The initial focus of our research was on data
collection processing. This was a much more complex process
than we first imagined. The process evolved from the University
processing the data collection forms, to CSC processing the
forms and the University entering the data into the database, to
CSC taking over the entire data processing activity. The growth
of projects in the database are summarized by Figure 4.

Experimentation: Once we had data collection under control,
our initial investigations focused on resource estimation and
defect reduction techniques. The early work centered on trying
to understand whether the data we were collecting fitted the
models being proposed in the literature. We took ideas proposed
by others (e.g., resource models such as the Rayleigh curve, and
systems like SLIM and Price-S; testing models such as structural
and functional testing) and investigated them in the SEL setting.

3.4 Lessons learned

Dunng this period, lasting from 1976 until 1983, the SEL was
concerned with learning about its environment. Our goals during
these early years were to answer the following:
1. How do you conduct an experiment and learn from the

efforts of building production-quality software?
2. How can you characterize the process being used to

develop a software product?
3. How can you operate an organization like the SEL?
4. What does it cost to collect the information needed as you

run an experiment?

Our initial list of observations in selecting the measures and
collecting the data were:
• There was a 10% overhead to projects for data collection

and analysis of the data by the SEL.
• No Hawthorne effect had been observed in the projects

being studied. We feared that programmers under study
would behave differently. However after several years, data
collection became just one of the normal development
activities, so this aspect of the work was no longer of
concern.

• The SEL needed to provide feedback to projects quickly in
order to keep developer interest in the activity.

• Subjective data was important in understanding the impact
of a methodology.

From our early studies we were able to build models of the
environment and develop profiles of the organization. These
baselines and models provided the historical perspective that we
needed to assess the impact of our experiments. Lesson 5:
Establishing a baseline of an organization's products, processes,
and goals is critical to any improvement program. We always
had problems in obtaining accurate data from the developers,
which led to the following lesson: Lesson 6: The accuracy of the
measurement data will always be suspect, but you have to learn
to live with it and understand its limitations. Similarly,
immediate feedback to developers of the collected data is not
possible, so you must make allowances for this need. Lesson 7:
There will always be tension between the need to rapidly feed
back information to developers and the need to devote sufficient
time to do an analysis o f the collected data.

Understanding how to use measurement developed into the Goal
Question Metric (GQM) method in the late 1970s [Basili94a]
and early 1980s. This process converted the data collection
process from a random assortment of data objects into a tuned
set of objects needed to address a stated goal.

4. 1984-1994: A Learning organization

By the early 1980s, we believed we understood how to measure
a development environment, and our activities began to center
on measuring the impact of changes by applying specific
technologies (e.g., Ada, IV&V). However, we were drowning in
data. We needed a method to decide what data was needed and
how to collect it. Many experiments were run under an
increasingly formal model of experimentation.

By the early 1980s the Quality Improvement Paradigm (QIP)
was developed as a six-step method for applying the scientific
method as a way to improve on the stated goals identified by the
GQM process. By the late 1980s, systematically saving and
reusing experience from previous projects became known as the
Experience Factory approach (EF) [Basili94b]. Taken together,
these three concepts (GQM, QIP, EF) provided a unifying
framework for the SEL's experimental approach to software
process improvement for future activities.

This unifying framework caused a rethinking in the long-range
approach toward experimental research in the SEL. While the
original concept given earlier centered on screening experiments,
semi-controlled and then controlled experiments, the SEL
adopted an abbreviated version of the QIP to represent its
process improvement approach (as given in Figure 1 earlier).
Our earlier emphasis on data collection and process
characterization continued through the 1980s, but the emphasis
on new activities focused on assessing specific solutions to
certain technology problems and packaging solutions to them.

The 1980s can best be described as the period when we
developed the concepts of how to build learning organizations.
This evolved into the Experience Factory model. The three
process improvement steps of the 6-step QIP describe the
activities of characterizing, assessing, and packaging new
technologies:

1. Characterization studies to understand the basic environment
by collecting baseline data on an organization. Resource
estimation, scheduling, defect occurrences, lines of code and
other size measures were the early emphasis on our research.
This was used to create baselines upon which we could study the
impact of new technologies.

