
Application of an Information Technology Model
to Software Engineering Environments

Marvin Zelkowitz* and Barbara Cuthill
Computer Systems Laboratog Nat? Institute of Standards and Technology, Gaithersbulg, Maryland

The Information Technology Engineering and Mea-
surement (ITEM) Model has been developed to de-
scribe the information processing activities of an
enterprise, both the automated tasks performed by
computer and the manual processes performed by the
information technology staff of an organization. In this
article, the ITEM model is applied to the description of
software engineering environments as extensions to
two previously developed reference models, the NIST/
ECMA framework (i.e., “toaster”) model and the Proj-
ect Support Environment reference model. The ability
to measure the degree of automation within a pro-
cess, the ability to define the complexity of a process,
and the ability to measure technology transition via a
concept called technological drift are ail metrics that
can evolve from this model. 0 1997 by Elsevier Sci-

ence Inc.

1. INTRODUCTION

The ability to accurately model information technol-
ogy use within an organization is taking on increased
importance as computers take on increasingly cen-
tral roles in an organization. We describe one model
that can be used to model this technology and which
provides the basis for use in roles such as require-
ments analysis for software development, quantita-
tive evaluation of computer technology use, and
traceability of software requirements and designs.

The concept of an environment within the soft-
ware engineering field has grown to mean an infra-
structure set of services (e.g., a file system) and a set
of end user services (e.g., the set of tools to be used
such as editors, compilers). Models like the

Address conwpondence to Dr. Marvin Zdkowitz, NIST NORTH,
Room 517, Gaithershug MD 20899.

*Dr. Zelkowitz is also affiliated with the Computer Science
Department at University of Maryland, College Park, MD 20742.

NIST/ECMA frameworks model (i.e., the “toaster”
model) (NIST, 1993a) provide a classification scheme
for identifying the set of infrastructure services pro-
vided by the environment, and models like the Proj-
ect Support Environment (PSE) model (Brown et al.,
1993) provide for the necessary set of end user
services.

Approaching this problem from the business engi-
neering perspective, models like the Corporate In-
formation Management (CIM) interface architec-
ture (CIM, 1993) provide for the static description of
an enterprise, from the highest level of industry
standards down to the set of tools and files executing
on a given desktop. With this model, functional
areas (e.g., software development, accounting,
weather forecasting) evolve into a series of applica-
tions (e.g., software design) that is implemented
using the tools of the underlying platform.

Both of these approaches, the infrastructure-end
user services of the PSE model and the seven layer
CIM model, are somewhat static. End user services
are, by definition, executable on an appropriate
computer system. On the other hand, in the CIM
model, it is assumed that the functional areas are
implemented by applications at the next level. If a
new tool is developed (e.g., a tool that does true
software design), then software design, in the CIM
model, moves from the functional level to become
just an application.

This, however, becomes untractable. We would
like to apply a given model to several enterprises in
a consistent manner. If software design is a func-

tional area in one organization, then it is a func-
tional area in another, although the means to pro-
vide for that design may be different. In effect, the
degree of automation of a given functional area is

an attribute that undoubtedly will change from orga-
nization to organization.

J. SYSTEMS SOFTWARE 1997; 37~27-40
0 1997 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0X4-1212/97/$17.00
PII SOW-1212(%m5-3

28 J. SYSTEMS SOFlWARE
1997; 37:27-40

M. Zelkowitz and B. Cuthill

The degree of automation is behind much of the
current interest in software process engineering. De-
veloping a software process provides for the steps
which must be undertaken to complete an activity.
This process could simply be the execution of a
single program (e.g., compile Ada source file) or
could involve a complex series of actions involving
both programmer and computer (e.g., testing soft-
ware by compiling, executing tests, checking output,
and repairing errors if found). At each level of the
enterprise, it is important that we be able to identify
the process used to implement actions at that level,
measure the degree that the process is automated,
and to identify the interrelationships among the
various components of the enterprise.

It is towards this goal that we have developed our
Information Technology Engineering and Measure-
ment (ITEM) model. We would like a single nota-
tion useful to model the actions of an enterprise,
model the process of software development, and to
understand the role of process engineering within
this domain.

1 .l. Overview of the Model

The ITEM model is an enterprise-wide service-based
model that builds upon existing models of informa-
tion technology use in organizations. Enterprise-wide
means the major activities that drive the information
management decisions of a large organization, such
as a corporation or government agency. Use of such
models is important to understand information tech-
nology use within an organization. “An enterprise
[-wide] model is the essential ingredient of any ar-

chitectural approach. This model shows both the
data needed by the entire organization and the
processes which manipulate that data” (Work and
Balmforth, 1993). The ITEM model describes the
enterprise’s use of automation and processes as a
sequence of layers. Each layer represents an ab-
stract view of the enterprise’s behavior at a defined
level of detail.

Much of the structure is a merger of existing
concepts mentioned earlier.

1. The CIM interface architecture
2. The NIST/ECMA frameworks model
3. The PSE model for end user services
4. The POSIX.0 open system environment reference

model (IEEE, 1993) which provides a model of
communication and interaction among environ-
ment components.

All of these are layered service-based models de-
scribing the functionality available at each level in
the model. We add to this the concept of software
process, such as the Quality Improvement Paradigm
(QIP) model of Basili (Basili and Rombach, 19881,
which places the product and measurement as pri-
mary drivers of an organization.

Organizations do not exist in a vacuum. We ap-
pend to the model four stimuli to describe influ-
ences on an organization’s information use (Figure
1).

l Market forces are external stimuli which affect the
organization. These include consumer demand,
resource availability, or government regulation.

Figure 1. ITEM Model.

Application of ITEM Model to Environments

Technological changes are the information re-
sources available to the organization to solve the
problems defined by the above market forces.

