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There is a need to quantify management decision 
making in software development. To this end, this 

article presents an application of concepts from eco- 

nomic decision theory to an aspect of this problem 

currently under study by many in the software engi- 

neering community- how to prototype a design and 

evaluate the effectiveness of this prototype. The role 

of prototyping as an experimental tool is analyzed and 

techniques for defining what to prototype and when it 

is cost effective are introduced. We demonstrate some 

of these decision theory techniques to define a model 

that management can use to select solutions from a 

set of alternative designs. 

INTRODUCTION 

Good management is often characterized by the 
ability to make correct decisions from incomplete 
information. A good manager must determine the 
most probable future events from whatever informa- 
tion is currently available. However, we can never 
know the future with certainty, so there is always a 
degree of risk in whatever course of action is under- 
taken. 

Software management is no different. A manager 
must determine how best to allocate available re- 
sources (e.g., people, equipment), develop schedules 
and milestones, and make software design decisions 
that will best fulfill some future goals for a project. 

Currently there is little in the way of a theory of 
software management decision making. Most papers 
on the subject give rules of thumb, ad hoc experi- 
ences, and general design methods, with a touch of 
mythology and the admonition that if you follow 
such directions, you will generally succeed. What is 
needed is a more scientific basis for decisions con- 
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sisting of scientific principles, formulas, and algo- 
rithms that can guide the manager in making such 
decisions. 

Development of such principles has two beneficial 
effects: 

For good managers, the quantification of their 
decision methods justifies their choices and allows 
them to discover new relationships that they might 
not have seen. 

Alas, not every manager is “good.” Quantification 
of these methods permits these managers to make 
more reasonable decisions and removes some of 
the randomness in the process. 

In reflecting on this discussion of decision making 
for software, terms such as “probable,” “certainty,” 
and “risk” appear. These are all terms that have 
been studied within the context of economic deci- 
sion theory, and the relationship of such theory to 
software management has already been identified [ 1, 
21. We have studied such concepts and believe that 
they are applicable to many of the current problems 
of software management. In particular, we have 
studied the question, “When is it cost effective to 
develop a software prototype?” We believe that such 
decision theory concepts can be applied to software 
management. This article provides an example of 
using these techniques for evaluating alternative de- 
signs-in particular, in the evaluation of prototypes. 

How Does This Relate to Software Management? 

Software engineering activities are characterized by 
a continuous need for management to decide among 
several requirement constraints, design options, de- 
velopment strategies, methodologies, and tools. Usu- 
ally there is not enough information to guarantee 
that the chosen option is the best. Most decisions 
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are made under explicit or implicit deterministic 
assumptions about the client, users and environ- 
ment, the consequences of these decisions or ac- 
tions, and future development. These assumptions 
often stray from reality and the decisions made may 
not reflect the best that can be done in these situa- 
tions. 

A simplistic solution to the problem might be to 
optimize, instead, the expected value of the conse- 
quence of any decision. This approach can work 
under specific circumstances where the risk involved 
is not great. However, most major software manage- 
ment decisions involve great risk; therefore, an ap- 
proach based on expected payoffs is not adequate. 

Consider, for example, the following two choices. 
The first is to get a guaranteed profit of $1 million. 
The second is to have a 50% chance of getting 
either a $5 million profit or a $1 million loss. Data 
show that about two thirds of all managers would 
choose the former with an expected guaranteed pay- 
off of $1 million, although the expected value of the 
riskier latter choice is $2 million [3]. This kind of risk 
aversion behavior is all too common and important 
in software engineering to be ignored. 

In Section 1 we define the software engineering 
application to which we wish to apply this 
model-the need to evaluate the effectiveness of 
prototyping a software design as part of a software 
requirements analysis activity. In Section 2 we sum- 
marize the relevant aspects of decision theory, and 
in Section 3 we apply this theory to the problem of 
software prototypes. The major issues we deal with 
include: 

l how to perform risk analysis in making decisions; 

* whether, when, and how to use prototypes to 
extract information; 

* an algorithmic description of the decision process. 

As a final introductory comment, realize that we 
view this process as providing additional information 
to the software manager. Our technique is based on 
estimations and preferences of the software man- 
ager and results from proto~ping experiments. This 
process provides additional data points to the deci- 
sion maker who must ultimately make such decisions 
based on these and other available data. 

1. PROBLEM DEFINITION 

For decision making under uncertainty, we need (1) 
a statement of both objective and subjective prefer- 
ences, and (2) a process for obtaining more informa- 
tion. In general, perfect info~ation is impossible or 

too expensive to get. As a result, some degree of 
subjective judgement and preference is usually un- 
avoidable. 

In software engineering, to extract more informa- 
tion, we often need to prototype. Usually there are 
several alternatives to choose for a software project. 
Each alternative is associated with different out- 
comes depending on which operational environment 
is ultimately true. 

The relevant aspects of the state of the world are 
those related with “software needs.” Any software 
product should be built in accordance with the state 
of nature in which it is going to work. For example, 
in what domain will the program operate? Are big or 
small data files appropriate? Are executions long or 
short? What is the maximum number of transactions 
per second? Depending on which state of nature 
holds, the same set of software solutions can be 
ranked in different ways, since some alternatives 
may be more profitable than others for a given state 
and some can even be unfeasible or unacceptable 
for other states. When we are interested in a future 
state of the world, it is obvious that we cannot know 
with absolute certainty which state will hold. 

