Use of an environment classification model

Marvin V. Zelkowitz*
Computer Systems Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract

Various reference models have been proposed for the
classification of features present in an integrated soft-
ware engineering environment. In this paper, two such
models are studied and a target system is mapped to
the set of services present in these models. The results
of this mapping and comments on the effectiveness of
the models are given.

Keywords: Environment frameworks; Environment
mappings; Integrated environments; Reference models

1 Introduction

Improvements in software technology depend upon
improving the process used by professionals to design
and construct software systems and improving the set
of products available to aid in this activity. Aside from
the more traditional tools, such as compilers and ed-
itors, there are probably thousands of other products
sold to aid in developing requirements, designs, and
validation of the resulting systems.

But to effectively use these CASE (Computer Aided
Software Engineering) tools, three attributes must be
true:

1. The tools must have a consistent internal interface
to permit one tool to communicate effectively with
another, to permit data to pass among them, and to
allow for alternative tools to be substituted for a given
tool relatively effortlessly.

2. The tools must have a consistent interface to permit
users to move from tool to tool easily.

3. The tools must provide some useful functionality
in the software development process.

Unfortunately, many (all?)} of the current CASE
tools fail this third attribute and there is little that
can be automated to improve on this. It requires a

*On leave from the Department of Computer Science, Uni-
versity of Maryland — College Park. This work was performed
at NIST for the NGCR PSESWG program.

U.S. Government Work Not Protected by U.S. Copyright

348

creative effort to design effective tools. However, much
progress has been achieved in addressing the first two
attributes [8]. The role of an integrated software en-
gineering environment (SEE) is to provide those con-
sistent interfaces - both internal and external — and a
common set of services (i.e., functions) so that tools
which meet this third attribute can be integrated into
an existing system and be easily used.

Today there is considerable interest in develop-
ing these integrated environments, Many vendors and
standardization groups are working on such designs
(e.g., DEC’s Cohesion, IBM’s AD/cycle, IDE’s Soft-
ware Through Pictures, HP’s Softbench, CEARM,
ECMA PCTE, CAIS-A, plus many more). However,
there is still no common environment architecture that
these models are designed for.

Because of this, there is a need for a general en-
vironment model for describing such efforts. Cur-
rently, we view an integrated environment as: (1) A
framework providing a common set of services for all
programs executing in the environment and providing
consistent user and internal programmatic interfaces;
and (2) A “populated” set of tools that provide the
functionality needed for software development.

Within this structure, there have been several ef-
forts at developing models of frameworks so that it
is possible to describe two alternative environment ar-
chitectures using consistent terminology and concepts.
Once the software engineering field accepts such a
common model, it will then be possible to evaluate
various environment architectures and develop effec-
tive evaluation criteria for choosing among them.

Of the several reference models that have been pro-
posed, three have received considerable attention:

1. The NIST/ECMA frameworks reference model, ini-
tially developed by the ECMA TC33 Task Group on
the Reference Model (TGRM) [2] and extended by the
NIST Integrated Environment Working Group (ISEE)
[4]. This is a model describing some 48 different ser-
vices (i.e., functions) which environment frameworks

may provide.

2. The NGCR PSESWG reference model, which is a
model giving the full functionality of a populated envi-
ronment built on top of the NIST/ECMA framework
[6]. The term user services are often given to the func-
tionality described by this model, since such services
are generally provided by tools invoked by the user.

3. The P1003.0 open system environment reference
model, which is an environment model based upon
the POSIX architecture for open systems [5].

Of considerable interest is whether the various mod-
els serve any practical purpose and what can be
learned by using them. Towards this end, in this pa-
per an existing system will be described using the
first two of these complementary reference models
(NIST/ECMA and PSESWG). In Section 2, I describe
the two reference models and in Section 3 I describe
the system to be modeled. Section 4 gives the results
of this mapping and describes what is learned from
the process. Section 5 gives some comments on the
models themselves.

2 Reference Models
2.1 Framework reference model

A framework provides a common set of services
needed to support application programs written for
the domain of the environment. For a software en-
gineering environment that means framework services
support tools which aid in the design, development,
deployment and management of the software develop-
ment process. Although environment frameworks and
data repositories are sometimes used synonymously,
the data storage aspects of the repository are only
one of the set of services needed to support software
development activities.