2. Later we moved into assessing the impact of various
technologies. This involves goal generation, process selection,
process execution, and analysis of the results, with a comparison
to the earlier characterization studies. By the early 1980s we
started to look at other technologies in order to see their impact
within the NASA environment. The Department of Defense was
proposing independent verification and validation (IV&V) and
the Ada language as improvements to development. Both of
these were investigated, as were Cleanroom and object-oriented
techniques (OOT) and other technologies.

73

3. By the late 1980s, with the advent of the Experience Factory,
we started to package technologies into useful chunks. For those
analysis studies which demonstrated an improvement in
development characteristics, guidelines, handbooks, training
materials, or tool support were developed. Over time, a
Measurement Guidebook [SEL94] was added. This Guide along
with updated versions of the Manager's Handbook [SEL84], and
the Recommended Approach [SEL81] became the printed
version of our experience base and were widely distributed.
Object oriented activities became encapsulated into the General
Object Oriented Design document [SEL86]. The SEL had an
active report publication series during this period.

So, the modus operandi for the SEL became that a process was
adopted only after being applied on one or more pilot projects,
shown effective in the environment, and evolved and packaged
for use.

Major changes were being realized in flight dynamics software
development from the mid-1980s through the mid-1990s.
Functionality of the resulting systems increased 5-fold between
1976 and 1992. Table 1 briefly summarizes the SEL's
accomplishments in several key product measures.

Table 1. Impact of SEL research
Attribute Change:

1987-1991
Decreased development 75 %
defect rates

Reduced cost 55 %
Improved reuse 300%

Change:
1991-1995

37%

42%
8%

The year 1994 was a banner year for the SEL. As a result of the
baseline results, backed up by raw data on over 120 projects, and
hundreds of papers, the SEL competed for and won the first
IEEE Computer Society Award for Software Process
Achievement. NASA and GSFC awards for the SEL partners
followed [Basili95].

Outreach
Outreach to the NASA community and elsewhere was extremely
important. In 1984 we reported that the use of leading edge
programming practices had increased productivity by 15%. All
of this early knowledge was packaged into two core documents:
the Recommended Approach to Software Development [SEL81]
and the Manager's Handbook [SEL84], which have been revised
several times since then. In contrast to other such documents,
these were concise manuals, experience-based and routinely
used. Since the head of the software development organization
was also the head of the SEL, it was possible to enforce the use
of SEL methods and support experimentation while ensuring
that the research done had practical application. Lesson 8:
Having a shared commitment over research and development is
vital f o r success. This was crucial during the early years in
making the SEL part of the development culture. Its lack in the
late 1990s was instrumental in the eventual failure of the SEL in
securing future projects to study.

Providing an outreach function to the community, an early
activity was the Software Engineering Workshop, the first
organized with 28 participants in late August 1976 to understand

the current state of software engineering technology I. The SEL
workshops took on a larger role during the 1980s as attendance
grew steadily at these one day workshops The Workshops were
important for external outreach, external analysis of results,
learning about new trends and techniques, and as an incentive to
the SEL staff that at the end of each year, results were to be
reported and impacts assessed in a public forum.

The SEL celebrated its 15 th anniversary in 1990 with its first 2-
day workshop attended by over 500 researchers and
practitioners. In a summation of SEL costs from 1975 through
1990, it was reported (in 1990 dollars) that the SEL had spent:
• $2.5M to UMD for research support
• $5.5M to CSC for research and technology transfer (this

included overhead to development projects)
• $6.0M to CSC and others for data collection, validation,

database support
• $130M for Flight Dynamics operational software

(i.e., SEL costs were about 10% of development costs)

The 17 th SEW in 1992 produced record attendance with over 600
people registering - a live broadcast had to be setup in another
auditorium as the main NASA/GSFC auditorium seating was
limited to 400 people. The next few workshops would top out at
450-500 registrants.

4.1 Management

By the mid-1980s, the SEL management structure evolved to
include three components, all of which were crucial for success
of the enterprise. This structure directed SEL activities for
almost 20 years:

NASA management: NASA had operational control of the
SEL. By the early t980s we realized that this proved to be one
of the most important aspects of the organization. The head of
Flight Dynamics Division had a dual responsibility - manage the
development of operational flight dynamics software that would
be required for upcoming space missions, and manage the SEL
and ensure that appropriate data was collected. This dual role
ensured that the contractor adhered to the data collection
schedule.

