
AUTOMATIC PROGRAM ANALYSIS AND EVALUATION

Marvin V. Zelkowitz

Department of Computer Science
University of Maryland

College Park, Maryland 20742

and Institute for Computer Sciences
and Technology

National Bureau of Standards
Washington, D. C. 20234

There is currently considerable interest in the
computing community in the evaluation of computer
programming. However, in order to objectively evaluate
such concepts, it is necessary to undertake a thorough
evaluation of the programming process itself. Most
previous studies of this type have analyzed, by hand
usually, a few instances of programs. This has led to
some general conjectures; however, the amount of
information that must be processed precludes any large
scale analysis. In order to avoid this problem, an
automatic data collection facility has been implemented
as part of ~a PL/I compiler at the University of
Maryland. This system automatically collects
information on each program that has been compiled - at
almost no additional cost to the user of the compiler~
This paper will describe the system and will evaluate
some of the characteristics of some of the 25,000
programs that have been run since July, 1975.

~ : Evaluation, Errors, Program complexity,
Program measurement, Static and dynamic analysis

1oIntroduction

The ability to write reliable computer programs is
becoming of prime importance in the industry today~
While hardware costs are rapidly dropping, software
costs have frequently risen to fill the gap. Approaches
towards solving this problem have generally centered in
two different areas.

At one end of the scale, various development
techniques, such as structured programming, chief
programmer team, or top-down design, have been
proposed. The problem, however, is that there is
little objective data that can be used to evaluate the
effectiveness of such techniques. At the other end of
the spectrum are the various automated tools that have
been developed [8]~ These tools allow the programmer
to better evaluate and debug a given program. With
such a proliferation of tools, each with its own
control language, however, the tendency may be to
ignore them all.

2. The PLUM System

The PLUM system consists of four phases.

Translation Phase
This phase is related to the standard compilation

process of most translation systems. Source PL/I
programs are converted into Univac machine language.
The compiler generates the usual assortment of error
messages typical of such systems.

In addition, program structure information is also
generated. Several PL/I constructs that are not errors
but are error-prone also generate warnings. For
example:

I~ BEGIN; A=0; END; will generate a warning
that DO should be used instead of BEGIN for effficiency
even though BEGIN is correct. BEGIN implies a new
stack area; DO does not.

2~ END X; will generate a warning if the END
is used to end several blocks. This may be due to a
forgotten END earlier in the program. Thus, the
program will compile and not execute correctly.

3. The sequence X=40; Y= X/2.0; will
generate a warning since the correct PL/I answer is 16,
not the expected 20!

4~ Program structure is used to optionally
produce an indented listing, based upon the procedure
and the DO group nesting depth.

Execution Phase
The execution phase follows compilation. Generated

code checks out all error conditions and if any error
occurs, control is turned over to an interactive
diagnostic system~ Using it, the programmer may display
and alter any program variables. The programmer may
also turn on and off tracing facilities, set
breakpoints, and step through execution - all at the
source language level~

pOst-Execution Phase
At the University of Maryland, the development of In this phase, collected statistics about the

the PLUM PL/I compiler has developed into a system program just executed are printed. This includes
where both of the above aspects of program design could statement frequency profiles, dynamic statement counts,
coexist in one system. Users use the automated tool post-mortem dumps, trace tables, and other forms of
~upport of PLUM for program checkout while data is collected data.
being collected to analyze the actual programming
process. PLUM is basically a diagnostic PL/I compiler These three phases allow the programmer to
for the Univac 1108, much as PL/C is for the IBM efficiently debug a program and to feed back
.~60/370 [3] by generating diagnostic code to check for information on its structure. The fourth phase of PLUM
all error conditions [9]. However, over the past two permits evaluation of the programming process. It is
years, PLUM has been extended to collect data on this phase that provides data for evaluating the
program characteristics, program development cycle~

158

Language Evaluation Phase
Each of the three previous phases saves information

about the program in a mass storage file~ Currently 84
words of information (3 sectors in the Univac file
system) are saved for each run of a program. The data
collection facility is automatic, inexpensive (only I/2
second additional compilation time), and it was easy to
add~ A standard file on the Univac system can contain
about 2500 such entries, thus a program to backup this
information onto magnetic tape need be run only once a
month or so (at current usage at Maryland).