Modeh are the abstractions needed to understand
how the available technology can address changes
imposed by market forces.

Measurement determines how well the enterprise’s
information processes match the abstractions pre-
sent in the models.

An organization uses the models to weigh the
effects of market forces and technological changes
on the organization. Measurement is important for
determining success criteria for the process. Using
these four components, the enterprise develops, tai-
lors, and adopts strategies. The ITEM model views
strategies as combinations of processes and the au-
tomated support for those processes. Here the ITEM
model is described and then applied to the descrip-
tion of software engineering environments. A more
complete description of the model is also available
(Zelkowitz and Cuthill, 1994).

1.2. ITEM Model Levels

The model defines five information levels. The dif-
ferent levels describe the processes that the organi-
zation uses (e.g., the way the enterprise does its
business) and the automation that the organization
employs (e.g., the way in which it uses software and
hardware information system components) allowing
for the transfer of information among levels of the
model. Notations such as IDEFO (NIST, 1993b) may
be used to model these attributes of an organization.
The five levels are

Enterprise. This level defines organization policy
and decision making. Major corporate decisions
on organization policies are made at this level
with little direct concern about information tech-
nology. These decisions include the selection of
corporate strategies for manufacturing capabili-
ties, outsourcing, and product development. Mea-
sures of success would include business metrics
such as profit, market share, return on invest-
ment, etc.
Application domain. At this level methods for
implementing enterprise decisions are developed.
Examples of application domains include devel-
opment of specific product lines, such as aircraft
manufacturing or on-board computing in auto-
mobiles and business data processing for an orga-
nization.
Activities. Activities are sequences of steps needed
to address enactment of services within an appli-

J. SYSTEMS SOFTWARE 29
1997; 37:27-40

cation domain. Activities represent complex se-
ries of interactions that aid in solving the prob-
lems within the application domain, as will be
explained below.
Tasks. Tasks represent single steps needed to
carry out an activity. This could represent editing
a file, compiling a program or producing a design
document. Each of these individual actions may
be carried out using different methods by differ-
ent enterprise components.
Infrastructure. Infrastructure represents indivisi-
ble components within an enterprise. Hardware
technology like typewriters, fax machines, and
telephones are infrastructure components. With
computer software, basic functionality (e.g., data
base access, communication processes) represent
infrastructure.

The divisions separating these levels are arbitrary.
Later we define these levels as the abstraction level
of a process. One long-range goal of this work is to
quantify more precisely the abstraction levels for the
various processes in an organization.

A task is a single step, an activity is a set of such
tasks and an application domain is a set of activities
solving a larger problem. For example, although
software quality assurance can be an activity (Brown
et al., 1993), it could also be a task or an application
domain in a different enterprise. An application
domain (e.g., software engineering) may be consid-
ered an activity in a larger application domain (e.g.,
product development). In what follows, tasks will be
sets of actions supported by a single tool or small
tool set and application domains as larger product-
oriented sets of activities that achieve organizational
goals.

Over time, a process changes its relative complex-
ity and level. As described in Section 3, increased
automation simplifies an activity so that it becomes
the task of running one tool. For example, generat-
ing and testing the code for a graphical user inter-
face (GUI) now can consist of running one GUI
building tool rather than using an editor, compiler,
linker, debugger, and simulator to write, debug, and
test the code. Alternatively, the enterprise may place
an increased emphasis on some area requiring the
elaboration of previously simple tasks into activities.
For example, an enterprise-wide increased emphasis
on quality may lead to the use of more testing tools
and more elaborate recording and analysis of the
products of those tools. Infrastructure, tasks, and
activities are changing over time in response to
changes in the market place and available technol-
ogy, while application domains and enterprises are

30 J. SYSTEMS SOFTWARE
1997,37:27-40

more stable. What constitutes a complex activity or
application domain may become simpler with in-
creased automation or a simple task may become
more complex with increased elaboration. We call
this concept technological draft and describe it in
greater detail later.

It should be made clear that the levels of the
ITEM model are logical and not physical bound-
aries. Although business plan decisions at the enter-
prise level may not involve automation, the process
model to define, implement, and monitor the plan
may require considerable automation-data bases to
store information, word processors to produce re-
ports, spreadsheets for producing “what if’ scenar-
ios, decision support expert systems for analyzing
strategies, etc.

1.3. Automation vs Process

Each level is concerned with the degree of automa-
tion and the set of processes needed to carry out the
specifications of that level. The relationship between
process and automation is key to differentiating this
model from others. Based upon related work (Brown
and Carney, 1995), processes constrain the set of
services available to the enterprise, and these ser-
vices depend on the set of mechanisms (i.e., automa-
tion). Looking at the inverse relation, mechanisms
implement services that support processes.

At the lowest level, automation is prevalent with
little concern for specific behaviors in an application
domain. For example, a data base system, a word
processor, or a spreadsheet are software technolo-
gies that are generally independent of the specifics
of any application domain. Templates or schemas
tailor a database to the application domain by
defining the structure of its data. Thus, a database
provides a high degree of independent automation
with little attempt to influence the behavior of the
user. This is comparable to the role of the tele-
phone, fax machine, or typewriter.

As one goes up the levels of the ITEM model, this
balance changes. For example, at the highest level
(e.g., determining the business plan of the enter-
prise), the role of automation is relatively small with
the major goal to define the process that will be the
most likely to increase profits, increase market share,
or develop quality products. Automation comes into
play as one implements the defined models as more
detailed sets of activities and tasks needing or utiliz-
ing automation support.