This is one of the ways that the SEL differed significantly from
other process improvement organizations. Process improvement
is often the role of the chief engineer or CIO office. In such
organizations, the chief engineer can tell the staff to collect data,
but such pronouncements are mostly ignored. In a study of 20
US and Japanese industrial organizations in the early 1980s
[Zelkowitz84], we found that to be the case. It was also the
model followed by NASA after the 1997 reorganization when
project managers were empowered to make their own decisions.

CSC as support contractor: CSC was the primary developer of
NASA flight dynamics software. They also saw an opportunity
to enhance their processes by supporting studies paid for by

1 There were few software engineering meetings at that time.
The first software engineering conference was held in
Washington in September 1975 and the second not until October
1976.

74

NASA. By being part of the SEL structure, CSC was kept aware
of the goals for the SEL and the rationale for making certain
decisions. This provided for a closer cooperation between the
software developers and the SEL and allowed data collection to
proceed in a timely manner. In addition, since CSC was
responsible for building the database, they felt more comfortable
in the way that the data was used. CSC also was involved in
packaging and documenting the processes that developed in the
SEL and transitioning new processes into everyday use.

University of Maryland as researcher: The University became
the focus of the research activities for the SEL. New technology
was often tested at the University, pilot studies were then carried
out at NASA, and the University worked with CSC to transition
the technology into practice at NASA [Zelkowitz96]. Lesson 9:
There is a symbiotic relationship between research and practice
in software engineering, and both activities gain from the
interaction.

Because of the close proximity of the University to NASA, the
University was able to interact on a daily basis with the
development organization. By the mid-1980s, although
developers didn't always understand the current goals of each
research activity, the University was considered more than just
an isolated research "ivory tower" and the frequent interactions
between the University and the development groups meant that
there was usually a cooperative development staff to work with.
Lesson 10: Close proximity of researcher to developer aids both.

Although each of the 3 organizations had separate primary roles,
each group was involved in all activities. NASA and CSC staffs
were intermixed in software development efforts and all 3
groups participated in many of the research activities.

1

Figure 5. Cumulat ive SEL funding

4.2 Funding

Funding over this period was largely provided by NASA
institutional funds (Code T and later Code O money), part of the
development money provided for non-specific project support.
Flight dynamics systems were considered general purpose in that
they supported a number of different spacecraft. This funding
was augmented by several smaller sources such as Code R
(research) money that partially funded the SEL in the 1980s and
Code Q (quality assurance and safety) money that provided

funding in the early 1990s. A graph of cumulative funding is
presented in Figure 5. SEL contractor and grant staff size during
the mid-1980s started at about 7 full-time equivalents (FTEs)
and gradually rose to 12-15 FTEs through the 1980s and peaked
at about 20 FTEs in the early 1990s. NASA civil service staff
that varied from 2 to 5 FTEs over this timeframe augmented
these levels. This staffing represented from 4% to 20% of each
project's development budget over the same period, still
averaging 10% overall (as in the earlier 1976-1983 period). The
large variation across projects was due to several factors:
• economies of scale - support cost for larger projects was

reduced because the same infrastructure costs were incurred
for staff sizes of 10-50 people.

• number of phases affected - the introduction of a specific
new technology into one phase of the development process
(e.g., a CASE tool for design) was less costly than one
which impacted several phases of the lifecycle (e.g., OOD
for design and code reuse).

• number of groups affected - while many of the studies
impacted only the developers, some of the broader studies
(e.g., GSS, the generalized software system) impacted
several groups including the requirements specification
analysts and the testers. These types of studies required
more support resources for training and analysis.

4.3 Research

The driving force during this period was to make the SEL a
learning organization. The goals for SEL research were to:
• liaison with the software engineering research community

to identify potential technologies, which would solve
specific development problems at NASA,

• evolve the SEL's empirical software engineering research
program integrated within the SEL's flight dynamics
development activities,

• build an experience base to feedback results from earlier
SEL studies and provide insights to both future NASA
missions and other software development groups outside of
NASA.