Initially the data to be collected was that easily
obtainable from the compiler (figure I). The data
consists of four general classifications:

I~ System accounting information
2. Program characteristics (e.g. size)
3~ Error data
4. System load at time of run

The goal of this facility is to evaluate the
programming process. Given only 84 words per program,
there was no hope of duplicating the detailed analysis
on individual runs of a program as was done by Gannon
[5]. However, his analysis was a careful hand analysis
of each listing, which necessitated a rather small
sample size. The PLUM implementation permits rapid
processing of large amounts of data so that
statistically significant results can be obtained over
a large class of users and programs.

The goal is to keep the data collection facility
operational indefinitely. This will allow the
"capture" of information from a large community of
users, rather than the typically small set of users in
previous implementations [I, 5, 7]~

3~ Preliminary Evaluation

The data collecton facility was turned on during
July, 1975, and by May, 1976 over 25,O00 programs have
been saved~ As the next section will describe, certain
deficiencies in the system have been discovered,
therefore, it is difficult to say that any of the
following statements are proven facts. However, the
results are interesting, relevant conjectures for
further research, and more importantly, give a flavor
of the types of analyses that such a data collection
facility can provide.

Data Analysis
Beween July 17,1975 and December 28, 1975, a total

of 16,027 runs were tapped for data~ Figure 2 gives a
histogrmn of program size of 4,583 such programs

PROGRAM STATISTICS ACCOUNTING INFORMATION

Number of Statements
Number of Comments
Number of Program Tokens
Program Size (internal

form)
Object Code Size
Symbol Table Size
Run Time Stack Size
Compile Time
Execution Time
Static Language Analysis
Dynamic Analysis-if user

generated
Blocks Activated

Account Number
Source Program Name
Source Program Name
Compiler Options

SYSTEM LOAD

Active Batch Jobs
Active Interactive Jobs
Time and Date

ERROR STATISTICS

Error Messages
10 Messages by Phase
Last 6 statement numbers

of messages

Figure I. Data Collected by PLUM

5% 6% 7% 8% 9% STMTS COUNT I% 2% 3% 4%
000-9 203 ******************

89 ********
56 *****
330 *****************************
366 ********************************

050-9 478 **
202 ******************
175 ***************
146 *************
145 *************

100-9 123 ***********
128 ***********
225 *******************
139 ************
78 *******

150-9 110 **********
165 **************
85 *******
112 **********
122 ***********

200-9 137 ************
71 ******
98 *********
87 ********
49 ****

250-9 122 ***********
74 *******
79 *******
81 *******
52 *****

300-9 36 ***
48 ****
32 ***
19 **
5*

350-9 22 **
11"
24 **
0
9*

400-889 29 ***
Figure 2. Distribution of program size on sample of
4583 programs

collected over a period of 6 weeks. Average program
size was approximately 100 statements, with the maximum
being 884. Figure 3 gives a breakdown, by statement
type, of one subfile of these programs consisting of
1294 programs and 100,776 statements.

In order to evaluate the collected data, it was
decided to restrict the evaluation to the 5672 runs
that represent all runs by students in two sections of
a computer science programming language course. This
course was an upper division undergraduate course (open
to graduate students) that assumed that the students
knew how to program. The author did not teach either
section of this course, and so no obvious biasing of
the data occurred. In addition, both instructors of
the course assured us that students were free to
program as they pleased. Therefore, no overt control
of progra~ning style was enforced as a class standard.
For instance, "No GOTO's" was not enforced as a
structured programming restriction. Furthermore, since
both sections had the same projects, it was interesting
to see whether the characteristics of the classes
differed.

An auxiliary goal was to determine the effect of
structured programming on the characteristic methods of
programming by students. In order to obtain this
informat~gn, each class was divided into 3 groups
(Figure 4). Thosestudents who had attended Maryland's
Intermediate Computer Programming Course (structured
programming was a major topic) were in one file while
those who did not have the course were in a second.
(Students seem to ignore prerequisites quite freely!)