An alternative view of this hierarchy is to examine
the translation of data (e.g., bits being transmitted
or stored in a repository) to information (e.g., sched-

M. Zelkowitz and B. Cuthill

ule of airline flights from Washington to Los Ange-
les) to knowledge (e.g., best alternative to arrive at
Los Angeles airport at 9 pm with lowest cost flight).
Infrastructure services (e.g., a word processing pro-
gram, a telephone, a fax machine) process data
without much interpretation in its use. At intermedi-
ate levels, the basic data is converted to information
(e.g., collecting data on software development to
determine product reliability, productivity, prof-
itability). With this information, knowledge can be
extracted (e.g., Is the waterfall life cycle more effec-
tive than the spiral model? Does concurrent engi-
neering improve development attributes?) At
present, automation effectively collects data, and
individuals are needed to analyze that data and to
process knowledge. Much current research in com-
puter technology is in developing methods for ex-
tracting information from data and in analyzing in-
formation to determine knowledge.

Completion of an activity requires a combination
of both process and automation support and may
successfully be solved by various combinations of
both. For example, the activity of sending a message
to an individual at another location within the enter-
prise can be solved in multiple ways.

Write out information on a sheet of paper and deliver
it to recipient. No technology is needed and this
can be viewed as a process solution to the problem
without the need for automation.

Write out information on a sheet of paper and send
fax. This method uses no computer support and
only minimal automation support (e.g., use of a
fax machine).

Use a word processor to develop memo, print it, and
then send copy via fa machine. This uses a mini-
mal amount of automation in developing the
memo, and there is no integration step which
combines the memo generation process (e.g., use
of word processor) with the transmission process
(e.g., use of fax machine).

Use a word processor to develop memo, and then use
a command such as “send fa” to automatically
have computer-installed fax hardware send the memo
to the receiving site. In this case, the word proces-
sor is integrated with the fax machine and au-
tomation support for this activity is very high.

Use word processor and “send fax” software to send
fax directly to receiving computer. In this case, no
fax machine is used at all, and a direct computer-
to-computer link is established.

l Use a word processor and then send electronic mail
to recipient. This avoids the concept of a fax ma-

Application of ITEM Model to Environments

chine totally, and represents an integrated auto-
mated solution to the problem.

In all six cases the results are the same: The receiver
at another location gets a memo; however, the pro-
cess and the method of automation for achieving the
goal differ. For example, solutions two through five
(e.g., use of fax transmission) depend upon the tele-
phone network to provide telecommunications sup-
port and the use of fax protocols for secure and
correct transmission of the message. The electronic
mail solution, while eliminating the direct use of
telephone lines and fax protocols, assumes the exis-
tence of a more complex communications network
linking the computers together (which may use tele-
phone lines).

2. SOFTWARE ENGINEERING ENVIRONMENTS

Currently, most discussions of information technol-
ogy used in such organization emphasize only one of
the following perspectives.

Automation support: Environments supporting in-
teroperable software tools procured from various
sources are an important factor in improving
effective use of computer technology. Consider-
able effort has focused on developing better ways
of specifying the computer systems that a hetero-
geneous group of vendors can provide. This in-
cludes the hardware platform, software environ-
ment infrastructure, and tools for effectively us-
ing the enterprise’s information.
Processes: The services implemented in informa-
tion systems provide only part of the answer for
increasing productivity. How one uses those re-
sources, the process model that drives an enter-
prise’s use of information, is often as important,
if not more so, than the underlying computer
resources.

Both concepts, the automated environment and the
process, are important to effectively use information
technology. Therefore, any information model should
integrate both aspects of the enterprise.

2.1. Environment Infrastructure

At the base of the model is the automated computer
system providing a core set of services for the au-
tomation of components of the adopted task, activ-
ity, application domain and enterprise processes.
The NIST/ECMA SEE Framework Reference

J. SYSTEMS SOFIWARE 31
1997; 37:27-40

Model (NIST, 1993a) and systems like UNIX,’
POSIX, Microsoft Windows, etc. describe models
and products addressing information system infras-
tructure.

The infrastructure of information systems is un-
dergoing a significant degree of standardization to-
day. The frameworks reference model developed
jointly by NIST and ECMA (NIST, 1993a) is typical
of today’s approach towards defining the software
component of an environment infrastructure. In the
NIST/ECMA frameworks reference model (the
framework M), an environment infrastructure or
framework consists of 7 sets of basic framework
services: (1) Object management services with data
repository functions, (2) Communication services for
passing information among environment compo-
nents, (3) Process management services for building
and using process models in the environment, (4)
User interface services for permitting the user to
communicate with components executing in the en-
vironment, (5) Policy enforcement services for insti-
tuting security and integrity constraints in the envi-
ronment, (6) Framework adm@istrution services for
maintaining the environment and tailoring it for
individual use, and (7) Operating ystem services for
implementing primitive functions that communicate
with the underlying hardware platform.

The model is a service-based model in which each
service describes an interface that supports some
needed functionality. However, because this is an
abstract description, the details of this functionality
(i.e., its signature of input and output objects) is not
specified. Edition 3 of the framework RM lists 66
such services grouped into these 7 categories. It is
not an architecture because it does not constrain the
system designer in implementing each service and in
combining the services into components.

The framework RM is not a requirements docu-
ment for an environment. Instead, it is a catalog of
potential services; each framework implementation
can be measured against the framework RM to
understand which services are present and which are
not. It is unlikely that any environment will imple-
ment all the services. For example, there may be
several methods for communicating information
among the processes in the environment-storing

‘Certain commercial products are identified in this article to
specify adequately the applicability of the model. Such identifica-
tion does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply
that the products are necessarily the best available for the pur-
pose.

32 J. SYSTEMS SOFTWARE
1997;37:27-40

information in the object repository, using a message
passing communications service, using a remote pro-
cedure call communications service, or sharing com-
mon data storage in memory. It is unlikely that any
specific tool set will need all of these options. Secu-
rity (i.e., Policy Enforcement Services of the frame-
work RM) is an additional example where enforce-
ment of security issues throughout an environment
may seriously impact performance if such enforce-
ment is not warranted (e.g., a stand-alone computer
operating in a home office environment).