The Goal Question Metric (GQM) method was developed
around 1980 as a way to focus the SEL on what data was
necessary to address certain perceived defects in the NASA
development process. The Quality Improvement Paradigm (QIP)
became the basic mechanism for feedback in the SEL so that
results learned from one study could be applied on future
projects. These evolved into the Experience Factory (EF) in the
late 1980s as a learning organization model for understanding
the development problems at NASA, characterizing the current
environment, and developing and testing proposed alternatives
to solve those problems.

As for specific technologies under study, reuse was becoming an
important part of software development so additional studies to
understand the characteristics of reusing software artifacts
became an important part of the research during the early 1990s.
Studies centered on Ada and OOT's impact as reuse rates grew
from 20% to more than 80% on flight dynamics systems. CASE
tools, domain analysis, and model building through machine
learning (Optimized Set Reduction) techniques were being
investigated; additional Cleanroom implementations were also

75

under study. A series of training courses were developed for use
internally: these covered the SEL approach to process
improvement, management through measurement, and flight
dynamics fundamentals.

4.4 Lessons learned

The decade from 1984 through 1994 was the golden age of the
SEL. The QIP, GQM, and EF frameworks were put into practice
and an experimental paradigm for conducting empirical research
lead to many accomplishments for the SEL. Several key ideas
governed the SEL during this period:

,, The foundation for improvement is the ability to produce a
baseline of an environment. This gives an organization-
centdc view of what the current state of the environment is
and where improvement is needed.

• Empirical learning is the model for improvement. Each
project development is viewed as an "experiment" so that
additional information can be incorporated into the
experience base of the organization.

• Measurement is a required tool for process improvement.
GQM focuses the organization on the goals and the product
under development. It more clearly identifies what can and
cannot be done and at what cost.

• Product measures rather than process changes must be the
defined measures of improvement.

5. 1995-2001: Change

The elation of 1994 was tempered by concerns about budget cuts
and reorganization plans for GSFC. From 1989 through 1994,
SEL funding had been growing at an annual rate of 10% but that
was ending and a 25-30% reduction was forecast. A NASA-wide
reorganization was being planned and although it took several
years before being put into place, rumors and concerns affected
most employees. Amidst the GSFC reorganization rumors, a
number of senior managers retired, including the Flight
Dynamics Division Chief, a staunch SEL supporter.

New performance-based contracts were being formed and
NASA managers no longer had the same insight into contractor
practices. In 1994 the SEL lost its common management. New
software development management did not have the SEL
overview knowledge and the new SEL manager did not have the
same control over developers that early SEL management had
the previous 20 years.

The mantra of "faster, better, cheaper" became the word at
NASA. New projects would rely more on outsourcing and
COTS software. For NASA, using COTS was a revolutionary
change to the standard custom system development approach.
New processes needed to be developed on the fly and there was
no time for "lealrning." The SEL was losing its contact with
projects because of an increasing preoccupation on decreasing
delivery schedules and costs by project managers. Therefore,
the SEL was having difficulty in finding new projects that
wanted its help. In response to this, the SEL began to study the
effects of this new approach and evolve a process for its
application. As a result, the SEL became less the driver and

more the observer, less proactive and more reactive, to software
development activities in its domain. Lesson 11: Having upper
management support is important for continued success.

However, during 1995 and 1996, studies continued on COTS
usage, requirements reading techniques, and OO architectures.
The resultant process improvements continued to benefit the
division's bottom line as costs decreased by an additional 10%
and schedules were shortened by 5-20%.

At the end of 1997, the proposed reorganization was put in
place, and a radically different organizational structure was
implemented at GSFC. NASA mission teams were formed and
developers were matdxed into these teams. Each team was
empowered to decide what process it would follow and how it
would report.

5.1 Management

For 20 years the SEL was part of the Flight Dynamics Division.
However, under the reorganization, flight dynamics was no
longer a separate division. (This was partially due to the SEL's
success in reducing the complexity of building flight dynamics
software.) After the 1997 reorganization, the SEL was placed in
the Information Systems Center (ISC) of GSFC, whereas project
managers were part of other NASA organizations. Under the
new policy of empowerment, each project manager had control
over the processes to be used in development of each project.
ISC had to compete with outside contractors for continued
development work. Cutting overhead costs drove major ISC
decisions. The SEL lost the line authority it previously enjoyed
over project development; the SEL began to lose touch with the
developers in these mission teams; and the number of new
projects being supported by the SEL decreased significantly. The
SEL began to lose its ability to monitor and analyze projects.