159

A third file was for students whose background was
unknown (chiefly graduate students from other schools).

One factor, which we wanted to filter out, was the
effect of multiple runs by the same student. Thus,
each of the 6 available files was processed for unique
programs~ This was not easy since students could run
the same source program with various names or have two
different programs with the same name~ The algorithm
used was that two programs were considered identical if
they were run under the same account number, same
program name, and differed in total statements by no
more than 20%. While not perfect, it did seem to
filter out about 90% of all runs. This action led to 6
more files which were processed~

One effect, which was unexpected, became apparent
by this uniqueness process (Figure 3)~ The percentages
of each statement type in the file did not change
significantly between counting all runs and counting
only unique runs. This was true in every subfile
processed. No one user, in this university
environment, seems to dominate any one file. However,
if different sets of users are measured, percentages do
vary (Figure 5)~ Thus, it may not be statistically
significant to actually find all unique programs - the
total data may be of equal value.

Figure 5 also demonstrates that care must be taken
in evaluating these percentages by statement type. Even
with a well defined set of projects, the percentages
vary, so that gross generalizations about the structure
of PL/I programs must be avoided~

From this data, the following general
can be made:

observations

TOTAL UNIQUE
IN FILE % RUNS % DIFF

Runs 1294 268
Statements 100776 12498
Comments 24048 23.9 3398 27.3 -3,4
END 17266 17.1 2135 17.1 0
PUT 13112 13.0 1282 10.3 2,7
DECLARE 10488 10.4 1301 10.5 -0.1
ASG (I oper.) 7750 7.7 916 7.4 0.3
IF 7519 7.5 971 7.8 -0.3
Simple ASG 6539 6~5 782 6.3 0.2
General ASG 6484 6~4 919 7.4 -I,0
DO (iter.) 5671 5,6 663 5.3 0.3
Simple DO 4751 4~7 582 4.7 0
CALL 4321 4~3 665 5.3 -1.0
PROCEDURE 3770 3.7 517 4.2 -0.5
RETURN 3758 3-7 415 3.3 0.4
GET 2804 2.8 355 2.9 -0~I
DO WHILE 2213 2,2 287 2.3 -0.1
GOTO 1866 1.9 280 2~2 -0~3
BEGIN 760 0.8 85 0.7 0,I
STOP 635 0.6 64 0.5 0.1
Null stmt 433 0~4 80 0,6 -0.2
Leave (added) 214 0.2 22 0.2 0
DO Case (added) 101 0, I 19 0.2 -0,I
OPEN 88 0.1 26 0.2 -0.1
CLOSE 87 0,I 24 0.2 -0.1
FORMAT 43 0 7 0.1 -0.1
READ 31 0 26 0.3 -0.2
EXIT 28 0 5 0 0
Debugging 21 0 2 0 0
Deleted 15 0 8 0 0
WRITE 7 0 8 0.1 -0.1
SIGNAL I 0 I 0 0

Figure 3. Statement profiles from 1294 programs
collected during the period Oct. 17, 1975 to Nov. 15,
1975 from the research oriented Univac 1108. (Comments
do not count in computing percentages.)

I. The students in each class who had structured
programming used 6% to 12% more comments that those who
did not. In addition 17.03% (355 out of 2084) of all
listings in the structured progrmmning group generated
the warning "PROGRAM INSUFFICIENTLY COMMENTED" while
29.52% (447 out of 1514) of the non-structured
prograf~ning group generated such a message.

2. Each non-structured programming group used more
GOTOs than its corresponding structured progran~ning
group; however, both groups in class 2 used more GOTOs
than either group from class I.

3, The structured progrm~ing groups used more PUT
(output) statements than the non-structured prograr~ning
groups. Does that mean that they have more debugging
I/O in the programs?

4. An interesting result was the use of the CASE
statement (which was added to PLUM)~ The non-structured
programming groups used more CASE statements than the
structured progran~ning groups (although neither group
used very many of them) in spite of the fact that the
structured programming group used previously a language
called SIMPL [2] which has a CASE and thus were more
familiar with the construct.