In 1988 ECMA/TC33/TGRM began work on de-
scribing such a framework reference model. The
initial version was published in 1990 and included
heavy emphasis on the data repository aspects of the
framework [2]. Beginning in 1989, NIST’s Integrated
Software Engineering Environment (ISEE) Working
Group, working jointly with TGRM, extended the
model to include a greater variety of services. The
original model was revised in 1991 [4].

It is important to realize that the model is just a
catalog of services that may be applicable to an en-
vironment framework. There was no implied archi-
tecture in describing any of the services. The current
model consists of 48 services, grouped for convenience
into 6 general classes. Each category is given below.
Appendix A provides a brief summary of each service.

349

1. The 21 object management services provide for the
storage, retrieval and management of a persisent ob-
ject store.

2. The six process management services provide for
developing process models of the development life cy-
cle and the management of these processes within the
environment.

3. The one communication service provides for com-
munication among tools using communication paths
like messages, RPCs and shared data storage.

4. The six policy enforcement services provide the con-
fidentiality, security and integrity requirements on an
environment,.

5. The nine user interface services provide the inter-
face between the executing program and the user who
is interacting with the environment.

6. The five framework administration services provide
for the installation and tailoring of tools, users and
other objects into the framework.

2.2 Environment reference model

Since 1991, the U.S. Navy’s Next Generation Com-
puting Resources (NGCR) Project Support Environ-
ment Standards Working Group (PSESWG) has been
developing a reference model of end-user services that
would execute on top of the NIST/ECMA environ-
ment framework [6]. It is also a service-based model
oriented around the set of activities that go into the
development process. Appendix B lists the set of ser-
vices in this model. The model consists of four major
classes:

1. Technical engineering services are those services
concerned with the building of projects on a project
support environment. These include most of the tech-
nical tools in use in a software engineering context
(e.g., requirements, design, coding and testing tools).

2. Technical management services are services related
to software construction, but not of direct concern to
most developers. Configuration management, reuse
management, metrics and logistics support are the re-
lated services.

3. Project management services are those services
needed to manage a project. These include those ser-
vices for planning, estimating and tracking progress.

4. Support services are those services used by all envi-
ronment users. These include tools like editors, desk-

top publishers, electronic mail and related services.

3 SUPPORT

Evaluation of environments relative to a reference
model has been termed a mapping. Various modern
integrated environments have been compared to vari-
ous versions of the NIST/ECMA framework model [1]
in order to determine how well each system meets the
implied functionality of the framework model. Apply-
ing such a mapping to an older system, built before
the current generation of concepts and jargon, should
provide additional data as to the effectiveness of these
models in describing systems, and should shed addi-
tional light on the efficacy of the models. Since the
developers of several of these environments were also
developers of the some of these models!, mapping the
model to their own system is somewhat circular - sim-
ilar assumptions might have gone into both the envi-
ronment and model. An independent mapping would
be of value in order to check this assertion.

For most of the mid-1980s, I was involved in build-
ing an environment for the development, execution
and testing of Pascal programs. This system, named
SUPPORT, consisted of approximately 23,000 lines of
Pascal source code in 31 modules and provided tools
for developing Pascal programs using either a syntax-
directed editor or a line-oriented editor. It included
an interpreter for execution of programs and various
testing tools for traced execution, variable inspection
and other debugging activities. The system executed
on both Unix 4.2 and IBM PC computers, and for sev-
eral years the PC-based version was used in the intro-
ductory Computer Science course in the Department
of Computer Science at the University of Maryland -
College Park.

Since SUPPORT was built using strict? software
engineering guidelines relevant to those days, the de-
scription of this system relative to the various envi-
ronment reference models seemed like a worthwhile
activity — both to describe SUPPORT in current en-
vironment framework terms and to help evaluate the
effectiveness of the reference models themselves. In
this paper, I will analyze the PC-based version of the
system. Both systems share perhaps 95% of the same
code with the PC version implementing more “frame-
work” support to handle features that are “automatic”
under Unix. Therefore, the PC version should be more
indicative of its framework architecture.

