
Resource Utilization during Software Development

Marvin V. Zelkowitz
Department of Computer Science, University of Maryland, Coiiege Park, Maryland

This paper discusses resource utilition over the lie cycle of
software development and diiusses the rote that the current
“waterfall” model plays in the actua! software life cycle.
Software production in the NASA environment was analyzed to
measure these differences. The data from 13 diierent pmjects
were collected by the Software Engineering bboratory at
NASA Goddard Space Fliiht Center and analyzed for similari-
ties and differences. me results indicate that the waterfall
model is not very reelistic in prectice, and that as technology
introduces further perturbations to this model with wncepts like
executable specifications, rapid prototyping, and wide-spec-
trum languages, we need to modify our model of this process,

1. INTFIODUCTION

As technology impacts on the way industry builds
software, there is increasing interest in understanding
the software development model and in measuring both
the process and the product. New workstation technol-
ogy (e.g., PCs, CASE tools), new languages (e.g., Ada,
requirements and specification languages, wide-spec-
trum languages), and techniques (e.g., prototyping,
object-oriented design, pseudocode) are affecting the
way software is built, which further affects how man-
agement needs to address these concerns in controlling
and monitoring a software development.

Most commercial software follows a development
cycle often referred to as the waferfalf cycle. While
there is widespread dissatisfaction with this as a model
of development, there have been few quantitative studies
investigating its properties. This paper addresses this
problem and whether the waterfall chart is an appropri-
ate vehicle to describe software development. Other
models, such as the spiral model and value chaining,
have been described, and techniques like rapid prototyp-
ing have been proposed that do not fit well with the
waterfall chart [1, 21. This paper presents data collected
from 13 large projects developed for NASA Goddard

Address correspondence to Professor Marvin V. Zelkowitz,
Department of Computer Science, University of Maryland, Col-
Iege Park, MD 20742.

The Journal of Systems and !Mtware 8, 331-336 (1988)
0 1988 Elsevier Science Publishing Co., Inc.

Space Flight Center that shed some light on tbis model of
development.

Data about software costs, productivity, reliability,
modularity, and other factors are collected by the
Software Engineering Laboratory (SEL), a joint re-
search project of NASA/GSFC, Computer Sciences
Corporation, and the University of Maryland, to im-
prove both the software product and the process for
building such software 133. It was established in 1976 to
investigate the effectiveness of software engineering
techniques for developing ground support software for
NASA [4].

The software development process at NASA, as well
as in most commercial development environments, is
typically product-drive and can be divided into six major
life-cycle activities, each associated with a specific “end
product” [5, 61; requirements, design, code and unit
test, system integration and testing, acceptance test, and
operation and maintenance. In order to present consist-
ent data across a large number of projects, this paper
focuses on the interval between design and acceptance
test and involves the actual implementation of the system
by the developer.

In this paper, we will use the term “activity” to refer
to the work required to complete a specific task. For
example, ‘coding activity refers to all work performed in
generating the source code for a project, the design
activity refers to building the program design, etc. On
the other hand, the term “phase” will refer to that
period of time when a certain work product is supposed
to occur. For example, coding phase will refer to that
period of time during software development when
coding activities are supposed to occur. It is closely
related to management-defined milestone dates between
the critical design review (CDR) and the code review.
But during this period other activities may also occur.
For example, during the coding phase, design activity is
still happening for some of the later modules that are
defined for the system and some testing activity is
already occurring with some of the modules that were
coded into the source program fairly early in the
process.

331

0164-1212/1?8/$3.50

332 M. V. Zelkowitz

In the NASA/GSFC environment that we studied, the
software life cycle follows this fairly standard set of
activities [7]:

dynamics software is usually not “mission criti-

cal, ’ ’ in that a failure of the software dos not mean
spacecraft failure but simply that the program has
to be rerun. In addition, many of these programs
(i.e., spacecraft) have limited lifetimes of 6
months to about 3 years, so the software is not
given the opportunity to age.

1.

2.

3.

4.

5.

The requirements activity involves translating the
functional specification consisting of physical attrib-
utes of the spacecraft to be launched into require-
ments for a software system that is to be built. A
functional requirements document is written for this
system.
A design activity can be divided into two subactivi-
ties: preliminary design activity and detailed design
activity. During preliminary design, the major
subsystems are specified, and input-output interfaces
and implementation strategies are developed, During
detailed design, the system architecture is extended
to the subroutine and procedure level. Data structures
and formal models of the system are defined. These
models include procedural descriptions of the sys-
tem; data flow descriptions; complete description of
all user input, system output, input-output files, and
operational procedures; functional and procedural
descriptions of each module; and complete descrip-
tion of all internal interfaces between modules. At
this time a system test plan is developed that will be
used later. The design phase typically terminates
with the CDR.
The coding and unit test activity involves the
translation of the detailed design into a source
program in some appropriate programming language
(usually Fortran, although there is some movement to
Ada). Each programmer will unit test each module
for apparent correctness. When satisfied, the pro-
grammer releases the module to the system libraian
for configuration control.
The system integration and test activity validates
that the completed system produced by the coding
and unit test activity meets its specifications. Each
module, as it is completed, in integrated into the
growing system, and an integration test is performed
to make sure that the entire package performs as
expected. Functional testing of end-to-end system
capabilities is performed according to the system test
plan developed as part of preliminary design.
In the acceptance test activity, a separate acceptance
test team develops tests based on functional specifica-
tions for the system. The development team provides
assistance to the acceptance test team.
6. Operation and maintenance activities begin