1.1 Prototypes 

Building a prototype gives a designer information 
useful for larger projects. But we must bear in mind 
that extracting this information is not free. We must 
weigh the gain versus cost of this new info~ation. 

The choice of whether to make immediate deci- 
sions or to prototype and then decide depends on 
the value of information gained from prototyping 
versus the cost of prototyping. If the value gained is 
greater, we will prototype and make our decision 
later; otherwise an immediate decision should be 
made. Naturally, this rule can be used iteratively at 
each stage of decision making. It may be necessary 
to prototype more than once to reach a final deci- 
sion. The termination conditions are that either 
further proto~ing costs more than gained value of 
the additional information, or we have already ac- 
quired (near-)perfect information. Note that this, in 
essence, implements a spiral model risk-reduction 
life cycle to software development [4]. 

The likelihood of each state of nature is the major 
uncertainty we consider here. To get a better esti- 
mate, experimentation in the form of prototyping 
may be necessary. Several authors consider prototyp 
ing as a technique for providing a reduced function- 
ality version of a software system early in its devel- 
opment [5--81. We basically agree with this definition 
but consider that proto~es should be used not only 
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to experiment with functionality, but also to experi- 
ment with any desired attribute of the system. We 
also consider that prototypes can be used as a source 
of information throughout the whole life cycle pro- 
cess (e.g., maintenance changes can be first simu- 
lated using a prototype). 

“To appreciate the rapid prototyping paradigm, 
you must view software design as an iterative deci- 
sion-making process” [9]. We view software proto- 
types as programs that model some aspect of the 
final product, but often fail to model others. Follow- 
ing the model of (basic) requirements as a vector of 
attributes [lo], we see the requirements of the proto- 
types as a subset of the requirements (a projection 
of the vector) of the desired program. Then, from 
the program requirements, it is possible to build 
several different prototypes, each satisfying different 
aspects (each aspect is specified by a subset of the 
requirements) of the program. 

We characterize prototypes as providing answers 
to the following three questions: 

Do requirements reflect client’s needs? In this case, 
the experiment involves interaction between the 
prototype and the client. This interaction will tell us 
if an aspect of the client’s needs is captured by the 
corresponding aspect of the requirements modeled 
by the prototype. This kind of interaction arises very 
often in software projects: “. . . it is really impossi- 
ble for a client, even working with a software engi- 
neer, to specify completely, precisely, and correctly 
the exact requirements of a modern software prod- 
uct before trying some versions of the product” [ll]. 
A prototype will give information of which state of 
nature holds: client likes aspect x of requirements r, 
or client does not like aspect x and prefers x’. User 
evaluations can then be incorporated as feedback to 
refine the emerging system specifications and de- 
signs. 

Do requirements reflect system environment needs? 
In this case, the prototype is built to interact with 
the environment in which the final system is in- 
tended to work. Usually the interaction is simulated; 
that is, prototyping includes the construction of a 
model of the environment, and the interactions are 
only between the prototype and the model. The 
different states of nature define the degree to which 
the interactions between environment and system 
are satisfactory. 

Are the requirements feasible? This situation re- 
quires an experiment to show if the resources avail- 
able to the software developers are enough to build 

a product with the specified requirements. The pro- 
totype should model the aspect of the requirements 
suspected to be unfeasible. In this case, feasibility 
information is obtained directly from the possibility 
to construct the prototype within some scaled re- 
source limits. A prototype will give information of 
which state of nature holds: the aspect x of require- 
ments r is not feasible, or the aspect x is feasible. 

A software tool to build prototypes, or a system 
for computer-aided rapid prototyping (fast prototyp- 
ing), allows developers rapidly to construct concrete 
executable models of selected aspects of a proposed 
system. We argue that such a tool must either pre- 
dict or bound the time and effort needed to build a 
given prototype in order to extract the information 
needed. 

First, we consider the decision rules when no 
further information gathering is allowed. A decision 
taken in such situations is called an immediate deci- 
sion. For immediate decisions we analyze the case of 
complete uncertainty and the case of a known prob- 
ability distribution. Later we consider the general 
case in which a delayed decision can be reached 
after new information is obtained, such as with a 
prototype. 

2. ASPECTS OF DECISION THEORY 

The following briefly summarizes the basic model of 
decision theory [12, 131 that applies to our software 
prototyping problem. 

Assuming several possible strategies (e.g., proto- 
typing experiments) with specified probabilities of a 
set of possible outcomes (e.g., the possible results), 
how do we choose a best strategy (e.g., which proto- 
typing experiment provides more information)? 

Consider two solutions for a software requirement 
named alternative designs A, and A?. 

A,: its cost of development is estimated to be 50 
monetary units. It is cheap compared with A, but it 
involves more risk. 

A,: It costs 100 monetary units. It represents a 
conservative but more expensive option. 

Assume there are three possibilities for states of 
nature, labeled S,, S,, and S,, respectively. 