The basic approach to this mapping is given by
Figure 1. The grid represents the set of services in

! For example, the original TGRM framework model grew out
of the ECMA development of the PCTE (A Portable Common
Tool Environment) specification {7}.

2Well, almost strict.

350

SUPPORT

S

PLTI\
[T TN
(1] |\ e
/TN
VAR A B W W\
/A A W W\

Figure 1: Describing frameworks

the framework and the SUPPORT functions will be
mapped to those services. When completed we should
have a good indication of how SUPPORT meets the
service descriptions of the model.

4 Mapping
4.1 Structure of SUPPORT

Internally, SUPPORT consists of 31 modules that
make up nine basic phases that execute as a single
program under the MS-DOS operating system. Only
those functions external to one module are considered
in this analysis since these are the only functions that
other phases (i.e., tools) have access to. Thus the set
of externally defined procedures forms SUPPORT’s
framework interface.

The 10 phases of SUPPORT used in this analysis®
can be separated into SUPPORT framework services
and SUPPORT end-user services. These phases are:
Framework services. The five framework phases
are:

Control. Control phase to process user input and
direct execution to the appropriate phase.

Application Specific Utilities. Application specific
utilities needed by various phases. This includes many
supporting services, such as data type conversions,
which are not part of the framework.

31 will consider the underlying MS-DOS opcrating system as
well as the low-level Pascal read-write commands as one of the
phases.

Table 1: Basic SUPPORT data

User Interface. These create and manage windows
and menus on the display.

Object management. Data repository services.

DOS. The MS-DOS operating system.

End-user services. The five end-user phases are:

Structured Editor. The syntax-editing phase that is
the main program building component of SUPPORT.

Line Editor. An internal line editor for adding lin-
ear strings of ASCII text rather than using the syntax-
editing paradigm.

Design. A graphical design tool for navigating and
displaying program structure.

Ezecution. An interpreter for execution.

Test. An interactive tool for testing execution and
investigation of run-time data structures.

SUPPORT was designed using fairly strict data ab-
straction principles. The user interface consisted of a
set of logical windows independent from the actual
screen real estate?. Internal program storage and ex-
ternal displays were kept separate. The Pascal pro-
gram was stored as a parsed tree and was reformatted
into ASCII in order to be displayed on the screen.
Users were expected to know little of the internal for-
mat of their programs. Thus, for example, the Struc-
tured Editor phase continually translated the program
between tree-format and linear strings. With user in-
put (even for a good typist) being only 5-10 characters
per second, a slow IBM PC-XT had plenty of time to
perform these transformations in real-time in well un-
der a second for a screen update.

4.2 Mapping to reference models

The basic data describing SUPPORT is given by
Table 1. For each of the 245 externally defined proce-

4Today, a system like X-windows would probably be used,
but SUPPORT was designed before the acceptance of X-
windows as an interface standard.

351

Phase Mods | Lines | Stmts | Procs Service Ctl | SE| LE | De | Ex | Tst | Utl
Control 3 1662 732 10 S/W Design | *

Struct. Ed. 6 6176 | 2334 60 S/W Comp. | * *lra] s | *
Line Editor 2| 1835| 1793 S/W Debug | * | * 1} 10
Design 1 1030 494 1 S/W Test : —t

Execution 3] 2963 | 1i64| 0| |gemoree |7 L

Test 1| 1141 465 5 T -
Appl. Specific 5 3026 1134 57 -

User Interface 3 1711 748 36 Table 3: Distribution of User functions across phases
Object Mgmt 4 1499 716 45

Data decls 3 1902 - -

MS-DOS = - - 7 dures, its place within the framework was determined
Totals 31 | 22,945 | 8,580 245 and all references to that procedure were identified.

Table 2 presents a summary of this process. Each “*”
represents a reference to that service within the indi-
cated phase, and the numbers® indicate the number
of functions within that phase that implement aspects
of that service. Names in sialics indicate services that
are not present within SUPPORT.

While the table provides valuable information, the
numbers must be viewed carefully. Simply counting
services does not provide much useful information. For
example, some functions such as digits() may simply
be a one line expression determining if a given char-
acter is between ‘0’ and ‘9’ while others like edfcn()
are the entire implementation of the internal Line Ed-
itor. “Importance” of functionality does not follow
from number of functions. The assignment of func-
tions to various phases, however, does provide real in-
formation, which I will come back to later.