Many of today’s software interface standards de-
fine services relative to the services in the frame-
work RM. Standards and proposed standards like
X-Windows and Motif provide the interface for the
user services of the framework RM, several of the
POSIX standards (e.g., 1003.1) and X/Open’s Spec
1170 define interfaces for operating system services,
ECMA’s Portable Common Tool Environment
(PCTE) provides many of the object management
services, and Sun’s Tooltalk, and HP’s Broadcast
Message Server (BMS) provide many of the commu-
nication functions needed in a distributed system.

There are products, whether standards-based or
not, providing components of the environment in-
frastructure. Systems like IBM’s OS/2, SUN’s So-
laris, IDE’s Software through Pictures, Cadre’s
Teamwork, Microsoft’s Windows NT, are all at-
tempts at solving the environment infrastructure
problem by defining the set of application program
interfaces (APIs) needed to support one facet of tool
interoperability. Given a standard set of APIs, vari-
ous applications can more easily interoperate on the
same environment platform with a relatively high
degree of common look and feel and internal data
consistency.

While many approaches to an environment infra-
structure have been implemented or are under de-
velopment, not all relevant problems have been
solved. Several key issues still remain.

1. The foremost problem is effectively integrating
the tools of an environment. This, described
shortly, is the primary functionality needed for
appropriate automation of the Activity level that
will allow personnel to use collections of software
products to solve a single application problem.

2. The framework RM provides the set of infra-
structure services needed to support the tools for
many of an enterprise’s tasks. However, is the set
of services provided by this document sufficient?
For example, is “weather forecasting” an appro-
priate service for a software development envi-
ronment? (e.g., Is predicting whether your em-

M. Zelkowitz and B. Cuthill

ployees will be able to show up for work during a
storm an appropriate software engineering devel-
opment capability? It certainly would be for a
personnel application domain.) This is unclear.
The framework RM was developed within a cer-
tain context around 1990. As such, it has certain
biases and limitations, among which include the
following.

l The framework RM was originally developed
around a repository-based structure. As such,
the set of communication services was origi-
nally very limited and, while subsequently ex-
panded, still needs further development.

l The repository design of the framework RM did
not originally include object-oriented technol-
ogy that evolved since the development of this
model; additional service definitions to accom-
modate this technology may be needed.

The definition of other tools for specifying envi-
ronment infrastructure is needed. These would
include profiles of infrastructure standards and
mechanisms for specifying the integration meth-
ods supported by the tools.

2.2. Tasks

Tasks represent single steps towards the completion
of the defined activity. Each development activity is
composed of a set of tasks for performing that
activity. Tasks usually are, but are not required to
be, automated or supported with specific automated
tools that transforms inputs into outputs. For exam-
ple, the activity of designing software within the
waterfall life cycle (Royce, 1970) application domain
process requires a coding task which may be per-
formed manually and supported with a text editor or
automated with a code generator. Combinations of
tools or tool sets can provide assistance in the per-
formance of individual tasks and activities.

The PSESWG Project Support Environment Ref-
erence Model (Brown et al., 1993) (called PSE RM)
developed the concept of end-user services to de-
scribe these automated products which support de-
velopment activities. The end-user services suggest a
partial list of tasks for a software development en-
terprise.

For example, the PSE RM developed end-user
services in four different application domains: Tech-
nical Engineering, Technical Management, Project
Management, and Support Services. Each of these,
in turn, is divided into the set of activities needed to
support the processes engaged in specific tasks. For

Application of ITEM Model to Environments J. SYSTEMS SOFIWARE 33
1997; 3727-40

example, the Technical Engineering services include
System Engineering services, Software Engineering
services, and Process Engineering services. The Soft-
ware Engineering services include the more familiar
tasks of requirements definition, design, coding,
static analysis, testing, etc. Typically, a single prod-
uct implements one of these fine-grain services.
These are products available supporting or automat-
ing most of these services. For example, Table 1
shows that within the Software Engineering applica-
tion domain, the following sample tools exist.

The application domain process model selected by
the enterprise defines activities and tasks, the pro-
cesses used to implement them, the services used to
support the set of them, the tools used to implement
them and the relationship among those tools. The
application domain and the activity level process
defines how the end-user services, and the tools
implementing those services should be related in an
environment. For example, PSE software engineer-
ing services include both a software verification
service and a software testing service. How one
implements each service and connects the imple-
mentations are decisions made locally to tailor the
environment to support the enterprise’s defined pro-
cess.

While the PSE RM has defined a candidate set of
end-user services for the systems and software engi-
neering application domains, outside of the software
development world, little progress has been made to
develop catalogs of necessary end-user services in
other domains.

There are few standards or standards activities
related to defining tasks and end-user services. Pro-
gramming language syntax and semantics have been
standardized for most common languages (e.g., C,
FORTRAN, Ada) and many data base languages do
have standard interfaces (e.g., SQL). There are also
industry “benchmarks” for testing some systems and
standards like POSIX 1003.1 and several language
standards do have test suites for testing confor-
mance. ISO/IEC/JTCl/SC7 has defined software
life-cycle processes and begun defining the tasks that
make up these processes in areas like configuration
management. Outside of these activities, there have

Table 1.

Service software tool

Software Design MarkV ObjectMaker
Software Simulation Arcadia project’s Cbiron GUI builder
Software Generation UNIX’s YACC
Compilation Compilers for C, FORTRAN, Ada,. _ .
Software Static Analysis NASA’s Static Analysis Program (SAP)

been few efforts to define processes or compatible
interfaces for end-user services.

