Volume 3, number 2

INFORMATION PROCESSING LETTERS

November 1974

STRUCTURED OPERATING SYSTEM ORGANIZATION *

Martin V. ZELKOWITZ

Department of Computer Science, University of Maryland
College Park, Maryland 20742, USA

Received 2 July 1974
Revise. version received 1C September 1974

operating systems program modularity

1. Introduction

Operating system design was once a complex art
that few understood (including many of the designers),
but it is slowly becoming a science where many of the
fundamental ideas are crystallizing into a set of basic
axioms. The purpose of this paper is to present one
set of ideas and show how they can be developed into
a reliable system. The system will be hierarchically
structured and has a powerful protection mechanism
that allows for reliable system operation. Due to in-
creased use of communications between computers,
it is felt that operating system design should reflect

this development and allow for networks of computers.

2. Operating system structure

An operating system consists of a set of indepen-
dently executing programs called processes. Each of
the processes execute on one or more central proces-
sors — usually in a2 multiprogrammed manner. Thus at
the most primitive level, two system operations must
be defined — process communication and process
creation.

2.1. Communication

Process communication is usually implemented by
one or more of the following techniques: shared
memory, hardware trap instructions and message
communication. It will be shown later that chared

resource allocation software reliabilicy

memory has certain drawbacks in order to keep
processes isolated, thus it will be assumed that all
communication is via messages. The function of the
trap instruction will be to invoke operations in the
primitive operating system (called the kernel) which
provides the basic functions of process creation and
process communication.

A message is simply a stream of characters. In
order to implement them an I/O mechanism for
processes must be established. It will be assumed that
all messages are handled via ports [8]. A port can be
viswed as an entrance into a process. A process is
provided with the primitive operations (via trap in-
structions) of allocating a port, sending a message to
a port cwned by some process and receiving a message
from a purt that it itself owns. When sending a
message, a process either may request that execution
be suspended until the process receiving the messages
replies, or may continue processing and wait for a
reply at a later time, It will be assumed that each port
has a unique name, and processes have the ability of
passing the name to selected other processes.

This ability to pass port names selectively ieads
to two imporiant features in operating system design
— the creation of capabilities and the establishment
of a protection scheme. The process that is to create a
new function first establishes a port for that funciion.
Any message then received on that port is interpreted

* This research was sponsored in part by contract
N0OC14-67-A-0239-9032 from the Office of Naval Research
to the University of Maryland.

39

Volume 3, number 2

s 8 request for that function. With this interpretation,
the ability to'send a message to this port is equivalent
io being able to perform this function, or the port
{4s0if can be assumed to be a capabillty (the capsbility
of performing the function).

Since processes have the ability of creating ports
and passing these names to other processes, a form of
grotection can be impler~cnted. Only processes that
need a certain capability wil! be passed the appropriate
port name, If the passing of 2 port name is also a
primitive operation and handled by the kerrel of the
gystem, then this kernel can determine with which
ports a given process may communicate, and thvs no
piocess will be able to forge a message to an unauthor-

ized port.
2.2. Process kierarchy

Systems are usually designed using an: abstract
virtual machine approach [1,2]. This is sometimes

¢calicd an “onionskin’ design. At the lowest level is the

basic hardware of the machine. Using this hardware
primitive new operations are implemented for the

rext I2vel virtual machine. Process creation and
mssage communication are such operations. Using this
levs! a highe: level virtua! machine is implemente
which adds new primitive operations, until the final
user level is implemented which contains such primi-
tive operations as core ailocation, accessing file sys-
tems and the like.

- An extension to the port concept explained
previously can allow this hierarchy to be readily im-
plemented. 1t will be assumed that each process has
an associated capability vector passed to it by the
process that created it. This vecior contains a subset
of the capabilities (ports) available to its creator. A
process may either add or delete entries from its
czpability vector and a process (if it has the capability)

. inay pass a port name to another process. A process
may only communicate with vorts that are in its
capability vector, and thus a s:ructured communica-
tion scheme can be organized among all of the proces-
ses in the system — a strict hierarchy if the capability
to pass a portname does not exist, and a more general
hierazchy if that capability is passed.