The full environment model provides less informa-
tion. Since SUPPORT is a program development sys-
tem, it implements only five of the 42 user services of
the full environment reference model. Only these five
service classifications are shown in Table 3, and all are
involved in the details of program generation.

Since user commands are the principal interface be-
tween the user and the environment, the distribution
of these commands according to phase invoked and
service provided should be informative. Table 4 lists
only those services invoked by direct input from the
user. (That is, the user command is interpreted by the
Control phase, which then calls the appropriate phase
to perform the indicated service.)

4.3 Summary of mapping

An evaluation of the mapping data concerning
SUPPORT reveals much about its structure. From
Table 2, the underlying MS-DOS operating system be-
comes obvious. Security (as represented by policy en-
forcement services and the object management access

5The numbers sum to more than 245 since several functions
perform more than one service. See Section 5 for a further
explanation of this.

Service Ct1 | SE [LE[De [Ex [Tst [Utl | UI | OMS | OS |

Object Mgmt

Metadata * 5 1

Storage *1 | *15 | * *2 3 * *19
Relationship *1 | f1T | * * * *

Name *2

Location * * * * 1
Transaction

Concurrency

0OS Process Support

Archive 1 * * 2
Backup * 2

Derivation

Replication * *1 *

Access Control

Function Attach

Canonical Schema *1

Version

Composite

Query * *4 * 1 *1

Triggering

Views

Data Interchange * * *2 *

Process Mgmt

State * 1 ¥

Enactment *1

All other services

Communication

Services [T I T 7 T]]

User Interface

Metadata *1

Session * *12 * 5

Security

Name

Application Interface *1 *1 * * * * *2 | *17 *

Dialog

Presentation *1 *3 * * *2 * *5 | *16 *2

Internationalization * * * * * 2

User Assistance *2

Policy Enforcement

Services N I T A [1]

Framework Admin.

Tool Registration *2
HResource Registration * 1 * 1 *1
Metrication * * 2 *

User Administration

Self-Configuration

Application Specific *3 * *1 *1 { *14 | *5 | *38 | *1 *1

Operating System * *1 * * * *2 * *16 7

Table 2: Distribution of framework functions across phases

352

Table 4: Distribution of user commands across phases

control service) is non-existent. There was only the
physical security of the machine. Students would load
their programs from floppy disks and use the entire
machine until they completed their activities.

Similarly, SUPPORT executed each phase sequen-
tially because of a lack of multitasking features in the
operating system. This is reflected by a lack of con-
currency services, as represented by omission of the
concurrency, transaction, triggering and most of the
process management services. The only process man-
agement operations were syscmd() that invoked the
tool asked for by the user at the keyboard and the
asynchronous interrupt operation Break key to per-
mit the user to stop execution and provide an alter-
native input command.

SUPPORT functionality is fairly well divided
among functional phases, but functional phases are
not as clearly separate as originally thought. For ex-
ample, 35 user interface functions are defined in the
User Interface phase; however, the Structured Editor
phase implements a sizeable minority with a scattering
of other functions in other phases.

On the other hand, the Design phase shows only one
external function and the Line Editor only four. Un-
derstanding the development process clearly explains
why. Most of SUPPORT was built by four graduate
students working together. In hindsight it seems like
the close cooperation of these individuals permitted
them to trade information among themselves and al-
lowed them to install various external functions that
others needed. No one person was responsible for any

353

Service Ctl | SE [LE | De | Ex | Tst [Utl | [Service Cil | SE[LE] Ex [Utl | UI | OMS
Frame Svcs Storage *1 | *15 | * *2 3 * *19
Name 1 By type

Location 1 trees * *7 * * * *5
Backup 3 names *1 *3 *8
Replication 1 act. recs. * * *2 2
Composite 2 LALR * 1
Query 1 files * * 3 *3
Data Int. 2

UI Dialog 1 12 Table 5: Fine-grained data storage

UI User Assist 1

Res. reg. 1

User Svcs single phase.