S,: This state is more favorable for alternative A2 
than for alternative A,. The revenue related to 
alternative A, is 150 and to A, is 400. 

S,: This state is more favorable for alternative A, 
than alternative A,. A, gives a revenue of 550 
and A, a revenue of 300. 

S,: This state is unfavorable for alternative A,, with 
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a revenue of 50 monetary units, but alternative A, 
gives a revenue of 300. 

We can first identify the payoffs for each alterna- 
tive under different states of nature. Here the pay- 
offs were calculated by subtracting the cost of devel- 
opment of that alternative from the revenue related 
to the alternative for the state. This information is 
summarized in the moneta~ payoff matrix Y (all 
entries are expressed in monetary units): 

1 
150 - 50 550 - 50 

y= 400-100 300-100 
50 - so 

300-100 I 

I 

100 500 0 
= 300 200 200 1 (1) 

Entry yi,, in the matrix gives the payoff of the 
alternative Ai 6th row) when Sj is the resulting 
state of nature. For example, if we choose A, and 
the state of nature turns out to be S,, we get a 
payoff of $500, or equivalently, y,,, = 500. A partic- 
ular combination of alternative and state of nature 
is called an outcome. 

2.1 Immediate Decision Under Complete 
Uncertainty 

Often, when the probability for each state of nature 
is not known, there are two approaches for decision 
making without further information. One is to make 
the decision based on a guaranteed lower or upper 
bound. The other is to make the decision assuming 
that all states have the same probabili~ of occur- 
rence. The former approach is often chosen because 
the latter is based on a dubious assumption. 

We call this the maximin rule. The alternative 
picked by this rule is the one that has the greatest 
guaranteed minima1 payoff. This guaranteed payoff, 
called maximin value LR, can be calculated as fol- 
lows: 

a=: my(ynYi,j) (2) 

In our example, we choose alternative A, because 
its minimal payoff is 200, which is greater than the 
minimal payoff of 0 for alternative A,. 

2.2 Immediate Decision under Known Probability 
Distribution 

In some situations, probabilities are known or can 
be estimated for the different states of nature. Given 
the probability distribution vector P, where pi is the 
probability that state of nature Sj is true, we must 
decide which alternative to choose. 

When the difference between the smaller and the 
larger payoff for each alternative is relatively small, 
a decision rule based on expected payoffs may be 
adequate. We denote the expected payoff for alter- 
native A, as ~1;: 

L’i = CYr,,Pj 

The expected payoff decision rule is: choose Ai, 
which maximizes u,, or: 

max CYi,jPj i i 1 j 
or 

max ( 11, ) 

For example, if we know that the probability distri- 
bution for each state of nature in our example is 
P = (0.3, 0.5, 0.2), we can calculate the expected 
payoffs as follows: 

[‘, = 100 x 0.3 + 500 x 0.5 + 0 x 0.2 

= 280 

I‘?& = 300 x 0.3 + 200 x 0.5 + 200 x 0.2 

= 230 

We would then choose A, over A, since 280 > 230. 
When the stakes involved are enormous (e.g., 

there are significant differences between the small- 
est and largest payoffs for some of the alternatives), 
the expected payoffs decision rule often is inade- 
quate. For example, if the payoffs in matrix Y repre- 
sent millions of dollars, afternative A, would proba- 
bly be chosen with its guaranteed minimal profit of 
$200 million in states S, and S,, although alterna- 
tive A, gives a higher expected value but has a 
potential of $0 profit if state S, should turn out to 
be true. 

2.3 Risk Analysis 

Risk aversion plays an impo~ant, even dominan, 
role in decision making. The technique described 
below depends on the following assumption about 
reasonable behavior employed in decision making 
under uncertainty: 

l Decomposition: given three payoffs y, < y, < y,, 
there exists a probability p such that the decision 
maker is indifferent to the choice of a guarantee 
of y,, and the choice of getting y3 with probabil- 
ity p and getting y, with probability 1 - p. 

For example, say there are two techniques to solve 
a problem, one that is fully tested giving a guaran- 
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teed payoff of $5,000 and a second new and more 
efficient (but not completely tested) technique 
promising a potentially larger payoff of $10,000 but 
with a chance to give a payoff of only $2,000. Some 
software managers will consider using the new tech- 
nique only if the chances of getting the payoff of 
$10,000 are > 80%. In this case, probability p is 
approximately 0.8.’ 

2.4 Decomposition of Y,,~ 

Let y, be the minimal value in our payoff Y and let 
y* be the maximal value. In our example (section 2, 
equation 11, we would choose y* = 500 and y, = 0. 
With the selection of y. and y*, we can decompose 

each Y,,, of Y as follows based on the decomposi- 
tion assumption given earlier: 

l What is the equilibrium probability ei,j that makes 
you indifferent to the two choices T{,~, or probabil- 

ity e,,, of getting y* and probability 1 - e;,, of 
getting yo? 