Clustering
Reflecting on these results, two questions came to

mind. Can the statement profiles be used to determine
whether a student had the structured programming course
and could it be determined whether a student was in
class I or in class 2? In order to test these
hypotheses, a simple clustering algorithm was
programmed.

TOTAL UNIQUE
RUNS RUNS USERS

Class I 3,087 348 40
Had Str. Prog~ 1,474 166 23
No Str. Prog. 1,222 126 11
Unknown 391 56 6

Class 2 2,577 320 25
Had Str. Prog. 610 83 7
No Str~ Prog. 292 42 4
Unknown 1,683 195 14

Figure 4. Data from two classes which was processed

30!
-!
-!
-!
-!

20! [
-!
-!
-!

-, iii I0! I

-' I -; t _; I I
_i I II
o! I i

I
, I

, I I

~ - ~
0 ~ 0

Figure 5. Range in statement distribution across
several files of programs

160

I. Clustering by Structured
Progran~ning Background

C1 I~ S, P,
C1 I~ S, P. (unique)
C1 2. S. P.
CI 2~ S. P. (unique)

C1 I~ No S. P.
C1 I~ No S. P, (unique)
C1 2. No S~ P,
CI 2, No S. P, (unique)
C1 2. Unknown

C1 I. Unknown
C1 I~ Unknown (unique) " C1 2.

C1 2, Unknown (unique)

Figure 6, Clustering based upon background and
instructor

2, Clustering by Current 8.2 !
Instructor 8.0 !

7.7 !
CI I. S, P, 7,5 !
CI I. No S, P, 7.2 !
CI I~ S, P, (unique) 7.0 !
CI I. No S~ P, (unique) 6.7 !

6.5 !
CI 2. S. P. (unique) 6.2 !
C1 2. Unknown 6,0 !
CI 2. No S~ P. 5.7 !

5,5!

C1 I. Unknown 5.2 !
C1 I, Unknown (unique) 5,0 !

4..7 !

S. P.

CI 2. No S. P. (unique)

C1 2~ Unknown (unique)

current

I
I I
11

1 2 I I
1121

1 1 3 1 1 1
1 1 1 1

1121211 2 1
1 2 1311
1111 3 1

122 2111
11211 111 1

2 1
11

1

2
2 I

111 11 I I
1 1 21 I
12 1

I I
4.5 ! 11 I I
4.2 ! I •

100 200 300 400

Figure 7, Plot of statement complexity versus program
size. (Numbers represent number of programs at each
point).

The clustering was performed two ways (figure 6).
In the first case "centroids" were based upon average
values for the points which represented students which
had a structured progr~maing background, and those that
didn't. The results clearly showed that all four
groups having structured programming were near one
centroid, all four (with one additional) were near the
other centroid, with the other three points scattered.

Similar, but not identical, results were obtained
using the current instructor as a criteria. Class I
points seem to cluster, as well as class 2 points,

The results of this seem to indicate that it is
possible to see differences in programming habits of
groups that have structured progran~ning backgrounds
and in groups that do not have such a background. In
addition, the current instructor also has a strong
influence in progra~ning style - not a totally
unexpected result.

The data also seems to indicate that the unknown
groups and the class 2 programs have a wide variance.
One possible explanation for this is class I students
were mainly undergraduates, while class 2 had many more
graduate and part-time students (14 in class 2 as
opposed to 6 in class I). These part-time students had
varied backgrounds and more professional experience,
and seemed to be less influenced by the instructor than
those of class I. Class I students seemed more
consistent in style~

Program Complexity
Work by Halstead [6] and others has been investigating
the physical structure of progr~s~ While Halstead's
measures have not as yet been implemented in PLUM, it
is intended to be added in the near future,

However, given the data that is available, some work
on program complexity has been done. Statement
complexity has been plotted against program size
(figure 7)~ In this case several different measures of
complexity have been considered: number of tokens per
source statement, object code generated per source
statement and parsed program per source statement. In
all six files of programs, a least squares fit had a
negative slope~

In figure 7, a breakpoint se~ns to appear at
approximately 200 statements. While the curve has an
obvious negative slope for small programs, it does seem
to hover around 5.5 tokens per statement for larger
programs. In order to study this further, statement

161

profiles were" produced for these small and larger
programs. Figure 8 ~ present~ statement profiles for
small and for large progr~ns. A sim±lar analysis was
performed on a set of 336 general (non-computer
science) programs.