INFORMATION PROCESSING LETTERS

November 1974

2.3. Errors

An important aspect in any system design is the
processing of errors. Hardware errors generally either
halt a machine of nothing is specified about an error,
or will activete an error routine if something is speci-
fied (an interrupt is “enabled’”). This analogy can be
implemented in the virtual machine design. At any
level if a process has not anticipated an error, then
the process will be: terminated; if it has anticipated
the error, then the appropriate error routine will be
executed. This organization can be implemented as
on extension to the capability vector, called the
interrupt vector.

At the lowest level the interrupt vector is essen-
tially the hia:dw- e interrupt mechanisms of the
hardware. For each type of hardware interrupt (in-
cluding the hardware trap instructois) the kernel of
the system will enable the appropriate interrupt
routine via a message to the port of the routine that
processes the interrupt. (Of course the system must
be sure that for time-critical interrupts, such as those
that effect moving peripheral devices, the messages
to these interrupt ports be given high priority and be
processed immediately.)

At each successive level, for each capability that is
passed to a process via the capability vector, a port
name is passed as an interrupt vector entry. If a
process sends a message to a function that generates
an error condition, the called process will generate
an error reply. This reply is intcrprated by the kernel
as a message to the port in the interrupt vector entry
that corresponds to the capability just invoked.
Usually there will be a suspended process waiting for
a message on this interrupt port. This interrupt
process can either halt the process in error or send a
“normal” reply.

If a process wishes to process its own errors, it has
the capability (if passed it) to alter its interrupt vector
with a port name it owns. In this manner error condi-
tions either stop a process by being reflected as a
message to an ancestor process, or are error replies to
the process (on a port possibly different from the
normal reply port).

This organization should noi incur significant

Volume 3, number 2

A B C -= CAPABILITY
D D -- INTERRUPT
(a)
KERKEL AT
‘mocrs!\ A B ¢
MARAGER
D DD
(v)
KERNEL
PROCESS SavB e
MAFAGER r——
E E B
F
B E

(a)

Fig. 1. Using capability vectors to create virtual machines.

overhead in message transmission; however, it will
probably incur some overhead in generating error
responses. The problem with error is that the error
condition may not effect the . .cess causing the
error because the interrupt vector may actually be
associated with some other process. This would cause
the kernel to generate an additional message to be
sent, and thus more overhead would result.

An example of this organization may make this
operation clearer. In fig. 1a the kernel of a simple
operating system provides 3 capabilities — process

)

INFORMATION PROCESSING LETTERS

November 1974

creation (port .}, process communication (po:: B)
and the ability to alter the interrupt vector (port C).
Port D is an error pon for al! 3 functions. The kernel
creates the process manager and provides it with a
capability vector (fig. 1b). The process manager en-
ables its own interrupts by changing the interrupt
vector entrics {{ig. 1c) using its capabiaty to port C.
Finally the process manager tests a rew version of the
process manager in a controlled virtual envircnment.
It creates a pew process manager process with modi-
fied capability vector (fig. 1d). Requests for process
creation and process communication will be inter-
cepted by ports F and G so that the old process
manager can monitor the new process’ behavior, and
can simulate the requests by using iis own capabil-
ities to ports A and B. In this example the tested
procese is still given capability C, the ability to
change its interrupt vector. In this example, the
operation of the new process is under complete -
control of the original process manager, and proper
reliable operation of the system can continue.

3. System reliability

An investigation into some of the ideas of
structured programming shows that the above system
organization uses attributes that result in well-
structured systems. The following are some-of these
design considerations.

3.1. Module and data independence

Systems should be desigried with minimal sharing
of data structures across independent modules since
basic data structures can be altered more easily if
they are referenced in only one routine [6,9]. Only
that routine need be altered should the structure
change.