S/W Design 1 1 The Design phase was a later addition to SUP-
S/W Comp. 1 PORT added by a fifth student. This student viewed
S/W Debug 2 1 6 | the set of SUPPORT external functions as a frame-
S/W Test 1 1 | work definition and was able to build this product
Text Proc. 3 2 without violating any of the existing data separation
Rev. Eng. 1 among the phases. Only one external function was
Status Mon. 1 | needed — to invoke the tool when requested by the

user via a keyboard input command.

The Line Editor consisted of two modules — the ed-
itor that manipulated a window full of text and an
LALR parser that performed the continual conversion
between parsed trees and linear ASCII strings. Each
of these were built by single individuals and required
almost the minimum number of interfaces: (1) Invoke
Line Editor; (2) Initialize LALR parsing tables; (3)
Invoke LALR parser; and (4) One other parser inter-
face.

The close cooperation among individuals certainly
leads to a better understanding of their designs, but
it probably leads to harder maintenance and enhance-
ment tasks. On the other hand, working in isolation
and having only the functional interface to work with
leads to a more independent design. The costs of work-
ing with one of these approaches is not indicated by
the available data, but the fact that such characteris-
tics exist is indicated.

At first glance, Table 2 seems to indicate that ob-
ject management services are distributed across most
(7 out of 10) phases of SUPPORT. However, closer
examination reveals that this is not necessarily so and
may point out a weakness in the framework model. In
Table 5 the Storage service is analyzed in some de-
tail. The first line reproduces the corresponding line
from Table 2. However, SUPPORT manages five basic
data types: (1) Program storage in the form of syntax
trees, (2) Program identifiers, called names, (3) Run-
time activation records for the interpreter, (4) LALR
parsing table data, and (5) Files of data (of various
types). There is no special data storage for screen
display items, since programs are stored as trees and
continualy translated to screen objects upon demand.

When the storage functions are separated according
to their data structure, as given in the rest of Table 5,
a different pattern emerges.

Program tree storage is only handled by the Struc-
tured Editor and OMS phases, names are managed
by the Control, Structured Editor and OMS phases,
activation records are from the Execution and OMS
phases, the LALR parsing table is only in the OMS
phase and files are only in the utility and OMS phases.
This is much more what you would expect in a modu-
lar design. The result of this indicates that the frame-
work model may have a weakness in identifying fine-
grained data objects. As discussed later, this is related
to the weakness in the model in not yet really address-
ing the important issue of data integration.

It is not surprizing that only 10% of the external
functions within SUPPORT are concerned with user
level functionality, as represented by the services of
Table 3, since manipulation of the user interface is
more under the control of the user. This is repre-
sented by the table of user commands (Table 4) where
over 40% (19 of 45) of the possible user commands
reflect user level services. In addition, although there
are no functions within SUPPPORT for User Interface
Dialog services, about 25% of the user commands are
concerned with display motion®.

5 Comments on the reference model

In addition to describing SUPPORT, this mapping
exercise provided additional feedback on the effective-
ness of the two reference models used.

Since SUPPORT is a source code development sys-
tem, it is not surprizing that it supports only seven
of the services of the PSESWG model. These ser-
vices were the Text Processing and the software de-
velopment activities of design, compilation, testing
and debugging. There were two commands relative
to reengineering and environment status monitoring.
The reengineering command builds the call tree of a
program and was developed as part of a design tool,
indicating the close relationship between design and
reengineering. Status monitoring was added as an in-
ternal check to monitor the environment as it gobbled
up memory unmercifully during its early development
period.

Some detailed comments on the NIST/ECMA
frameworks model obtained during this exercise are:
Some of these are:

Uses of model. The following were all viewed as
positive characteristics of this model:

°It is known that the NIST/ECMA model is weak in the
area of user interfaces, so the Ul service descriptions may not
be accurate.

354

1. The reference model provides a consistent mech-
anism for describing software products and permits a
common notation for describing the functionality that
is implemented. This mapping exercise was effective
in describing SUPPORT and, as shown in Section 4.3,
in indicating attributes about SUPPORT that may
not have been obvious beforehand.

2. Little seemed to be missing in the set of frame-
work services. Services not present in the model were
all grouped under the term “Application specific,” and
all seemed to be services that are outside of an environ-
ment framework. The functionality of these services
was involved directly with the implementation of the
SUPPORT features themselves.