The answer to this question is a subjective determi- 
nation that depends on current as well as past expe- 
riences, and reflects the risk aversion of the decision 
maker. Note that if yi, j = y,,,, then e,,i = ek,!, so 
redundant entries need only be evaluated once. Any 
element e, , _ will satisfy the following inequality: 

y. X (1 - o,.,) + Y* X e,,, 2 y,., (5) 

The difference between the two sides of equation 5 
reflects the degree of risk aversion. If the two sides 
are equal, risk analysis reduces to the expected value 
approach. That is, when the expected value is the 
same, the two outcomes are equally desirable. Also, 
we do not model risk seeking as in lotteries, where 
one’s expected monetary return (probability to win 
X lottery price) is less than the price one pays (e.g., 
the left side of the equation is less than the right 
side). However, there is nothing intrinsic in our 
approach to prevent one from modeling such behav- 
ior. 

Depending on e,,i, we decompose the payoff y,, j 
into an equivalent pair of payoffs {y,,, y*}, with prob- 
ability e,:, of getting the more desirable y*. We call 
the matrix formed by these elements ei, j the equilib- 
rium matrix E. The probability ei,j captures the 

’ Utility functions are used to address the same problem. A 
utility function maps payoffs to numbers (not necessarily proba- 
bilities). The numbers give the degree of desirability of the 
payoffs. Here we do not define a function from payoffs to num- 
bers; instead, we obtain the decomposition probability only for 
the payoffs in matrix Y. 

desirability of payoff y,,, in terms of boundary pay- 
offs. 

Following our example (section 2, equation I), we 
need to ask the above question for the payoffs $100, 
$200, and $300. For example, we might reply with 
the following possible result based on our own risk 
aversion behavior: 

2.5 Decomposition and Comparison of 
Alternatives 

We next evaluate the desirability of different alter- 
natives. Essentially they are also a decomposition in 
terms of the boundary payoffs. The desirability for 
an alternative A,, denoted as d,, can be calculated 
as follows: 

The comparison of different alternatives boils down 
to the comparison of their desirabilities. The rule 
can be simply stated as: 

maxd, (7) 
I 

The alternative Ai with the maximal desirability d, 
will be selected. In our example, we have: 

d, = 0.3 x 0.3 + 1 x 0.5 + 0 x 0.2 

= 0.6 

d, = 0.8 x 0.3 + 0.6 x 0.5 + 0.6 x 0.2 

= 0.7 

The values d, and d, can be interpreted as de- 
composition probabilities. Instead of having differ- 
ent values of desirability (decomposition probabili- 
ties) for each alternative, one for each state of 
nature, we derive the expected desirabilities d, and 
d?. We choose A2 because d, is larger than d,. 

2.6 Value and Usage of Extracted Information 

When faced with decision making under uncertainty, 
we may choose to get more information so that a 
better final decision can be made. If this option is 
available, the decision can be delayed after the 
extraction of information, allowing the decision to 
be based on a more accurate information base. 
However, before undertaking the procedure to ex- 
tract more information, we have to make sure that 
the gain achieved by more information will outweigh 
the cost of obtaining it. Here, we try to establish an 
absolute boundary: what is the value of perfect 
information? 
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The best we can expect from experimentation is 
that the experiment results will indicate for sure 
which state of nature will hold. Under this case, we 
can choose the alternative that gives the highest 
payoff under the given state of nature. However, this 
information cannot be obtained a priori to the ex- 
periment. Thus, we have the expected payoff of 
perfect information @: 

@ = CPj x maY,,j (8) 
j I 

In our example, we would choose A, under S, and 
choose A, otherwise, resulting in optimal payoff a: 
@ = 0.3 x 300 + 0.5 x 500 + 0.2 x 200 

= 380 

What is the value of this perfect information? This 
depends on what we were committed to originally. 
For example, if we were committed to the maximin 
rule with a payoff of 200, the value of this informa- 
tion is 380 - 200 = 180; if the expected payoff rule 
(of 280) was used, we value perfect information at 
380 - 280 = 100. The value of perfect information 
is the maximum we could spend to obtain the infor- 
mation using a prototype. 

3. APPLICATION TO SOFTWARE PROTOTYPES 

Let us now consider the issue of applying the previ- 
ous economic model to the problem of evaluating 
the effectiveness of a software prototype. Assume 
we experiment (prototype) to determine which state 
of nature holds. 

An ideal experiment would be like a “state-meter” 
that indicates with perfect accuracy which state is 
really true. On the other hand, the worst experiment 
is one having results that are independent of the 
state of nature. Real experiments (prototyping) fall 
between these extremes. The results from prototyp- 
ing depend on the state of nature, but the depen- 
dency is probabilistic. Let result,, result,, . . . result, 
be the possible results of the prototyping experi- 
ment. Each dependency between state and result is 
expressed as the conditional probability that the 
result will be result, given that the state of nature is 
sj. 

This information will be presented in a condi- 
tional probability matrix C, with a row for each 
different result of the prototype and a column for 
each state of nature. Each entry citj represents the 
conditional probability of prototypmg result result, 
given that state of nature S, holds. 

Since we have the probabilities for each state 
(vector P) and the conditional probability matrix C, 
it is possible to calculate the probability for each 
result result, of the prototype. The probability distri- 

bution for prototyping results is summarized in vec- 
tor Q (marginal probability distribution), where qi 
represents the probability of getting result,. 