The large general programs generally are not
C.S.-student written~ Note that very few comments are
used (3.66%). Also, the DO WHILE is almost unheard of
(.19%) while C,S.~ students use them about 2.2% of the
time. GOTO's are an astonishing 13% while C. S.
students use them only .61%. While the general data is
quite similar to the data exhibited by Elshoff [4], the
student data is more in line with good structured
programming practices~ This student data is also
similar to the figures exhibited by Wortman in his
study of student XPL programs [I]. We must be
doing something right (at least in programs students
have to turn in for grades).

A final coFm~ent about figure 8 is in complexity of
assignment statements. The general assignment line is
for assignments with at least 2 operators. The general
assignment appears 8.55% of the time in the general
programs and only 2,66% for C. S~ student programs.
This may be due to students using simpler statements,
but is probably due to the general file being more
number-crunching oriented, while the student programs
were more systems programming. This conjecture must
still be checked~

Interactive Usage
After investing much effort in a powerful

interactive processor, we were curious to see if the
facilities provided were ever used. Several files of
1400 runs over a three month period were scanned, and
the results displayed as successive 200 runs i~ order
to see if there was any learning effect (Figure 9),

In general students ran about 80% of all programs
interactively. In addition, about 77% of these
~nteraetive runs do not use any interactive cormnands.
Also, about 15% use only the STOP or EXECUTE com~nands.
Thus only 8% of all interactive runs use any of the
features such as displaying or altering variables,
displaying stack contents, setting break points or
turning on tracing facilities - a most discouraging
statistic. In general it seems as if students are not
taught proper ways to debug programs and do not use
interactive systems effectively,

The one facility which did seem to be used is the
autoindenter feature on source listings. This facility

produces an indented listing based upon the block
structure of the program. Initially it was used about
10% of the time, but by the end of the semester usage
seemed to be leveling off at one-third of all listings.
This feature, which took only two hours to add one
evening, has been a most worthwhile investment~

Comparing this data with similar data for all 5200
runs on one of Maryland's two computers over a five
month period shows some similarities and differences~
Interactive usage was about 95% of all runs~ Also,
programs which used the interactive features hovered
around 6% of the interactive runs. Indented listings
varied wildly (probably because the users who used them
executed programs in spurts over the five month
period), but generally rose from 10 to 15 per 200 runs
to 25 to 30 by the end of the period. Due to the
varied backgrounds and experiences of all users, it is
not surprising that the data is not as consistent as
the student data.

Error Analysis
The two classes generated a total of 26,671

compilation and 32,194 execution messages while a
general file of 5287 runs generated 27,315 compilation
and 10,646 execution messages. In considering the
number of messages, it is interestin~ to note that both
files have approximately the same number of compilation
messages but radically different execution messages.
However, if programs with more than 10 messages in any
one phase are counted as 10 (to ingore the effects of a
few programs with many errors) then the student data
reduces to 18,005 compilation messages (or 3.17 per
compilation) and 9532 execution messages (1.85 per
execution) while the general file reduces to 15,935
compilation messages (3.01 per compilation) and 5245
execution messages (I~06 per execution). As figure 10
will show, the number of I~06 is probably quite low
since that file has a large number of runs terminated
by the operating system and hence most execution data
was lost. If only runs where the termination message
is present (3186 out of 5287 runs) then the average
rises to 1.64. These figures of 3 to 3.2 and 1.6 to
1.9 seem reasonably consistent and deserve further
study.

In considering the data of figure 9, we were
interested in determining how programs terminated.
This data is presented in figure 10 as a range of
percentages of the three files: the structured
progra~ning group, non-structured programming group and
the unknown group.