3. Characterizing the set of functions within SUP-
PORT turned out to be a valuable documentation aid.
It provided a consistent notation for describing fea-
tures in a system to those not intimately involved in
its design or construction.

Issues in model development. The NIST ISEE
and ECMA TGRM committees are still undergoing
the process of revising the framework model. The fol-
lowing are all issues that still need further clarification:

1. The set of services are somewhat imprecise. For
example, the SUPPORT function symbind() looks up
a name in a symbol table and sets the scope of the
variable so defined. In this current mapping it was
considered to be a Relationship service since it es-
tablished the relationship between a name object (the
variable being defined) and a tree object (the location
in the parse tree containing the procedure with the
name’s declaration). On the other hand, it could have
also been classified as a Query service (Is the name
already defined in the symbol table?), a Name service
(Translate a user’s name into an internal tree pointer
to its declaration), a Location service (Where is the
name defined?) or a Storage service (Create appro-
priate symbol table information). In a few instances,
multiple definitions for a given service were indicated,
but were not done for most of the SUPPORT func-
tions. For most systems the set of supported functions
may be orthogonal to the set of service classes of the
reference model.

As long as the model and the system being mapped
come from the same general design model, the frame-
work services and environment services should be sim-
ilar. This was not particularly true in SUPPORT’s
case. However, as use of standardized reference mod-
els grow, this will orient thinking of developers towards
certain common directions” and this orthogonality is-
sue will gradually disappear. This has already hap-
pened with the seven layer OSI communications model

"Which is the critical reason we better get the model right!

which started out as simply a set of services and now
is viewed as a network architecture [3]. Similar results
will probably occur in software engineering.

2. Implementation of a service does not mean com-
plete functionality of that service. This has already
been described in Section 4.2. Also, as already ex-
plained, the number of functions implementing a ser-
vice does not indicate a completeness level for covering
that service.

3. Some services appear to have virtual implemen-
tations. For example, Table 2 indicates no commu-
nication service functions. However, SUPPORT cer-
tainly communicates among its phases. One method
of communication is shared data using some of the ob-
ject management services. In SUPPORT"s case, com-
munication is often a byproduct of any data storage or
access operation or can be a side effect of parameter
passing among external procedures.

4. Object management services seem to be scat-
tered among all phases of the system. However, the
OMS phase implements coarse-grained functionality
dealing with allocation and storage of data (mostly
the Storage service). As previously shown, most of
the other OMS framework services are functions deal-
ing with specific data types (e.g., name objects, tree
objects, runtime objects). A decision was made in
this mapping to include these as OMS services for the
SUPPORT framework rather than application specific
utility services needed by SUPPORT alone.

It is my belief that this will be true of other prod-
ucts so mapped. The OMS repository seems well
suited for storage of large objects. There is a need
to handle fine grained-data and direct interaction of
data among system phases. Some of the issues of data
integration, or the passing of information among en-
vironment components, is not handled by this model,
and the need to include concepts like ASIS, Diana,
Polylith or other data transfer agents should be added.

6 Conclusion

In this paper I have presented the results of ap-
plying the NIST/ECMA framework reference model,
and, to a lesser extent, the PSESWG environment ref-
erence model, to the description of a 23,000 line Pascal
system. The models were an effective and interesting
way to describe this system. All the services provided
by SUPPORT are developed within one or the other
of the models. I expect as these models become better
known they will form a set of informal requirements
upon which tool vendors will base future products.
While the model was never meant to be such a re-

quirements document, its existence may lead towards
the standardizing of many future tools and thus possi-

355

bly allow for greater interoperability among different
vendor products.

However, certain features of the model prevented
a precise description of the set of services relative to
the mapped system. The various committees involved
in these models are in the process of revising their
models, and it is hoped that mappings, such as this
one, can be used to affect future changes.

Going back to our original goal of looking at models
of integrated SEEs, the current set of models provides
little help. Integration is often viewed through three
integrational attributes of presentation (e.g., user in-
terface), data (e.g., repository) and control (e.g., pro-
cess management) [9]. Use of a repository allows a
common schema to be shared among tools, but it does
not force such a sharing. As already stated, there is
a need for specifications like ASIS or Diana as mech-
anisms to insure the passing of common data among
the tools of the environment. Similarly, user interface
characteristics need more than a common window sys-
tem in order to create the common “look and feel” of
the integrated interface. Such technology is currently
outside of the models and is currently under investi-
gation.