4, = cc,., x P, 
i 

(9) 

Taking into consideration the results of the proto- 
type, it is possible to obtain better estimates for the 
probabilities of each state (update vector P). Using 
Bayes rule, we get the a posteriori distribution ma- 
trix P’, having elements calculated as follows: 

Note that while P is a vector, P’ is a matrix. P’ has 
as many rows as results from the prototype. Each 
row is an updated version of vector P. Row i gives 
the probabilities of the states of nature given that 
the result of the prototype is result,. 

Following our example, assume that a prototype 
of alternative A, is planned. The planned prototype 
can give the following results: 

result,: client is satisfied with the system as pre- 
sented by prototype. 

result,: client is not satisfied. 

We first estimate the probabilities ci,, that the 
results of prototyping are consistent with the true 
states of nature before the prototyping experiment is 
performed. For example, we estimate that if the 
state of nature is S, (favorable for alternative A, 
and unfavorable for alternative A,) we have proba- 
bilities 0.3 and 0.7 to obtain results result, and 
resuftz, respectively, from the prototype. The condi- 
tional probability conditioned on states of nature is 
given below: 

c = 
[ 

0.9 0.3 0.4 
0.1 0.7 0.6 1 

From this we can calculate the probability qi for 
each result i of the prototype Q = (0.5, 0.5) and the 
a posteriori distribution matrix as: 

/,, = 
[ 

0.54 0.30 0.16 
0.06 0.70 0.24 1 

For example, if we get result, from the prototyping 
study, the new expected value and desirability for 
the alternatives Al and A, are: 
11, = 100 x 0.5'4 + 500 x 0.3 + 0 x 0.16 

= 200 
c z = 300 x 0.54 + 200 x 0.3 + 200 x 0.16 

= 250 
d, = 0.3 x 0.54 + 1 x 0.3 + 0 x 0.2 

= 0.46 
d, = 0.8 x 0.54 + 0.6 x 0.3 + 0.6 x 0.16 

- 0.71 
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In this case, alternative A, should be chosen, since 
it gives both the higher expected payoff and higher 
degree of desirability. 

Similarly, if we should get result, from the proto- 
typing study, the new expected value and desirability 
for the alternatives A, and A, are: 

0, = 100 x 0.06 + 500 x 0.7 + 0 x 0.16 

= 360 

I' 2 = 300 x 0.06 + 200 x 0.7 + 200 x 0.24 

= 210 

d, = 0.3 x 0.06 + 1 x 0.7 + 0 x 0.2 

= 0.72 

d2 = 0.8 x 0.06 + 0.6 x 0.7 + 0.6 x 0.24 

= 0.61 

In this case, alternative A, is the obvious choice. 
Thus the expected value and expected desirability 

gains of prototyping study are: 

op = 0.5 x 360 + 0.5 x 250 - 230 

= 75 

d, = 0.5 x 0.71 + 0.5 x 0.72 - 0.7 

= 0.02 

If the cost of performing this prototyping study is 
less than cp = 75, this study should be carried out. 
Otherwise, an immediate decision should be made 
(see sections 2.1 and 2.51. 

3.1 Other Decision Rules 

Choice under uncertainty is currently a field in flux. 
Economists, decision theorists, and psychologists are 
trying to develop better models for this important 
area. Several decision rules (usually very complex) 
have been defined; see reference [14] for an account 
of problems and proposed solutions. 

We do not define an automated process to mimic 
the behavior of a human being when faced with a 
decision. Our approach is more prescriptive (we 
suggest a software alternative in terms of some 
criteria) than descriptive (we do not claim to suggest 
the same alternative that a given person will pick). 

Our goal is to provide support to the decision 
maker. The support comes in the form of informa- 
tion: the expected payoff for each alternative; the 
expected utility for each alternative; the probability 
for each state of nature and the ranking of the 
alternatives defined for each state of nature; what to 
prototype to reduce uncertainty. 
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3.2 Decision Process Algorithm 

To summarize, we state our design approach via the 
following steps: 

Identify alternatives A;. 

Identify states of nature S,. 

Evaluate the monetary payoff for each alternative 
under each state of nature. Build the matrix Y = 

[Yi, jl. 

Use the decision process as a tool to select an 
alternative (Figure 1.1 

There are three major issues to be resolved in 
deriving the payoff matrix Y: (I) we must identify all 
possible alternatives; (2) we must identify all possi- 
ble states of nature; and (31 we must evaluate the 
payoffs of choosing each alternative under each state 
of nature. 

A first but crude approximation for defining the 
states of nature is to consider for each alternative 
that the world will be in only two possible states-it 
will be favorable or unfavorable for that alternative. 
Then if we have alternatives A, and A,, then we 
can define four states of nature: S, favorable for 
both A, and A,, S, favorable for A, but unfavor- 
able for A,, etc. 

When each alternative defines a different soft- 
ware solution, it is convenient to consider some 
basic predicates that define the states of nature. We 
have already classified prototypes as falling into three 
categories: client needs, system needs, and feasibil- 
ity. Then, for each solution i we will assume the 
predicates: 

cli,: is the client willing to pay for the software 
product? 

env,: are the interactions between system and envi- 
ronment satisfactory? 

feai: is the software concept feasible with the avail- 
able resources (people, time, tools, etc.)? 