Three aspects of this data must be clarified. Data
is only collected for the first 10 messages per phase
thus "Data Missing" represents that fraction of the
runs where the final termination message is unknown.
While we don't know the termination message, it can
probably be argued that after 10 messages, what
difference does it make.

The entry "Unaccounted" refers to ru~s where the
final message has not been collected. This could happen
in two ways. The user could have replied "STOP" to some
non-fatal error (about 3% to 6% of all runs), or else
the user could have use~ the operating system command
language to instantly stop execution~ While this
seemed to be used freely in the general file, most
students seemed to use the facilities of PLUM itself to
terminate execution.

Finally, the list of fatal errors is quite short
since PLUM is a diagnostic system that executes as long
as possible. Terminal compilation errors are quite
rare, and most execution errors will not terminate
execution.

162

C. S. Class General Progs

small large small large
Programs 545 14 292 44
Statements 44320 5516 18092 37279

Comments 18~87% 20~25% 18.83% 3.66%
Gen Asgn 4.30 2~66 10.50 8.55
Asgn (0 op) 7.06 10,18 9.27 5~20
Asgn (I op) 6~87 8~32 5~52 3.14
Begin .64 .05 .80 ,01
Call 8.35 10.49 9.18 22.51
Close 0 0 .16 ~21
Declare 8~89 7.74 I0~46 4~96
Do 6~81 10.04 3.54 4~51
Do while 2~43 2.21 1.19 ~19
Do iter. 3~80 ~94 3~85 2~25
Do case ~43 .65 .27 ~01
End 18.88 17.83 13.94 9~53
Format 0 0 .01 ~03
Get 2.14 .56 1.75 I~57
Goto ~73 .61 3.57 13.21
If 7.95 9~49 7.89 14~03
Null .39 ~03 ~38 .01
On .01 0 ~64 ~01
Open ~01 0 ~43 ~28
Procedure 4~74 3~93 4~41 2~53
Put 10.01 6~39 9.10 3~05
Return 4.78 7~12 1.92 3~95
Stop ~30 .54 .33 ~17

Figure 8. Frequency profiles for small (less than 300
statements) and large programs.

INTERACTIVE BATCH NONE S&E OTHER LIST IND %
(%) (%) (%) (%) (%)

75 25
85 15
73.5 26~5
82 18
90 10
77.5 22~5
74.5 25~5

84..6 9~3 6.0
74~I 18~8 7.1
71~4 22~4 6~I
75 21.3 3.6
71.6 9~4 18.9
83.8 I0~3 5.8
71~I 15.4 13.4

115 11 9~5
107 16 14~9
129 31 24~0
103 35 33.9
131 51 38.9
135 44 32~5
117 30 25.6

NONE -

S&E -
OTHER-

NO INTERACTIVE COMMANDS
STOP AND EXECUTE ONLY
ALL OTHER COMMANDS

LIST - NUMBER OF LISTINGS IN 200 RUNS
IND - NUMBER OF INDENTED LISTINGS

Figure 9~ Interactive/batch usage per 200 runs on a
file of 1400 programs over a 3 month period.

C~ S~ CLASS GENERAL
PROGRAMS WITH ERRORS (%)
Compile time 39.87-57.39 47.15
Execute time only 16.71-20.97 16.16
No errors 25.89-39.15 36.18

CAUSE OF TERMINATION(%)
Terminal compilation error 0-0.24 0~16
Normal exit 52.17-66.46 38~62
Read past endfile 6.76-12.61 I0~45
Maximum output 0.67-2.31 0~34
Stack overflow 3.30-5,37 2.36
Max execution time 0.39-1.35 0.62
User interrupt 1.06-3.30 1.02
File error 0~43-I,05 0.68
Other 7.27-11~70 5.60
Data Missing 2~17-2.79 0.88
Unaccounted 7.53-11.36 32.57

Figure 10. Causes of program termination. CS class
gives ~x and min value of files of 1514, 2074 and 2084
runs. General is file of 5287 runs.