2.3. Activities

In software development, software engineers must
engineer software (e.g., specify and design it), build
software (e.g., code and test it), certify software (e.g.,
verify, validate, perform quality assurance on it), and
maintain software (e.g., fix errors and enhance it).
Each of these activities supports a portion of the
application domain. Each organization tailors its
software development process into activities which
address specific concerns in its own application do-
main model. Various process models are available
for modeling activities, such as object oriented de-
sign or cleanroom software development, while oth-
ers models handle configuration management, qual-
ity assurance, and specific development tasks like
software coding, testing, etc.

Activities are defined sequences of tasks, sup-
ported by end-user services, which have a clear
initiation point, progression and end point and have
the goal of producing a product. This does not rule
out iteration among tasks until conditions are met.
The definition of an activity includes policies on
when and how the activity can be initiated (precon-
ditions on the activity), the circumstances of moving
from one task to another (pre- and postconditions
on each task) and how the activity can be concluded
(postconditions on the activity).

The PSE RM defined activities as sequences of
user actions supported by sets of defined services as
opposed to tasks which are user actions supported
by a single service. This mapping of activity to multi-
ple services implies the need for multiple tools to
complete that activity. For example, the PSE RM
defined software quality assurance (SQA) as an ac-
tivity that utilized the metrics, verification, testing,
and configuration management end-user services of
the existing PSE RM. SQA was not deemed to be a
separate service (e.g., implemented as a single com-
puter tool), but instead was a process composed as
the enactment of several existing services.

Tool integration, mentioned above under environ-
ment infrastructure, is crucial to effectively provide
automated support for activities. In order to auto-
mate activities with a tool set, there must be a
seamless way to pass information and control among
the tools. For example, the build software activity
mentioned above generally uses the following tasks
and tools.

l Use a tieign compiler to aid in the transla-
tion of design to source program text.

34 J. SYSTEMS SOFTWARE

.

.

.

.

.

.

.

.

.

.

1

2.

1997;37:27-40

Use a reuse library browser to identify any avail-
able components to reuse.

Use an editor to enter source program text.

Use a coaqpiler to translate the text.

Use a linker to assemble the separate program
components into an executable version.

Use a static analyzer to analyze the struc-
ture of the source program.

Use a metrics evaluator for determining the
complexity of the source program.

Use a verifier to prove the correctness of the
source program.

Use a source code debugger to monitor pro-
gram execution.

Use a testing tool to execute and test the
source program.

Use a configuration mapagemnsnt tool for
maintaining libraries of source programs.

Two immediate observations from this list of tasks.

Today, although all of these tools would be use-
ful, they cannot be built into a single software
engineering environment economically. However,
this set of tasks is necessary (whether computer-
based or manual) for most software development
today, and the proposed model in this article
must be able to describe an environment contain-
ing all these tools and processes that would use
the full tool set.
Information must be able to be passed among the
set of listed tools: editor, browser, &sign
cwiler , ctn&ler, linker, etatic
analyzer, debugger, metric8 evalua-
tor, verifier, testing tool, and con-
figuration management tool. This is the
integration problem. While individual tools are
relatively easy to build, accepted techniques for
transferring data and control among tools need to
be further studied and agreed upon mechanisms
need to be developed.

There are a few standards, or standards activities,
in this area. Those available tend to focus on soft-
ware development or other types of product devel-
opment. Standards like Microsoft’s Object Linking
and Embedding COLE), Common Data Interchange
Format (CDIF), Standard for the exchange of prod-
uct model data (STEP) (Trapp, 19931, Electronic
Design Interchange Format (EDIF) (Kahn and
Goldman, 19921, Common Object Request Broker
Architecture (CORBA) and PCI’E are trying to ad-
dress how heterogeneous tool sets may interoperate.

M. Zelkowitz and B. Cuthill

Standards like IS 12207-l Software Life Cycle Pro-
cesses define processes and activities in areas such
as software development, acquisition, and configu-
ration management.

2.4. Application Domains

If software development is important to the enter-
prise, what is the application domain process for
building software ? Such processes as DOD-STD-
2167A for defense system software development
(DOD, 19881, cleanroom development for improved
quality of the resulting program, and the spiral model
of software development (Boehm, 1988) are possible
choices. There are also processes like the SE1 CMM
(Paulk et al., 1993) for measuring and improving the
development process. Measurements of the effec-
tiveness of application domain processes to meet the
enterprise level goals begin to address the “en-
gineering” of information technology. Effective au-
tomated support for processes requires extensive
tool interaction and customization in software envi-
ronments.

Application domains are focus areas of the enter-
prise that result in identifiable products. However,
“product” does not necessarily mean items sold by
the enterprise. Products may be internally used,
such as production of the payroll “product.” An
application domain process will consist of a se-
quence of activities with the identifiable product as a
goal. Application domains can produce products
which are feedback for redefining tasks and activi-
ties and for reentering the process. Application do-
main models define the mechanisms an organization
uses to build its sets of activities and the organiza-
tion’s constraints on these activities. These activity
definitions determine the organization’s need for
end-user services. The task interconnections in the
activity imply the need for corresponding service
interconnections implemented in some environment.
Much of the current interest in process modeling
addresses the set of processes needed to solve prob-
lems in some application domain. Process model
activities in the software development domain in-
clude,

l Defining the enterprise’s Sofhyare Development
models. The process of developing software is
certainly a major concern, and development mod-
els have been under study for many years. Most
organizations use the so-called “waterfall model”
and processes similar to DOD-STD-2167A stan-
dards for developing software. In this model, each
phase of the development process must be com-

Application of ITEM Model to Environments

.

pleted before the next phase can begin. The pro-
cess progresses from requirements to specification
to design to code to test for the complete software
system. The model is product-bused because mov-
ing from one activity to the next generally re-
quires the completion of a milestone product-for
example, a design document before coding begins,
source programs successfully completing unit test
before integration testing, an integrated system
passing integration tests before beginning soft-
ware quality assurance validation, etc.