A state of nature is defined as one of the possible 
combinations for the values of all the predicates. A 
methodology to identify the relevant states of nature 
can be summarized as follows: 

1. 

2. 

Identify which types of predicates are relevant 
(e.g., if feasibility is assured, then only predicates 
for client and environment are considered). 

Construct the basic set of states of nature in 
which each state is a different combination of the 
values of the predicates. 
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Input: 

M:Payoff matrix of alternatives X states of nature 

output: 

win:Natural, represents the index of winning alternative 

Constants: 

alte = number of alternatives, number of rows in Y 

stat = number of states of nature, number of columns in Y 

Q = max(minyi,j) 
i j 

yo = min Yi,j 
If 

Y* = ~j maxYi,j 

mpc = minimal prototype cost 

Variables: 

risk 

resu 

p r 
act 

pay 

X 

c 

E 

Q 
P 

P’ 

sav 

0 

Boolean, true if risk aversion is significant 

Natural, number of results for current prototype 

Natural, result of prototype experiment 

Natural, accumulated cost from prototyping 

value expected from alternative 

Prototype definition 

Matrix resu x stat of probabilities 

Matrix alte x stat of probabilities 

Vector resu elements, of probabilities 

Vector stat elements, of probabilities 

Matrix resu x stat of probabilities 

maximum savings due to the use of prototype 

optimal payoff 

Functions: 

Proba(x:payom = Decomposition probability of x in terms of yo and y* 

Experiment(x :prototype) = Result of the prototype x (index of result) 

Defineproto = Prototype to help to determine state of nature 

Cost(x : prototype) = Cost of prototype 2 

Numres(x : prototype) = No. of different results of prototype x 

Figure 1. Decision process(Data). 
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BEGIN 
/* If no further information is affordable since any experiment will be more expensive than 
the information obtained, use mazimin for an immediate decision. *I 

if y* - R < mpc then win c- alternative i, where Vj(yi,j 2 n>; 
else 

P + lpi] where pi is first estimation for probability of state i; 

mid+- 9; 

/* Check if the difference between the largest and the smallest payoffs is significant 

enough to make risk aversion important */ 

if Proba(mid) x 0.5 then 

risk + false; 

win * i, where rnaxi(z_+ yi,j x pj); 

pay +-- Cj Ywwin,i X Pji 

else 

risk c trzle; 

E + [ei,j], where ei,j = ~ra~a(yi,~); 
D +- [di], where di = cj pj x ci,j ; 
win +- j where dj = maxdi; 

pay - Cj Ywywin,j x Pj ; 

x +- Defineproto; 

act t- Cost(x); 

G? i- Cj Pj X maxi Yi,j ; 
sav +-cP--pay-act; 
/* Cost/benefit analysis: While the cost of prototyping is less than the value of the 

extracted information, obtain new information defining and using prototypes */ 

while sav > 0 do 

rem +- Numres(x) ; 

C + Ici,j] f where ci,j cond. prob. of result i given state j; 

Q + [%I, where Q; = Ci G,j X pj ; 
P’ s-- Cp:,j], where pi,i = ci,j x pj/qi ; 
pr + Ezperiment(z); 

P + [pi] where pi = P;?,~; 

x +- Defineproto; 

ace 4-- act + Cost(z) ; 

Tft,i% PP&maxi W,j ; 

D +- idi], where di = cj pj x ei,j ; 
win + j where dj = maxd; ; 

pay + xi &in,j X Pj ; 

else 

win e i, where max;(xj y;,j x pj); 

pay + Cj Ywin,j X Pj ; 

sav +Q-pay-act; 

END. 

Figure 2. Decision process (Algorithm). 
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Identify dependencies between predicates. The 
dependencies are of the form predicate xi of 
alternative i is true if predicate yj of alternative j 
is true. For example, we may know that if the 
client likes alternative i, it is sure that the client 
also likes alternative j. 
Delete impossible states from the set. For each 
relationship found, delete the states violating the 
relationship. 

Example. Assume that there are two alternatives 
A, and A, for the software that implements a user 
interface. Assume that we are sure that our pro- 
gramming team can build each of them within the 
time and resources available (e.g., feasibility is as- 
sured for both alternatives). Therefore, the only 
predicates remaining are: 

cli,, cli,, enLll, em2 

The possible states of nature are: 

BS, = cli, A cl, A em, A em2 

BS, = cli, A cli, A enu, A 7 em2 

BS, = cli, A cli, A 7 em, A em2 
. . . 

