
38 communications of the acm | February 2012 | vol. 55 | no. 2

V
viewpoints

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 a
n

d
r

i
j

 b
o

r
y

s
 a

s
s

o
c

i
a

t
e

s

doi:10.1145/2076450.2076463	 Marvin V. Zelkowitz

Viewpoint
What Have We Learned About
Software Engineering?
Upon closer examination, everything old appears
to be new again in the realm of software engineering.

I
n late 2010, a New York Times
headline attracted my atten-
tion: “A Pinpoint Beam Strays
Invisibly, Harming Instead of
Healing—A Radiation Setting

Is Wrong, and Patients are Harmed.”a
I did not immediately learn the cause
of the New York Times-reported in-
cident, particularly if the cause was
software-related, but it sure seemed
a lot like the Therac-25 story of the
mid-1980s.2 The Therac-25 was an
earlier medical device involved in sev-
eral accidents where some patients
were given fatal instead of therapeu-
tic doses of radiation. I have since
learned the problem reported in the
Times involved passing information
among three incompatible comput-
ers.3 We apparently never learn.

The real message of the Therac-25
incidents was not that there was a soft-
ware bug, but that software engineers
missed a key engineering principle in
designing that device. Any competent
designer should be able to build soft-
ware that detects a failure and either
corrects it or responds in a safe man-
ner. The problem with the Therac-25
was that a single error was compound-
ed with a second error, and the device
was not designed to handle multiple
points of failure. Hardware engineers
know how to build using multiple fail-

a	 New York Times (Dec. 28, 2010), A1; http://www.
nytimes.com/2010/12/29/health/29radiation.
html

ure modes, something that was new to
most software designers.

Software failures are well docu-
mented in the literature. On June
4, 1996 on its maiden flight, an Ari-
ane 5 rocket exploded 38 seconds af-
ter launch.5 Again, software was the
cause. In this case, reusing unmodi-
fied software when the specifications
for it changed and eliminating suf-
ficient tests since “the code was cor-

rect” from the earlier Ariane 4 rocket
were part of the problem.

Lesson Learned and Unlearned
The messages learned from such ex-
amples as these are critical for pro-
ducing quality software. Software is a
critical component of just about every
device sold today. Even less safety-crit-
ical software has problems. The com-
puter I am using to write this column

V
viewpoints

February 2012 | vol. 55 | no. 2 | communications of the acm 39

speed about every two years, while at
the same time getting cheaper. This
has allowed inefficient and poorly
designed programs to survive. But
the era of ever cheaper and faster ma-
chines is rapidly ending. Heat genera-
tion and power usage have radically
slowed down the production of ever
faster processors since around 2005,
and programming is becoming more
difficult, not easier, in order to use
new multicore processors effectively.8
What will be needed for many applica-
tions are not under-qualified comput-
er technicians, but better-qualified
software engineers who understand
the implications of parallel process-
ing in addition to all the other tech-
nologies that have arisen in the quest
for effective trustworthy software.

Conclusion
As a programmer since 1962 and a
professor of computer science since
1971 I have tried to instill the ideals of
the field in my students. But I find it
very frustrating when we are still talk-
ing about the same debugging tech-
niques that were “old” when I started
teaching in 1971. It would be like in
astronomy where each new genera-
tion of Ph.D.’s would have to first learn
how to grind their own lenses as Galil-
eo did 400 years ago before beginning
their studies. How could physics and
astronomy have progressed as much
as they have if they were similarly re-
stricted? Yet, we seem to be stuck re-
inventing the 1970s. I would hope we
can do better.	

References
1.	G rier, D.A. The migration to the middle. IEEE

Computer 44, 1 (Jan. 2011), 1214.
2.	L eveson, N.G. and Turner, C.S. An investigation of

the Therac-25 accidents. IEEE Computer 26, 7 (July
1993), 18–41.

3.	N eumann P.G. and contributors. Risks to the public.
ACM Software Engineering Notes 36, 2 (Mar. 2011),
19–27.

4.	N eville-Neil, G.V. Literate coding. Commun. ACM 53,
12 (Dec. 2010), 37–38.

5.	N useibeh, B. Ariane 5: Who dunnit? IEEE Software 14,
3 (May 1997), 15–16.

6.	O rtega, R. How much software testing is enough?
Commun. ACM 53, 9 (Sept. 2010), 9.

7.	 Parnas, D.L. Risks of undisciplined development.
Commun. ACM 53, 10 (Oct. 2010), 25–27.

8.	S utter, H. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal
30, 3 (Mar. 2005).

Marvin V. Zelkowitz (mvz@cs.umd.edu) is a professor
emeritus at the University of Maryland and a senior
research fellow at the Fraunhofer Center for Experimental
Software Engineering, College Park, MD.

Copyright held by author.

downloads a new “critical update” to
some piece of software on my machine
almost every day. Even my Windows 7
operating system seems to fail almost
daily. What have we learned about pro-
ducing good software? My general im-
pression seems to be “Not much.” As
for the accident written up in the New
York Times I mentioned at the begin-
ning of this column, I could find no
reference anywhere to the similarities
to the Therac-25 accidents. Since the
Therac-25 accidents occurred nearly
30 years ago, I assume it was well be-
fore most current professionals (both
journalists and IT personnel) were ply-
ing their trade and the incidents are
rapidly moving into the realm of an-
cient history.

So how are we in the U.S. respond-
ing to these problems? As described

by the U.S. Bureau of Labor Statis-
tics, the largest growth in the com-
puter field will “all require substan-
tial training beyond the basic skills
of an operator but not the scientific
education of a computer hardware
engineer. It isn’t necessary to have a
Bachelor of Science degree to be con-
sidered a software engineer.”1 My in-
terpretation of this statement—a con-
tinual “dumbing down” of the ability

of most software engineers is in store
for the future.

For years Dave Parnas has been at
the forefront in trying to get the field
to regard software engineering as an
engineering discipline, in deed as well
as in name, by emphasizing good en-
gineering principles in the curricu-
lum of a computer science or related
program.7 However, even if success-
ful, it makes little difference if most of
the next generation of software engi-
neers does not even have a Bachelor of
Science degree.

What are we teaching the next
generation of software engineers? I
have always used the lessons of the
Therac-25 and Ariane 5 as important
concepts in system design. Testing,
debugging, verification, and cod-
ing programs are important tools in
any software engineering toolbox.
But what are programmers actually
using? Two examples: “…, there are
people who find debuggers to be an
inferior tool and who prefer to use in-
program logging, or printf, state-
ments to find out where their pro-
gram is going wrong,”4 and “Investing
in a large amount of software testing
can be difficult to justify, particularly
for a startup company.”6 Those are
concepts whose negative impact was
well understood and taught about in
the 1970s. Haven’t we learned any-
thing since then?

What has saved the software engi-
neer is Moore’s Law. For over 50 years
computers have been doubling in

I find it very
frustrating when
we are still talking
about the same
debugging
techniques that
were “old” when
I started teaching
in 1971.