As the new NASA settled into place, infrastructure organizations
were dismantled if they couldn't find their own cus tomer
funding. For the past 2 years, the SEL has continued to seek out
projects to work with that have an interest in reuse architectures
or COTS integration, maintenance, and testing. Lesson 12: The
organization trying to improve their process has to own the
improvement process. Without the buy-in from project
management, there was a loss of direction of what the SEL
should do.

Management oversight of the SEL was vested in six directors,
two from each organization. As a sign of impending problems,
some of the director positions were given to individuals as
honorary positions, rather than their knowledge or concern of
SEL activities. There was no development manager working on
SEL activities and initially no full time NASA SEL manager.
Although eventually a SEL manager was appointed, he had no
GSFC SEL staff to work with and little influence over
development groups. In effect, there was no oversight or
direction of the SEL after 1997.

Although UMD and CSC carried out most SEL activities, NASA
personnel had a strong influence over SEL management. Who
was assigned to the SEL became increasingly important,

76

especially after the management responsibilities for project
oversight and process improvement were divided in 1994.
During the height of SEL activities (e.g., during the 1980s) it
was generally possible to maintain a quality research staff at
NASA to work jointly with the University research team.
However, by the mid-1990s, with the loss of top management
support, maintaining a viable government staff was difficult.

NASA views itself as promoting space science research. It also
views itself as primarily an engineering organization that "bends
metal." Activities like the SEL in promoting software research in
process improvement were not deemed to be critical
technologies for GSFC, even though a large percentage of GSFC
employees are computer professionals. Thus working with the
SEL soon was equated to a dead-end position. More than one
qualified government scientist refused a position with the SEL
since there was "no place to advance to." This is a common
complaint of many software professionals who work for
engineering enterprises. Lesson 13: It is difficult to make an
engineering organization aware of the importance of software
engineering to their mission.

Interaction with other GSFC groups
We were unaware of the importance of maintaining contacts
with NASA personnel outside of our flight dynamics domain.
The impact of this failing became quite clear after the 1997
reorganization.

Upper management support: Although the ISC development
groups wanted to support SEL activities, considerable support
was needed from upper management to make this happen. The
SEL budget had been protected for almost 20 years during lean
times since management saw the value of process improvement
in lowering the costs and increasing the dependability of NASA
software.

Interaction with other NASA]GSFC organizations: Due to
the way GSFC evolved, Flight Dynamics had the responsibility
for development of mission software, whether developed by
NASA personnel or contractors assigned to work at GSFC. On
the other hand, the Software Assurance Technology Center
(SATC) had the role of providing quality assurance for software
that was outsourced to other contractors. The SEL and SATC
had very different processes and measures for quality. This was
due to their different perspectives: development support vs.
product assurance (external auditor). Because of their different
roles, these organizations did not work together until 1997, when
the need for a common measurement strategy for the mix of
outsourcing and development was recognized. Had this
happened earlier, the SEL might have had broader insight into
applications outside of flight dynamics and been better
positioned for the new NASA.

5.2 Funding

Beginning in the mid-1990s funding came from SOMO (Space
Operations Mission Office). This office has as its mission
"Provide space operations services that are responsive to
customer missions at the lowest cost to the Agency." SOMO
needed to be responsive to the needs of its customers who

weren't convinced of the SEL's benefit. Funding for process
improvement activities like the SEL didn't survive, and funding
which was severely curtailed in 2001is for the near term ending
in 2002.

5.3 Research

As NASA reorganized, our emphasis increased on reading
technologies for understanding requirements and designs and on
using COTS for mission software production. We built early
baselines for the new ISC organization to understand it and
characterize its domain problems and processes in the new
heterogeneous environment. We characterized COTS work.
COTS development is different since the underlying architecture
of the COTS code already exists, so an understanding of the
existing software architecture (e.g., reading the COTS
specifications for understanding) must exist during the early
specification phase of a project [Morisio00].