However, variants to the waterfall model exist.
Boehm’s spiral model emphasizes risk reduction
and prototyping as drivers even though the ulti-
mate development follows a waterfall-like process.
Rather than view the development process as a
progression of deliverable documents, develop
ment is viewed as successive prototypes needed to
reduce the overall risk of building a product. The
cleanroom process uses similar phases to the wa-
terfall model; however, cleanroom places a greater
emphasis in design verification with a correspond-
ing lessening (if all goes well) of testing during the
coding phase.

Qua& improvement. An important consideration
is the improvement in the quality of software by
improving the quality of the software development
process. The assumption behind improving the
development process is that improvement in the
process will lead to improvement in the product.
Two well-known examples of quality improvement
processes follow.
(1) The SE1 Capability Maturity Model (CMM) is

a process an organization can use to improve
its software development activities. The CMM
defines a process for an organization to follow
to investigate its own development processes,
to institute management controls and mea-
surement guidelines, and to improve its under-
standing of how it does its business.

(2) The NASA/GSFC Experience Factory (Basili
et al., 1992) is a model that grew out of
NASA-Goddard’s Software Engineering Labo-
ratory @EL). This is a bottom-up approach
where an organization tailors an existing de-
velopment process for process improvement.
Its ultimate goal, however, is similar to the
CMM in getting an organization better pre-
pared to develop software.

There is additional work in developing notations
for designing development processes. Systems like
Marvel, Process Weaver, and others, are all attempts

J. SYSTEMS SOFIWAFCE 35
1997; 37127-40

to provide automated support for a defined process,
therefore, encouraging its use.

2.5 Enterprise Models

An enterprise consists of the processes which define
the functioning of the application domains that pro-
duce and direct the enterprise’s products and
services. Within the software development area, un-
derstanding the relationship of software to the orga-
nization’s goals is a first step. Real-time embedded
applications (e.g., computer controls in an automo-
bile) reflect a different set of issues than a pure
software development (e.g., producing a new spread-
sheet program for use in a desktop workstation).
Using methods such as sequential or “pipeline” pro-
cesses are major enterprise-level decisions. Altema-
tives may consist of parallel or “concurrent” engi-
neering approaches (Malone et al., 1993). How one
implements such processes depends upon the spe-
cific application domain that the enterprise is con-
cerned about.

The enterprise model also defines the policies
used in executing the processes, the relationships
among these processes, and the starting and termi-
nation of processes. Risk analysis is a major concern
of business policy-making. This level is concerned
with the policies of the enterprise’s business plan.
How does an organization define its development
processes? Is the organization often involved in
building many new and different products where the
risk of an incorrect design is extremely high or is it
involved in repeated development in similar applica-
tions? In the former case, a process like the spiral
model will minimize the exposure to cost risks by
forcing successive prototypes to deal with the un-
knowns of the development process. On the other
hand, for the latter case, a more standard waterfall
process may be less expensive since there is less risk
of a faulty design.

Does a CMM or an Experience Factory process
improvement approach fit better with other pro-
cesses in the enterprise and with the enterprise
goals? What are the risks in developing either model.
Little has been done to develop a software environ-
ment supporting enterprise level processes, process
management, and decision making.

3. MEASUREMENT

The ITEM model represents a classification of the
processes undertaken by an enterprise in its use of
information technology. However, as part of the
evaluation of those processes we need to provide a

36 J. SYS’IEMS SOFIWARE
1997; 37:27-40

mechanism for measuring the use and effectiveness
of information technology in pursuit of the goals of
the enterprise. In this section, we discuss the exter-
nal market forces and internal technological changes
that have an effect upon the level of automation
used by an enterprise.

We can initially address three measurement at-
tributes as part of the model (Figure 2).

1.

2.

3.

Abstraction level represents the hierarchical place
that a given process has within the enterprise.
We already described this in the previous section
as a nominal measure representing an infrastruc-
ture, task, activity, application domain, or enter-
prise process. A refinement of this measure would
be to a more quantitative concept to measure the
degree of hierarchical level within the model.
However, as of now we only define these five
nominal levels.
Automation level represents the degree of au-
tomation a given process possesses. An automa-
tion level of 0% represents a purely manual
process, while an automation level of 100% rep-
resents a purely automated process. An obvious
goal of information technology is to increase the
automation level of all processes.
Process complexity represents the complexity of
performing a given process. For a given process,
we would like as low a complexity as possible
(i.e., process simplicity).

Previous work on the PSE, NIST/ECMA, and
other reference models has discussed the level of
services provided by an environment (i.e., what we
call the abstraction level here). In this section, we
discuss further the interaction between automation
level and process complexity. Much current process
research is implicitly _ concerned
measures, although such research
discussed their characteristics.

about these two
has not explicitly

M. Zelkowitz and B. Cuthill

0% % Automation
Figure 3. Process horizon.

100%

3.1. Process Horizon

Our concept of process complexity is based upon
two assumptions about the complexity of processes.

Assumption 1. Process horizon: For any automa-
tion level, there is a limit to the complexity where
more complex processes are unstable (e.g., unreli-
able, incorrect). We an describe this by Figure 3. For
any given level of automation, there is a level of
complexity that represents the maximum process we
can develop reliably. For example, process A repre-
sents an unstable process, and process B represents
a more stable process. The dotted line represents
our process horizon or the maximum complexity we
can comprehend for that degree of automation. Be-
cause machines are more reliable than people for
repetitive tasks, the slope of the process horizon is
positive as more automation is introduced, as ex-
plained below.