after acceptance testing when the system becomes
operational. For flight dynamics software at
NASA, these activities are not significant with
respect to the overall cost. Most software that is
produced is highly reliable. In addition, the flight

The waterfall model makes the assumptions that all
activity of a certain type occurs during the phase of that
same name and that phases do not overlap. Thus all
requirements for a project occur during the requirements
phase; all design activity occurs during the design phase.
Once a project has a design review and enters the coding
phase, then all activity is coding. Since many companies
keep resource data based on hours worked by calendar
date, this model is very easy to track. However, as
Figure 1 shows, activities overlap and do not occur in
separate phases. We will give more data on this later.

2. THE WATERFALL CHAFIT IS AU WET

Table 1 summarizes the raw data on the 13 projects
analyzed in this paper. They are all fairly large flight
dynamics programs ranging in size from 15,500 lines of
Fortran code to 895 13 lines of Fortran, with an average
size of 57,890 lines. The average work on these projects
was 8.90 staff-months; thus, all represent significant
effort.

In most organizations, weekly time sheets are col-
lected as part of cost accounting procedures so that phase
data are the usual reporting mechanism. However, in the
SEL, weekly activity data are also collected. The data
consist of nine possible activities for each component

Table 1. Project Size and Staff-Month Effort

Project Size (lines Total effort staff-
number of code) hours’ months

1 15,500 17,715 116.5
2 50,911 12,588 82.8
3 61,178 17,039 112.1
4 26,844 10,946 72.0
5 25,731 1,514 10.0
6 67,325 19,475 128.4
7 66,260 17,997 118.4
8 _b _b -b

9 55,237 15,262 100.4
10 75,420 5,792 38.1
11 89,513 15,122 99.5
12 75,393 14,508 95.4
13 85,369 14,309 94.1

Average 57,890 13,522 89.0

’ All technical effort, including programmer AUKI manmgcment time.
b Raw data not available in data base.

Resource Utilization 333

I
I

I REQ-NTs
I I I

I DESIGN
I

I
I I

I

CODE

I I I
Figure 1. Typical life cycle.

I INTEGRATION
I

I
I I

I ACCEPTANCE TEST

1 I I
I

i OPERATION

I I I

I
Life cycle Calendar Time >

(e.g., source program module). In this paper, these will
be grouped as design activities, coding activities (includ-
ing unit test), integration activities, acceptance testing
activities and other. Specific meetings, such as design
reviews, will be grouped with their respective activity

(e.g., a design review is a design activity, a code
walkthrough is a coding activity, etc.)

Table 2 classifies the data presented in this paper.
Each column represents a type of work product (design,
code, test). The “by phase” part represents the effort
during that specific time period, while the “by activity”
part represents the actual amount of such activity.
“Other” does not enter into the “by phase” table, since
these activities occur during all phases. At NASA, 22%
of a project’s effort occurs during the design phase,
while 49 % is during coding. Integration testing takes
16% while all acceptance activities take almost 13 % .
(Remember that requirements data are not being col-
lected here. We are simply reporting the percentage of
design, coding, and testing activities. A significant
requirements activity does occur.)

By looking at all design effort across all phases of the
projects, we see that design activity is actually 26% of

the total effort rather than the 22% listed above. The
coding activity is a more comparable 30% rather than
the 49% listed by phase data, which means that the
coding phase includes many other tasks. “Other”
increased from 12 % to 29 % and includes many time-
consuming tasks that are not accounted for by the usual
life-cycle accounting mechanism. Here, “other” in-
cludes acceptance testing as well as activities that take a
significant effort but are usually not separately identifi-
able using the standard model. These include corporate
(not technical) meetings, training, travel, documenta-
tion, and various other tasks assigned to the personnel.
The usual model of development does not include an
“other, ” and this is significant since almost one-third of
a project’s costs are not effective at completing it. More
on this later.