Development was the principal problem from 1976 through the
early 1990s, whereas building systems from components was
now the driving force. NASA managers had come to view the
SEL as an organization that merely collected data on
development activities. They were unable to see the SEL as a
problem solving learning organization. This perception of the
SEL made it difficult to find new projects with which to work.

5.4 Lessons learned

The period since 1995 can best be described as retrenchment.
The domain changed from a homogeneous set of applications
developed in the FDD to any number of applications in the ISC.
New baselines had to be built for the new applications. Project
managers were not willing to expend the resources to build new
models. Multiple application domains also meant we had to deal
with multiple group managers. We did not have the resources for
such interaction.

We lost support of management. They did not understand what
we did and we were not able to offer immediate solutions
without understanding the environment. We lost the ability to
interact with projects. Each project manager was empowered to
do his or her own thing. They had no history with the SEL; did
not understand what the SEL did; and saw the SEL activities of
characterization and assessment as a potential overhead to their
project.

Some of the observations coming from this period were as
follows:
• There was no owner of the development process. Each

project could have its own structure. The SEL no longer
had a central model to build on.

• There was a loss of commitment on NASA/GSFC's part
that process improvement was important. There was no
vision on what was needed.

• There was significant restructuring at NASA/GSFC that the
SEL could not keep up with.

• On the SEL's part, there was poor salesmanship in selling
our vision to NASA project managers.

77

In the end, NASA management did not see the value of the SEL.
For a while NASA seemed to stop directing the consortium, but
just continued to give UMD and CSC money to run it. CSC, not
seeing a continued commitment on NASA's part to fund the
SEL, could not put additional resources on its own to keep it
going. The University did not have the resources or expertise to
run a development organization. The SEL quietly faded away
toward the end of 2001.

6. Conclusions

The NASA]GSFC Software Engineering Laboratory had a
successful 25-year run of researching new technology for
improving the software development process at NASA. As a
result of the activity, we believe we have greatly contributed to
the knowledge of software development.

But all consortium members made mistakes, so in the end the
SEL as created in 1976 ceased to exist. The SEL was slow to
seek other non-flight dynamics activities to extend the SEL's
reach at NASA, feedback to users was often late or lacking, and
in the end NASA management from the post-1997
reorganization never understood what the SEL was all about and
what its value was. In the post-1997 reorganization, the SEL did
not have the upper-management support to survive the new
development paradigm. In this report we have outlined some of
the issues that we believe were most important in both the
success and failure of the SEL.

We believe the empirical model, based upon the frameworks of
QIP, GQM and EF to build an experimental science of software
engineering, is the right approach. However, we listed 13 lessons
whose impact we could not fully address at various times in the
life of the SEL. Solving these should greatly aid future process
improvement activities.

These lessons can be grouped according to several categories:

Need for collecting project data:
Lesson 1: Data collection requires a rigorous process and
professional staff.
Lesson 2: You must compromise in asking for only as
much information as is feasible to obtain.
Lesson 5: Establishing a baseline of an organization's
products, processes, and goals is critical to any
improvement program.
Lesson 6: The accuracy of the measurement data will
always be suspect, but you have to learn to live with it and
understand its limitations.

Success comes from integrating the basic process improvement
steps (plan to experiment, measure, analyze data) into the
development process. This combination made improvement part
of "how we do it" and just part of the culture. Using case studies
within a narrow domain to simulate controlled studies works in a
relatively homogeneous environment like the Flight Dynamics
Division.

Need for management buy-in to the process:

Lesson 8: Having a shared commitment over research and
development is vital for success.
Lesson 11: Having upper management support is important
for continued success.
Lesson 12: The organization trying to improve their process
has to own the improvement process.
Lesson 13: It is difficult to make an engineering
organization aware of the importance of software
engineering to their mission.

Project management and data collection must be under common
control. Without a mandate to collect the necessary data, project
personnel quickly lose interest. Other activities (e.g., a late
project) take precedence and the data loses. The growth of online
data capture on the web should lessen the problems we had in
the early 1980s.

While you' l l never get 100% management support at any level,
to maintain the improvement program you need at least 25 % of
the first level managers in order to survive. So target one of the
first outputs of the improvement program at that group.