This assumption is used constantly in software
development. For example, consider the process of
building programs in assembly language, a process
that is mostly manual with a little degree of automa-
tion (i.e., use of the assembler). Process A might
represent a large real-time operating system, a pro-
cess that has frequently been shown to be error-
prone and very time consuming (e.g., development

%
A

I
Figure 2. ITEM Measurement attributes.

0

Application of ITEM Model to Environments J. SYSTEMS SOFTWARE 37
1997: 37~27-40

% Automation
Figure 4. Equivalent complexity.

% Automation
Figure 5. Process movement.

of OS/360 by IBM (Brooks, 1975)). Process B might
represent a smaller program written in assembly
language, a more manageable unit of work.

Assumption 2. A second assumption implicit in
software development concerns the effects of in-
creasing the degree of automation in a process: If a
process becomes more automated, the process com-
plexity decreases. Figure 4 represents the complexity
of a process as it becomes more automated. As the
computer takes on an increasing role, the complexity
of the overall process decreases. In this figure, pro-
cess A might represent our assembly-language oper-
ating system, while process B might represent the
same operating system written in C, a simpler pro-
cess than the original one. The assumption is that
for a given complexity level, the more automated the
process is, the more reliable it will become. This is
based upon the observation that automated pro-
cesses (even relatively unreliable ones> are more
reliable than purely manual ones that depend upon
people performing the actions.

Figure 5 represents the effects of both of these
assumptions.

Corollary 1. For two processes of equal automa-
tion levels, choose the simpler process (e.g., Process
B over process A in Figure 5).

Corollary 2. For two processes of the same com-
plexity, choose the more automated process (e.g.,
Process C over process B in Figure 5). The assump-
tion is that automation increases the reliability of
the process.

3.2. Technology Transition

We can summarize the above discussion to provide a
picture of technological innovation by Figure 6. Let
us use the example of building an operating system,
as given previously.

l A process is attempted that is above the process
horizon (e.g., process A of building a complex
operating system in assembly language).

In order to be successful, a simpler process with
the same degree of automation that is below the
process horizon is attempted (e.g., process B is a
simpler system built in assembly language).

Later, as a result of automation, the same process
can be achieved with lower complexity and in-
creased automation (e.g., process C could repre-
sent the same system as process B written in C).
In this case, we would state that process C is a
conforming process to process B.

As a result of the increased automation, the pro-
cess that was above the process horizon is now
suitably below this horizon and can reliably be
implemented using this new process (e.g., Process
D might represent the original complex operating
system, now easily built in the C language).

Because of the increased complexity allowed by
the increased process horizon, an even more com-
plex system than the original system may now be
built (e.g., process E may represent a complex
client/server distributed system built in C, which
wouldn’t have even been attempted with the origi-
nal assembly-language process of process A).

This five-step process represents the general tech-
nology transfer process as applied to information
technology. A process is too hard (i.e., above process
horizon), it is simplified, a more automated process
is found, and then it is discovered that with the new
process even more complex processes can be built.

%AUtOlMtlOll
Figure 6. Technological innovation.

38 J. SYSTEMS SOFTWARE
1997; 37~27-40

This process is continually repeated until the process
is completely automated.

Corkscrew phenomenon. Of course, we have as-
sumed in this discussion a single abstraction level
slice of the ITEM model. In reality, increased au-
tomation tends to also increases the abstraction
level. For example, use of C + + instead of C not
only increases the degree of automation, but the
introduction of objects and classes moves the ab-
straction level to the right somewhat in Figure 2 as
the enhanced process builds more capabilities into
the process. What we get is a kind of “corkscrew”
path in three dimensions through Figure 2. Process
C of Figure 6 represents a more automated version
of the previously-implemented process B, while D
and E represent enhanced capabilities not present
in the original process. Hence, the new process E
represents a higher abstraction level than the origi-
nal process A.

One effect of this is that abstraction level is a
property of an individual organization. What is an
application domain process in one company may be
only an activity or task within another, depending
upon the automation and processes that are in place.
Because abstraction level is a property of an individ-
ual organization, we can discuss both the abstraction
level of a single company and the abstraction level
within the particular industry of that company. We
will do this by first introducing the concept of tech-
nological drift.

Technological drift. The discussion so far has as-
sumed a rather static structure for an abstraction
level. In reality, this is dynamic and changes over
time, with a drift towards the left (that is called
technological d$), which is shown in Figure 7. That
is, over time, concepts that were considered ad-
vanced processes in an enterprise become more
mundane and routine.

M. Zelkowitz and B. Cuthill

For example, in the 1950s reading and writing to
a file was a complex application program (in the
application domain abstraction level). By the 1960s
with the advent of access methods reading from a
file became a rather simple task. Today, with win-
dowing systems becoming prevalent, reading and
writing is a simple infrastructure concept and even
more complex actions such as scrolling, cut-and-
paste, and menu buttons are becoming simple tasks.

The effects of technological drift on our process
horizon concept is that as a process becomes auto-
mated (processes A through E of Figure 61, the
effects of increased abstraction level is countered by
this drift. So a successful company is one that man-
ages to stay “in place” for its processes. For exam-
ple, the complexity of software in C + + today is
about at the same abstraction level as assembly code
was in the early 1960s.

Because we say that process C of Figure 6 is a
conforming process to B, the extension to processes
D and E represent technological innovation. We say
that process E is at the same abstraction level of the
former process B and process B has drifted to a
somewhat lower abstraction level.

What impact does this have on technology transi-
tion within a company? If a company “stays ahead of
the curve,” that is, it builds new automated pro-
cesses faster than the technological drift across an
industry, then it will raise the abstraction level of its
processes compared to other companies, allow its
personnel to consider more advanced concepts and
be more attuned to the needs of the enterprise.
Thus, a successful company will have its processes
evolve faster than the technological drift to the left
in Figure 7. On the other hand, if a company does
not adapt to changing technology rapidly enough
(e.g., staying with process C of Figure 6 instead of
developing processes D or E), then its own abstrac-
tion level will drop relative to that of the industry,
and it will be left behind and probably fail.