BS,, = 7 cli, A 7 cli, A 7 em, A 7 em’, 

Since the alternative A, is similar but more “user 
friendly” than A,, we consider the following depen- 
dency: 

cli, * cli, 

We also consider that the performance characteris- 
tics of A, are inferior to those of A,; therefore, we 
add the dependency: 
em2 - em, 

The resulting set of states (after deleting the states 
violating the dependencies) is: 

s, = c/i, A cli, A em!, A em2 

s, = cli, A cli, A em?, A 7 em, 

s, = c/i, A c/i, A 7 em, A 7 eni?2 

s, = -T cli, A c-ii, A em, A em2 

s, = -T cli, A cli, A erw, A 7 enLlz 

s, = 7 cli, A cli, A -I em,>, A 7 em2 

s, = 7 cli, A 7 cli, A em, A encz 

S, = 7 di, A 7 cli, A em!, A 7 enu2 

s, = 7 cli, A 7 cli, A 7 enu, A 7 entt2 

3.3 Derivation of Payoff Matrix Y 

Typically, each alternative will be associated with 
the construction of a different software solution. 
Depending on the state of nature that holds, the 
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software product will become an effective solution. 
This degree of effectiveness determines the payoff 
associated with the combination alternative/state of 
nature. Then the questions that determine the nu- 
merical values are: How much does it cost to con- 
struct each different software solution (each alterna- 
tive)? Assume we are in situation x (or in other 
words, assume that the state of nature is x1, then 
how much is the client going to pay for the software 
solution? How much is it going to cost to adapt it to 
the environment? How much is going to cost to 
choose and build another solution if the solution we 
picked initially was unfeasible? 

In general, the assessments we made above may 
not be very accurate or precise. Iterative procedures 
may be taken to improve the estimate. But to make 
the description of the decision process simple, we 
assume that these are accurate. 

Note that if there are dominated alternatives, they 
should be deleted in our initial analysis. An alterna- 
tive Ai is dominated by another alternative A, iff 
for all states of nature Sj: 

y1.1 5 Yk., (11) 

(i.e., the payoffs for A, are greater than those for Ai 
for all states of nature). For example, if there were 
another alternative A, in the example of section 2, 
equation 1, with payoffs of (200, 200, 1001, it would 
have been eliminated because it is dominated by A,. 

3.4 What to Prototype 

The decision process function Defineproto defines a 
prototype according to the probability distribution of 
the states of nature. Here we give some guidelines 
for what to prototype to obtain the desired informa- 
tion. 

Each state of nature si is represented by a boolean 
expression of the form: 

pred,,,, Apred,,, A . . . Apred,,.-, 

where each predi, j is the value of a predicate j for 
state of nature i. Examples of predicates are client 
likes alternative 2, alternative 3 is feasible, alterna- 
tive 4 interacts properly with environment. 

Each state of nature has values true or false for IZ 
predicates.’ Each state of nature can be represented 
as a binary number, where each bit corresponds to a 
predicate (1 for true and 0 for false). We translate 
the question of “what to prototype?” to “what bits 
to ask for in order to know which state of nature 

* Therefore, the maximum number of states of nature is 2”. 
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holds?” Making the simplification that the cost to 
ask for any bit is similar, the following methodology 
can be used: 

Calculate the probability that the bit position i 
will have a 1: 

JfU, 
one, = c ph x b,,, 

h=l 

where pk is the probability for state of nature S,, 

and b,,, = 1 if pred,, i = true and b,,i = 0 if 

pred,, I = false. 
For each bit position i calculate the absolute 
difference between 0.5 and one;. 

IO.5 - one, I 

This number gives a measure of the information 
obtained by asking for bit position i. Differences 
close to 0.5 correspond to positions of which 
values are almost known (a high probability ei- 
ther of 1 or 0). Differences close to 0 correspond 
to positions of which we are more uncertain, 
since the bit has almost equal chances of being 1 
or 0. 
Obtain the bit position with the minimum value 
of the difference calculated in the previous step. 
Call that position pos. We gain more information 
asking for this bit than for any other one. 
The kind of prototype is determined by the predi- 
cate in position pos. Each predicate belongs to 
one of the categories: cfi, mu, fea. Therefore, the 
prototype is going to be presented to client, to 
environment, or will be a feasibility prototype 
according to the category of the predicate in 
position pos. Each predicate is associated with an 
alternative. The alternative associated to predi- 
cate in position pos is the one that is going to be 
prototyped. A creative (nonmechanical) decision 
remains: which attributes of the alternative (func- 
tionality, performance, reliability, etc.) have to be 
prototyped in order to decide the validity of the 
predicate pos? 

A prototype defined using this methodology has 
two results: the predicate pos is true, or it is false. 
The designer of the prototype must estimate the 
probability that the prototype will answer according 
to the actual value of the predicate. This probability 
will be used to construct the conditional probability 
matrix C (see section 2.6). 

Let probtrue be the probability that the prototype 
experiment answers “predicate true” given that the 
predicate is true. Let probfalse be the probability that 
it answers “predicate false” given that the predicate 
is false. 
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If Sj is a state in which the predicate is true, then 
the values of C are defined as follows: 

cz.1 = 1 - prob,,uc 

If Sj is a state in which the predicate is false, then 

Cl., = 1 - probfa,,c 

c2,, = probfa15e 

Example. Assume that the vector P for the states 
of nature of the example of section 3.2 is: 

P = [0.3 0.2 0.1 0.1 0.08 0.07 0.05 0.05 0.051 

The values one, for each bit position are: 

one, = (p, +p2 +p3) x 1 + (p4 + .” +pq) x 0 = 0.6 

one2 = (p, + .‘. +ph) x 1 + (p, + p8 + p,,) x 0 = 0.75 

one3 = pI + pz + p4 + ps + p7 + px = 0.78 

one,=p, +p,+p,=O.45 

The differences 10.5 - onei are (0) 0.1, (1) 0.25, 
(2) 0.28, and (3) 0.05. The predicate with smallest 
difference is position (31, that is enz’,. From this 
predicate we know that the alternative to prototype 
is A, and what is needed is to test the interactions 
of A, against the environment. 