Modules should be explicitly defined as a set of
input/output relationships [5]. No module should
assume any implied structure within another module.
This allows one module to be updated and changed
independently from ail other modules. It also pre-
vents certain errors since a module cannot assume
knowledge of the structure of some other module. If
the input/output relationships of any module do not
change, then any change to its data structures will be

41

Volume 3, number 2

transparent to the rest of the system.

These attributes are preserved by the preceding
systes; design, since all c-nmurication is via messages
to ports. Notice that daia : hared in a comron address
space may not necessarily preserve these attributes
since a inodule may be infiuenced not only by its
input/output relationships, but also by the state of
ancther module due to its shared data. Via shared
nemory it is often possible to (inadventently) mowi-
tor the progress of one routine by another, and thus
make assumptions about its behavior, which may
later be false if one of the modules is altered.

Mcssages can also have predetermined formats that
s7¢ indep2ndent cf the algorithms {or machines) used
1o creat? the messzges. This enhances the independent
nature of mocesses, and possibly allows processes to
easily communicate between two different computers
as in a computer natwork.

3.2. Systems are kierarchically defined

Systems are hierarchical using the proposed capa-
bility vector since each process in the system is created
by some other process with the creator process having
control of this capability vector. Only processes that
have been passed a process’ name can communicate
with it, and taus the communications path is secure.
This allows fer certain functions to be implemented
at one level of the system by being added to the capa-
bility vector, and to be deleted at another leval by
being deleted from the capability vector.

4. Summary

The design of a system using ports for all commu-
nications and a capability and interrupt vector to
contro! communications paths can lead to a well-
structuied hierarchically designed operating system.
Each process is effectively isolated from all other
processes, yet the design allows for a reliable protec-
tion system where some but not all processes have
access o certain functions.

This type of organization will become more sigr:ifi-
cant with increased use of computer networks. With
the low cost of minicomputers and the increased

42

INFORMATION PROCESSING LETTERS

November 1974

reliability of a set of small machines over a singl2 large
one, many applications will be distributed over net-
works of computers. Since processes need to know
only a port name, rather than the location of a
process, it is jossible to design a distributed operating
system whei: processes execute on several different
machines, and can easily communicate [3,4,7]. This
organization avoids the problems associated with
trying to make an operating system that uses shared
memory operate in a distributed manner across
several machines. It is felt that the preceding will
more readily allow for this type of implementation
with such ideas as load sharing and rescurce sharing
networks as the major beneficiaries of such design.

Acknowledgement

Some of the ideas expressed in this paper grew out
of discussions held with W. Michael Lay during the
initial design phases of the distributed computer net-
work project at the University of Maryland.

References
[]

[1] P. Brinch Hanson, The Nucleus of Multiprogramming
System, C. ACM 13 (1970) 238--241.

{2] E. Dijkstra, The structure of the THE multiprogramming
system, C. ACM 1! (1968) 341-356.

[3] D.J. Farber and K.C. Larson, The system architecture of
the distributed computer system. Symp. Computer
networks, Polytechnic Inst. of Brooklyn (April, 1972).

[4] W.M. Lay, D.L. Mills and M.V. Zelkowitz, Operating
systems architecture for a distributed computer network.
Computer Networks: Trends and Applications, IEEE
Computer Society Washington chapter and National
Bureau of Standards, Gaithersburg, Md. (May, 1974)
pp. 39-44,

{5] D. Parnas, A technique for software module specification
with examples, C. ACM 15 (1972) 330-336.

[6] D. Parnas, On the criteria io be used in decomposing
systems into modules, C. ACM 15 (1972) 1053-1058.

[7] R.H. Thomas and D.A. Hendersoq, McRoss — a multi-
computer programming system. AFIPS Spring Joint
Computer Conf. 40 (1972) 281-293,

{81 D. Walden, A system for initerprocess communication in
resource sharing computer networks. C. ACM 15 (1972)
221-230.

{9] W. Wulf and M. Shaw, Global variable considered harm-
ful. SIGPLAN Notices 8 (1973} 28--34.