The situation is actually more complex, since the
distribution of activities across the project is not re-
flected in Table 2. These data are presented in Tables 3-
5. Only 49% of all design work actually occurs during
the design phase (Table 3), and one-third of the total
design activity occurs during the coding period. Over
one-sixth (10.3% + 6.4%) of all design occurs during

334 M. V, Zelkowitz

Table 2. Devdopmenl Effort Table 3. Design Activity During Life-Cycle Phases

Project Design code Integration Acczpt. test
number (%) ($6) act. (%) ancl other (96)

By Phase

1
2
3
4
5
6
7
8
9
10
11
12
13

Average

20.6 38.6
16.2 48.4
21.8 47.9
35.9 39.5
18.2 68.8
16.3 48.6
19.0 50.4
22.9 48.4
22.6 68.3
24.4 44.6
22.7 39.4
16.9 53.1
28.2 43.5

22.0 49.2

16.5 24.3 a 41.8 53.6
19.3 16.2 3 33.3

17.4 12.9 4 45.3

24.5 0.1 5 17.4

13.0 0.0 6 58.9

10.9 24.3 7 63.9

14.9 15.7 8 28.1

13.0 15.8 t 9 61.8

8.1 1.1 IO 57.8

20.2 10.8 1t 58.7

21.4 16.5 12 58.9

10.9 19.1 13 60.5

20.1 8.2 Average 49.2

16.2 12.7

By Activity

1
2
3
4
5
6
7
8
9
10
11
12
13

Average

17.4 16.4
30.1 39.4
26.3 20.3
27.3 28.7
31.0 35.5
14.9 21.8
20.2 25.9
11.0 13.9
31.3 43.5
38.2 37.3
29.3 31.0
23.7 46.5
32.6 36.3

25.6 30.5

9.9
20.8
19.3
6.0
9.4

24.0
14.3
9.3

18.9
6.1

17.2
24.0
15.6

15.0

56.3
9.7

34.2
38.0
24.1
39.2
39.6
65.8

6.4
18.4
22.5

5.9
15.6

28.9

testing when the system is “supposed” to be finished. In
almost one-third of the projects (4 out of 13), about 10 %
or more of the design work occurred during the final
acceptance testing period.

As to coding effort, Table 4 shows that while a major
part (70%) does occur during the coding phase, almost
one-quarter (16% + 7 %) occurs during the testing
periods. As expected, only a small amount of coding
(7 %) occurs during the design phase; however, the table
indicates that some coding does being on parts of the
system while other parts are still under design. These
data have the widest variability as a range from 0%
(project 10) to over 22% (project 3).

Similarly, Table 5 shows that significant integration
testing activities (almost one-half) occur before the
integ~tion testing period. Once modules have been unit
tested, programmers begin to piece them together to
build larger subsystems, with almost half (43%) of the
integration activities occurring during the coding phase.

Due to the wide variability of the ‘“other” category in
Table 2, Table 6 presents the same data as relative
percentages for design, coding, and inaction testing

project Design Coding Integration Accept. test
number Ph= f%) phase (%) test f%) Ph= (%)

--

33.9
31-2
37.1
32.6
69.1
30.7
15.3
56.9
38.2
27.2
13.7
32.8
24.7

34.1

10.0
9.2

19.7
22.0
13.5
4.3
6.8
7.1
0.0
7.0

16.67
5.9

11.9

10.3

14.3
6.0
9.9
0.1
0.0
6.2

14.1
8.0
0.0
8-O

10.9
2.4
2.9

6.4

with the other category removed. As can be seen, design
took about one-third of the development effort and
varied between a low of 25 % and a high of 47%-a
factor of almost 2. On the other hand, coding took an
average of 42 % of the relative effort and varied between
36% and 49%-a factor of only 1.36. Testing ranged
f~malowof7.5% toahighof39*5%,wi~~ave~ge
of 22 % , for a relative factor of over 5.

From Table 2, the “other” category was 29% of the
effort on these projects, and of the 13 measured projects,
other activities consumed more than one-third of the
effort on six of them. The other category consists of
activities such as travel, completion of the data collec-
tion forms, meetings, and training. While these activities
are often ignored in life-cycle studies, the costs are
significant. Table 7 presents the distribution of other

Table 4. Coding and Testing Activity During Life-Cycle
Phases

project Design Coding Integration Accept. test
number phase (A) phase (%) test (96) ph= (%)

1
2
3
4

:
7
8
9
10
11
12
13

x.4
0.0

22.2
16.4
21.2

0.5
1.3

14.7
5.2
0.0
2.2
0.3
4.6

78.3
72.8
56.2
58.5
68.7
77.3
73.9

E:
73:o
70.5
74.8
63.6

11.3
19.7
11.8
25.1
10.1
11.3
15.6
21.0

3.1
22.5
20.1

8.3
26.9

9.1
7.5
9.8
0.1

1:::
9.2
9.7
0.6
4.5
7.2

16.6
4.9

Average 6.9 70.3 15.9 6.9

Resource Utilization 335

Table 5. Integration Activity Daring Life-Cycle Phases Table 7. Otber Activities Effort in Each Phase