From figure 10 it can be seen that almost half of
all runs contain at least compile time errors. It if
hasn't been said enough before, this strongly argues
for good diagnostics in all compilers~ In addition 15%
to 20% of all runs contain execution errors only. Only
one third of all runs do not contain any messages.
(Since PLUM is a diagnostic system, these numbers are
probably high when compared to a production compiler.)

About one half of all runs terminate normally with
another 10% reading past end of file. Running out of
stack space terminates another 5% while the remaining
messages take only a few percent. Note that half of
all runs terminate in a non-normal error (another thing
the compiler writer should be keenly aware of.)

Further details on PL/I error messages will appear
in a paper now in preparation.

4~Disclaimer@

In the previous section several conjectures about
programming style were made; however, the data itself
is open to some interpretation. An evaluation of the
data collection facility itself leads to the following
considerations:

I. The universe of users of PLUM is relatively
small. Most runs were classroom jobs of Computer
Science students. Since Maryland does not have
Univac's production PL/I compiler, many users are
reluctant to use a system like PLUM; although usage is
growing and may be more representative over a longer
time period.

2~ The problem of identifying successive runs of a
given program must be addressed if accurate error
analysis of the data is to be performed. While
students frequently use names like PROJECTI, PROGRAMA,
etc~, they also use names like MAIN and JUNK (to name
just a few). In order to prevent this, two
possibilities are being considered~ One would make PLUM
a closed system, much like BASIC or APL systems. A user
would enter PLUM and then edit, compile and execute
programs. It would be more difficult (but not
impossible) to change program names~ A second
consideration would be for the data collection facility
to know about certain classes, and enforce naming
standards on such programs.

prograg~ning process and in deciding upon the direction
to be taken in future language development~

REFERENCES

[I] W. G~ Alexander and D~ B~ Wortman, Static and
Dynamic Characteristics of XPL programs, Computer,
November, 1975, PP. 41-46.

[2] V. R. Basili and A. J~ Turner, A Transportable
Extendable Compiler, Software Practice and Experience
5, 1975, pp- 269-278.

[3] R. W. Conway and T~ R~ Wilcox, The Design and
Implementation of a Diagnostic Compiler for PL/I,
Communications of the ACM 16, no~ 3, March, 1973, PP~
169-179.

[4] J. L. Elshoff, An Analysis of Some ~erioal PL/I
Programs, IEEE Transactions on Software Engineering
SE-2, No. 2, June, 1976, 113-120~

[5] J. D. Gannon and J. J~ Horning, Language Design for
Programming Reliability, IEEE Transactions on Software
Engineering SE-I, No, 2, June, 1975, PP 179-191.

[6] M, Halstead, Algorithm Dynamics, ACM National
Conference, 1974.

[7] P- G~ Moulton and Mr E~ Muller, DITRAN - A Compiler
Emphasizing Diagnostics, Communications of the ACM 10,
no. I, January, 1967, pP 45-52~ o

[8] C. V. Ramamoorthy and S. B~ F. Ho, Testing Large
Software with Automated Software Evaluation Systems,
IEEE Transactions on Software Engineering SE-I, no~ I,
March, 1975, pp. 46-58.

[9] M. V. Zelkowitz, Third Generation Compiler Design,
ACM National Conference, Minneapolis, Minn., October,
1975, Pp. 253-258.

Over the past year, data has been collected on over
25,000 executions of PL/I programs~ This facility has
been inexpensive to use, and lends itself to processing
large amounts of data about programs quite quickly. The
initial implementation has been quite useful. Certain
deficiencies in the data collection facility have been
noted, and will be fixed shortly~

The next step in the process is the further
evaluation of error data~ Individual programs will be
traced from executio~ to execution in order to evaluate
how programs are corrected.

The important aspects of this research is that the
data collection process is inexpensive, transparent to
the user and a continuing process. Maintaining the
data files requires minimal work on our part, and the
building of a large data base of usage statistics
should lead to some significant results in the future~

This research is an ongoing operation. The
collection of this data, along with similar data for
other languages is an important step in evaluating the

]63