Assume that a prototype definition was designed, 
and the designer estimated that the prototype will 
determine the value of predicate erzlr, with an accu- 
racy of 95%. Now, we assign values to the elements 
of matrix C. For S,, S,, S, the predicate enLlz is true 
and we have for j = 1,4,7 as follows: 

Cl., = 0.95; C?,, = 0.05 

for the rest of the states em:, is false, therefore for 
j = 2,3,5,6,8,9: 

Cl,, = 0.05; Cl,, = 0.95 

3.5 First Estimation of the Vector P 

In an earlier section we defined a state of nature as 
one of the possible combinations for the values of a 
set of predicates. A first approximation to derive the 
probabilities for the states of nature is based on the 
assumption that the predicates are essentially inde- 
pendent. We only consider the dependencies be- 
tween predicates identified during the definition of 
the states of nature (step 3 of the methodology in 
section 3.2). With this simplification we define the 
following methodology: 

1. For each predicate used in the definition of the 
states of nature, estimate the probability that the 
predicate will be true. 
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2. Each state of nature Si is represented by a 
boolean expression of the form: 

pred,,, Apred,,, A . . . r\pred,,.-, 

Assign a probability to each predj,j as follows: 

Look for a dependency of the form 
predicate, =. predicatej 

from the dependencies identified during the defi- 
nition of the states of nature. If a dependency is 
found and we have that 
pred,, k = true 

then the probability associated to pred,,, is 1. 

if pred,, j = true, then use the probability esti- 
mated m step 1. 

if pred,. j = false, then use l-probability estimated 
in step 1. 

-. The probability pi of state of nature Sj is the 
product of the probabilities associated with each 
predi, ;. 

Example. Apply the methodology to estimate P 

for the states of nature defined in the example of 
section 3.2. The probability that each predicate will 
be true was estimated as 0.7 for cli,, 0.8 for c/i,, 0.9 
for enu,, and 0.6 for enuz. To calculate the products 
we must consider the dependencies 
cli, * cli,; envz * em, 

The values for each pi are: 
p, = 0.7 x 1 x 1 x 0.6 = 0.42 

p2 = 0.7 x 1 x 0.9 x (1 - 0.6) = 0.252 

p3 = 0.7 x 1 x (1 - 0.9) x (1 - 0.6) = 0.028 

p4 = (1 - 0.7) x 0.8 x 1 x 0.6 = 0.144 

ps = (1 - 0.7) x 0.8 x 0.9 x (1 - 0.6) = 0.0864 

ph = (1 - 0.7) x 0.8 x (1 - 0.9) x (1 - 0.6) = 0.009 

p, = (1 - 0.7) x (1 - 0.8) x 1 x 0.6 = 0.036 

p8 = (1 - 0.7) x (1 - 0.8) x 0.9 x (1 - 0.6) = 0.021 

pg = (1 - 0.7) x (1 - 0.8) x (1 - 0.9) 

x (1 - 0.6) = 0.002 

Note that Cp, = 1. This estimation of P may be 
used as input for the decision process (section 3.2). 
It is important to take into account that this first 
estimation will be perfected iteratively by using pro- 
totypes. 

The first step of the methodology derives the 
probabilities for each predicate to be true. A mini- 
mum constraint that those probabilities must follow 
is: If there is a dependency of the form: 
predicate, = predicate, 

then the probability that predicate, is true is greater 
than or equal to the probability that predicate, is 
true. 

S. R. Cardenas, J. Tian, and M. V. Zelkowitz 

4. CONCLUSION AND PERSPECTIVE 

To reduce the risks of software development, risk 
techniques for assessment and reduction from other 
disciplines can be applied. The adaptation and re- 
finement of these techniques form an integral part 
of a quantitative theory of software management. In 
this article we briefly surveyed some concepts from 
decision theory, defined a model for a software 
prototype, and presented a method for applying de- 
cision theory to the problem of evaluating such 
prototypes. 

The goal is to provide support to the software 
manager. The work presented here is an attempt to 
describe the decision process in a way that clearly 
separates the mechanical activities from the ones 
that require subjective judgement. While we have 
presented a mathematical model of the process, its 
application still depends on some subjective risk 
determinations by management in order to deter- 
mine the appropriate probabilities that are needed 
by the model. We have introduced methods to help 
generate the input data for the decision process, 
namely the states of nature, their probabilities, the 
payoff matrix, and the prototype definitions. 

In addition, we have proposed a method that 
helps the manager determine which form of proto- 
type might provide the maximum information for 
making a decision. We have classified prototypes 
according to what kind of uncertainty they help to 
reduce-client needs, environmental needs, or pro- 
ject feasibility. 

This model needs further refinement and evalua- 
tion of its practicality. While we believe that the 
overall approach of applying risk reduction strate- 
gies to software management is sound, the exact 
details need to be worked out. To that end, a proto- 
type tool that applies the model developed here has 
been implemented and is being evaluated experi- 
mented with [151. 
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