Need for a focused research agenda:
Lesson 9: There is a symbiotic relationship between
research and practice in software engineering and both
activities gain from the interaction.
Lesson 10. Close proximity of researcher to developer aids
both.

Using an experimental approach toward the problems of process
improvement is vital. The program needs a research link - a
university, corporate research group, or advanced technology
consultant. On one level, it gives a development group access to
emerging techniques. On another deeper level, the researchers
are there to see that results are understood and measured,
objective and subjective data are collected, the effects of scope
are considered, and feedback is given to the participants.

Use multiple funding sources to best advantage. The SEL used
research sources like the National Science Foundation to
perform smaller replicated experiments, and if the results were
promising, then SEL projects could be tried at NASA.

Need for continued staff support:
Lesson 3: Staff training in data collection is a never-ending
vigil.
Lesson 4: As important as data collection is, it still takes
second place to deadlines.
Lesson 7: There will always be tension between the need to
rapidly feed back information to developers and the need to
devote sufficient time to do an analysis of the collected
data.

Establish an experience base as something you can touch, see,
and use. The SEL Library was an effective demonstration of the
SEL at work for both NASA developers and visitors. What does
this mean in the age of online knowledge bases, the web, and
global corporate intranets?

We don't have all the answers. And this report is not meant as a
memorial to the SEL. What we hope we have done is given the
reader some insights in how to do practical software engineering

78

research within an organization that builds large software
systems. We have extracted 13 lessons from our 25 years of
experience that should aid you in avoiding some of our pitfalls.
Some of our conclusions may even seem contradictory. But that
is the nature of the problem and why its solution is so hard.
Ignoring the impossible will not make the problem go away, but
by addressing it, you may see a way around it that simply
escaped us.

7. Acknowledgements

This project was sponsored in part by the remaining funds in
NASA grant NCC 5-464 to the University of Maryland. We also
would like to acknowledge the hundreds of individuals who
helped in the success of the SEL: programmers, analysts, and
support staff at CSC and GSFC and the many students and
visiting professionals at UMD who made the SEL the success it
was. Space limitations prevent listing them all. We would also
like to acknowledge the long-running support from
NASA/GSFC and the NASA/IVV Center in Fairmont, WV for
their support over these many years.

8. References

[Basili77] Basili V. R., Zelkowitz M. V., et al., The Software
Engineering Laboratory, Technical Report TR-535, Computer
Science, University of MD, May, 1977.

[Basili78] Basili V. R. and M. V. Zelkowitz, Analyzing medium
scale software development, Third International Conf. On
Software Engineering, Atlanta, Ga. (May, 1978) 116-123.

[Basili94a] V. Basili, G. Caldiera and D. Rombach, The Goal
Question Metric Approach. Encyclopedia of Software
Engineering. Wiley 1994.

[Basili94b] V. Basili, G. Caldiera and D. Rombach, The
Experience Factory. Encyclopedia of Software Engineering.
Wiley 1994.

[Basili95] Basili V., M. Zelkowitz, F. McGarry, J. Page, S.
Waligora, and R. Pajerski, SEL's software process-improvement
program, IEEE Software 12, 6 (1995) 83-87.

[Morisio00] Morisio M., C. Seaman, A. Parra, V. Basili, and S.
Condon, Investigating and Improving a COTS-Based Software
Development Process, 22 nd International Conference on
Software Engineering, Limerick, Ireland, 2000.

[SEL81] Recommended approach to software development,
Software Engineering Laboratory Series, GSFC, April, 1983

[SEL84] Manager's Handbook for software development,
Software Engineering Laboratory Series, GSFC, 84-101,
November, 1990

[SEL86] General Object-oriented Software Development,
Software Engineering Laboratory Series, GSFC, 86-002, August
1986

[SEL94] Software Measurement Guidebook, Software
Engineering Laboratory Series, GSFC, 94-002, August 1986

[Zelkowitz84] Zelkowitz M. V., Yeh R. T., Hamlet R. G.,
Gannon J. D., Basili V. R., Software engineering practices in the
United States and Japan, IEEE Computer 17, 6 (1984) 57-66

[Zelkowitz96] Zelkowitz M. V., Software Engineering
technology infusion within NASA, IEEE Trans. on Eng. Mgmt.
43, 3 (August, 1996) 250-261

79