Figure 7. Technological drift.

Application of ITEM Model to Environments

So if we can compute an average or a representa-
tive abstraction level for an organization, we will say
it is technologically successful if it is higher than the
corresponding abstraction level for comparable pro-
cesses within the industry. The U.S. automobile in-
dustry was a classic example of this. The use of
automation and robots by Japanese manufacturers
during the 1980s allowed Japanese cars to be more
reliable than U.S. cars by using a more advanced
development process based upon increased automa-
tion. It was only when more advanced technology
was used in the late 1980s did U.S. manufacturers
start to close this quality control gap.

However, what is still needed in this theory is a
quantitative metric of process complexity. We need
the analog of function points or lines of code for
software products that would allow us to compare
each of these complexities and to be able to fine-tune
what we mean by an abstraction level. While we can
say C + + is “a higher abstraction level” than C, the
question is “how much higher?” How would we
compare a Smalltalk program with C ++, and
C ++ to Prolog, for example? All of these need
further investigations at this time.

4. CONCLUSIONS

This article described the outline of the Information
Technology Engineering and Measurement Model
to understand how information systems are used in
an organization. Understanding this as information
technology evolves provides a mechanism of change
as organizations evolve over the next decade.

The ITEM model was used to describe the com-
ponents that go into developing integrated software
engineering environments. This is an improvement
over previous models in this area because

The model includes both computer-automated
tasks and manual processes in its description.
This is an improvement over previous models that
emphasized one over the other.
The model describes organizations at multiple
levels of detail. This article emphasized the soft-
ware development components of an organiza-
tion. In Zelkowitz and Cuthill (1994), the ITEM
model is used to describe enterprise-wide infor-
mation technology and to describe the processes
that such an enterprise undergoes as its informa-
tion technology needs change over time.
The model qualitatively can be used to describe
technology transition and provides a mechanism
for studying the evolution of an organization over
time as technology changes within an industry.

J. SYSTJZMS SOFTWARE 39
1997; 37127-40

4. We have the beginnings of a theory to quantita-
tively define what we mean by technology transi-
tion and a quantitative measure of process im-
provement .

Today, pieces of the ITEM model are well under-
stood. The framework and the PSE RM provide
good baselines for automation issues at the task and
activity levels. Work on process modeling provides
the basis for determining higher-level attributes, but
there are many gaps (e.g., what are the various
models at each level? How is the process horizon
and technological drift applied across all levels and
applied across an industry? What standards and
products can be used to implement services at each
level?) Current efforts are to determine how to
extend the model and fill in these gaps.

REFERENCES

Basili, V. R. and Rombach, H. D., The TAME Project:
Towards Improvement-Oriented Software Environ-
ments, IEEE Trans. on Software Engineering
(14)10:758-773 (1988).

Basili, V. R., Caldiera, G., and Cantone, G., A Reference
Architecture for the Component Factory, ACM Trans.
on Sofrware Engineering and Methodology, (1)1:53-80,
1992.

Boehm, B., A Spiral Model of Software Development and
Enhancement, IEEE Computer (21)5:61-72 (May, 1988).

Brooks, F., The Mythical Man-Month, Addison-Wesley,
Reading, Massachusetts, 1975.

Brown, A., and Camey, D., On the Necessary Conditions
for the Composition of Integrated Software Engineering
Environments, Advances in Computers 42, 1995.

Brown, A., Camey, D., Oberndorf, P., and Zelkowitz, M.,
(eds.), Reference Model for Project Support Environments,
Version 2, NIST Special Publication 500-213, October,
1993.

Corporate Information Management: Process Improvement
Methodology for DOD Functional Managers, Second Edi-
tion, D. Appleton Co., 1993.

Dept. of Defense, Military Standard: Defense System Soft-
ware Development, DOD-STD-2167A, 29 February
1988.

IEEE, Draft Guide to POSIX: An Open Systems Environ-
ment, PlOO3.0, D16, August, 1993.

Kahn, H., and Goldman, R., The Electronic Design Inter-
change Format (EDIF): Present and Future, 29’h ACM
/ IEEE Design Automation Conference, 1992, pp.
666-671.

Malone, T., Crowston, K., Lee, J., and Pentland, B., Tools
for Inventing Organizations: Toward a Handbook of
Organizational Processes, in Proc. of 2”d IEEE Work-
shop on Enabling Technologies Infrastructure for Collabo-
rative Enterprises, 1993, pp. 72-82.

40 J. SYSTEMS SOFIWARE
1997;37:27-40

NIST, Reference Model for Frameworks of Software Engi-
neering Environments, Edition 3, NIST Special Publica-
tion 500-211, August, 1993.

NIST, Integration Definition for Function Modeling
(IDEFO), FIPS Pub 183, NIST, December, 1993.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V.,
Capability Maturity Model for Software, Version 1.1,
IEEE Sojhare, lo(4) 18-27 (July, 1993).

Royce, W. W., Managing the Development of Large Soft-
ware Systems: Concepts and Techniques, in Proceedings
Weston, IEEE Computer Society, 1970.

M. Zelkowitz and B. Cuthill

Trapp, G., The Emerging Step Standard for Product Model
Data Exchange, IEEE Computer, 85-87 (February,
1993).

Work, B., and Balmforth, A., Using Abstractions to Build
Standardized Components for Enterprise’ Models, in
Proc. I993 IEEE Computer Society Software Engineeting
Stanaizrds Symp., 1993, pp. 154-162.

Zelkowitz, M., and Cuthill, B., Information Technology
Engineering and Measurement Model, National Insti-
tute of Standards and Technology, Technical Report
NISTIR-5522, November, 1994.