Thus one must be careful in using the results of any
one mapping. They provide valuable data in compar-
ing systems or in determining the functionality pro-
vided by a system currently in use. However, the
models are still in their infancy and requires addi-
tional development before they fully characterize an
integrated software engineering environment.

References
(1] Brown A. W., A. N. Earl, and J. McDermid, Soft-
ware Engineering Environments, McGraw Hill In-
ternational (1992).

[2] ECMA, A Reference Model for Frameworks of
Computer Assisted Software Engineering Envi-
ronments, ECMA TR/55 (December, 1990).

[3] OSI, OSI: Connection Oriented Transport Proto-
col Specification, TC97/SC6, IS 8073.

[4] NIST, Reference Model for Frameworks of Soft-
ware Engineering Environments, Special Publi-
cation 500-201, Natl. Inst. of Stnds and Tech.,

(December, 1991) (Also ECMA TR/55, Edition

2

).
(5] Guide to the POSIX Open System Environment,
POSIX P1003.0, Draft 15 (June, 1992).

(6] Reference Model for Project Support Envi-
ronments, NGCR PSESWG Draft version 0.9
(February, 1993).

[7] ThomasI., PCTE Interfaces: Supporting Tools in
Software Engineering Environments, JEEE Soft-
ware 6(6):15-23 (1989).

Thomas I. and B. Nejmeh, Definitions of Tool
Integrations for Environments, IEEE Software
9(2):29-35 (1992).

(8]

Wasserman A. L., Tool Integration in Software
Engineering Environments, in Software Engineer-
ing Environments, F. Long (Ed.), Lecture Notes
in Computer Science, 467, Springer Verlag, Berlin
(1989) 137-149.

[10] Zelkowitz M. V., L. Herman, D. Itkin and B.
Kowalchack, A Tool for Understanding Program
Execution, Journal of Pascal, Ada and Modula-2
(May, 1989) 12-20.

[11] Zelkowitz M. V., B. Kowalchack, D. Itkin and L.
Herman, Experiences Building a Syntax-directed
Editor, Software Engineering Journal (Novem-
ber, 1989) 294-300. ‘

A Framework reference model

The framework reference model [4] consists of 48 ser-
vice groups in six broad categories:

1. Object Management Services

These services define the definition, storage, mainte-
nance, management, and access of object entities and
the relationships among them.

Metadata. Definition and maintenance of metadata
(e.g., schemas) according to a supported data model.
Data Storage and Persistence. The definition,
control and maintenance of data.

Relationship. Defining and maintaining relation-
ships among objects.

Name. The relationships between external names
and internal object identifiers.

Distribution and Location. Management and ac-
cess of distributed objects.

Data Transaction. Defining and enacting transac-
tions.

Concurrency. Insuring concurrent access to the ob-
ject management system.

Operating System (0OS) Process
Defining OS processes as objects.
Archive. Transferring information to off-line media
and vice-versa.

Backup. This restores the development environment
to a consistent state after any media failure.
Derivation. Definition and enactment of derivation
rules among objects.

Support.

356

Replication. Explicit replication of objects in a dis-
tributed environment.

Access Control. Rules by which access to SEE ob-
jects may be granted to or withheld from.

Function Attachment. Attachment of functions to
object types.

Common Schema. This provides a canonical
schema of the objects and process descriptions.
Version. Create, access, and relate versions of objects
and configurations.

Composite Object. This manages composite ob-
jects.

Query. This is an extension to the data storage ser-
vice’s read operation.

State Monitoring and Triggering. This enables
the definition, specification and enaction of database
states and state transformations.
Sub-Environment. This enables the definition, ac-
cess, and manipulation of a subset of the object man-
agement model.

Data Interchange. The two-way translation be-
tween data repositories in different SEEs.

2. Process Management Services

The unambiguous definition of software development
activities across total software lifecycles. The services
here are:

Process Definition. The creation of a library
(repository) of process assets, each of which may be a
complete process, a (sub)process (or process element),
or a process architecture.

Process Enactment. The enactment by process
agents that may be users of the SEE or machines.
Process Visibility and Scoping. Several enacting
(sub)processes may cooperate to achieve the goal of a
higher level process or process system.

Process State. Certain changes in the enactment
state of a process may be defined as events and may act
as conditions or constraints affecting other processes.
Process Control. A process being enacted may be
managed.

Process Resource Management. Process agents
may be assigned to enact various processes and process
elements.

3. Communication Service

Communication Service needs. to provide two-way
communication among the components of an SEE.

4. User Interface Service

The User Interface services provide the connection be-
tween the user and programs executing in the environ-
ment.

User Interface Metadata. This defines the schemas
needed to support the user interface.

Session. Initiation of a session between the user and
the environment.

Security. This mediates between user views and ac-
tions and the security policies.

User Interface Name and Location. This per-
mits the framework to manage multi-user and multi-
platform environments.

Application Interface. Data transfer capabilities
into and out of the tools and environment to the end
user.

Dialog. Integrity constraints between the user and
the framework.

Presentation. Low-level manipulation of display de-
vices by the user interface.

Internationalization. Alternative formats depend-
ing upon local conditions (local character codes, time
formats, etc.).

User Assistance. Consistent feedback from various
tools to the user for help and error reporting.

5. Policy Enforcement Services

The reference model uses the term “policy enforce-
ment” to cover the similar functionality of security
enforcement, integrity monitoring, and various object
management functions such as configuration manage-
ment. The set of services is:

Mandatory Confidentiality. These are policies es-
tablished by an administrator concerning access to the
information contained in an object.

Discretionary Confidentiality. These are policies
established by a user concerning access to the infor-
mation contained in an object.

Mandatory Integrity. This is defined as the pro-
tection of objects from unauthorized or unconstrained
modification.

Discretionary Integrity. Discretionary integrity
controls are implemented by the user for all functions
defined for discretionary access controls.
Mandatory Conformity. These are the result of
automation of operational models.

Discretionary Conformity. Individual users would
use conformity enforcement to structure their own
work environment.

6. Framework Administration Services

An SEE framework needs to be administered because
its precise configuration may be constantly changing
to meet the changing needs of the software develop-
ment enterprise.

Tool Registration. This provides a means for incor-
porating new tools into an environment.

Resource Registration and Mapping. This is the
service necessary for the management, modelling, and
control of the physical resources of the environment.

357

Metrication. This provide the means to determine
the productivity, reliability, and effectiveness of a
framework and of the environment built on it.

User Administration. This provides the ability to
add users to an environment.

Self-Configuration Management. This supports
the existence of many simultaneous resident configu-
rations of a framework implementation.

B SEE reference model

The PSESWG reference model [6] consists of the fol-
lowing 54 service classifications:

1. Technical Engineering Services

These services include:

Life-cycle process engineering services. Process
Definition, Process Library, Process Exchange, Pro-
cess Usage.

System engineering services. System Require-
ments Engineering, System Design and Allocation,
System Simulation and Modeling, System Static Anal-
ysis, System Testing, System Integration, System Re-
quirements Validation, System Re-engineering, Host-
Target Connection, Target Monitoring, Traceability.
Software engineering services. Software Require-
ments Analysis, Software Design, Software Simulation
and Modeling, Code Verification, Software Genera-
tion, Compilation, Debugging, Software Testing, Soft-
ware Static Analysis, Software Build, Software Re-
verse Engineering, Software Re-engineering, Software
Traceability.

2. Technical Management Services
These services include:

Configuration management services.
management, Change management.
Reuse management services.

Metrics services.

3. Project Management Services
These services include:

Project management services. Scheduling, Esti-
mating, Risk analysis, Tracking.

4. Support Services

Common support services. Text processing, Nu-
meric processing, Figure processing, Audio and Video
processing.

Publishing service.

Presentation preparation service.

User communication service. Mail, Bulletin
Board, Conferencing, Calendar, Annotation.
Administration services. Tool installation, PSE
user and role management, PSE resource manage-
ment, PSE status monitoring, PSE diagnostic, PSE
interchange, PSE user access.

Version