Coding Coding

project Design and unit Integration Accept. test Project Design and testing Integration Accept. test

number phase (W) phase (4%) test (96) Phase (%6) number phase (4%) phase (36) test (%%) Phase (96)

1 0.0 17.8 27.4 54.7

2 0.0 45.2 30.1 24.7

3 6.1 53.9 21.1 18.9
4 21.0 39.3 39.7 0.0
5 28.4 71.0 0.6 0.0

6 1.0 40.9 17.6 40.5

7 0.5 54.1 26.3 19.2

8 2.9 33.8 19.2 44.1

9 0.0 46.4 29.2 4.4

10 0.0 23.1 41.5 35.5

11 0.0 36.4 35.1 28.5
12 0.1 32.7 22.4 44.8

13 1.5 49.5 28.8 20.2

Average 4.7 43.4 26.1 25.8

activities across all phases. While such effort varies
widely from project to project, no general trends can be
observed, except that it does take a significant effort as a
percent of total costs.

3. CONCLUSIONS

Using data from the SEL database, it seems that the
software development process does not follow the
waterfall life cycle but appears to be more a series of
rapids as one process flows into the next. Significant
activities cross phase boundaries and do not follow
somewhat arbitrary milestone dates. The classical prod-
uctdriven model has many shortcomings,

In the SEL environment, as well as elsewhere, other
classes of activities take a significant part of a project’s
resources. At almost one-third of the total effort, it

Table 6. Relative Activity

Integration
act. (%D)

project
number

Design
act. (%)

1 39.9 37.5
2 33.3 43.7
3 39.9 30.8
4 44.0 46.3
5 40.8 46.8
6 24.6 35.9
7 33.5 42.8
8 32.2 40.7
10 46.8 45.7
I1 37.8 40.1
12 25.2 49.4
13 38.6 43.0

Average 36.2 42.2

Coding
and unit
act. (%)

22.6
23.0
29.3

9.7
12.3
39.5
23.6
27.1

7.5
22.1
25.5
18.4

21.6

1 23.3 32.2 18.1 26.5
2 0.0 9.1 26.4 64.6
3 21.7 47.8 16.8 13.7
4 46.2 30.2 23.6 0.0
5 11.0 67.7 21.3 0.0
6 18.2 44.2 9.0 28.7
7 14.4 51.6 14.5 19.5
8 26.5 47.7 11.4 14.4
9 15.9 65.5 18.7 0.0
10 12.4 30.2 35.9 21.5
11 21.4 32.2 18.9 27.6
12 47.3 46.6 4.6 1.5
13 42.5 30.0 12.7 14.9

Average 23.1 41.2 17.8 17.9

might be part of an explanation of why software is
typically over budget. Estimating procedures often use a
work breakdown structure where the system is divided
into small pieces and estimates for each piece are
summed up. Inclusion of a significant “other” usually
does not occur.

Newer technology is affecting this traditional model
even more. In one NASA experiment, a prototype of a
project was developed as part of the requirements phase
[8]. In this case, 33,000 lines of executable Fortran were
developed at a cost of 93.1 staff-months-already a
significant project in ‘this SEL environment. When
viewed as a separate development, the prototype had a
life cycle typical of the data presented here, but if
viewed as only a requirements activity it puts a severe
strain on existing models.

Current models do not handle executable products as
part of requirements. Other questions arise: Are Ada
package specifications design or code? Are executable
specification languages specification or design? When
does testing start?

It is clear that our current product-driven models need
to be updated. Other models, such as the spiral model,
which is an iterative sequence of risk-assessment deci-
sions, or value chaining, which addresses value added
by each phase, are alternative approaches that need to
enter our vocabulary and be further studied for effective-
ness.

ACKNOWLEDGEMENT

336 M. V. Zelkowitz

REFERENCES

1. B. Boehm, A Spiral Model of Software Development and
Enhancement, A CM Software Eng. Notes 1 l(4) 22-42,
1986.

2. B. Boehm, Improving Software Productivity, Computer
20(9) 43-57, 1987.

3. F. E. M&any, et al., Guide to Data Collection, NASA
Goddard Space Flight Center, Code 552, Greenbelt, MD,
August 1982.

4. V. R. Basili and M. V. Zelkowitz, Analyzing Medium-
Scale Software Development, 3rd International Confer-
ence on Software Engineering, Atlanta, pp. 116-223,
1978.

5, A. Wasserman, Software Engineering Environment,
Adv. Comput., 22, 110-159, 1983.

6. M. W. Zelkowitz, Perspective on Software Engineering,
ACM Comput. SUIT., 10(2), 198-216, 1978.

7. F. E. McGarry, G. Page, et al., Standard Approach to
Software Development, NASA Goddard Space Flight
Center, Code 552, Greenbelt, MD, September 1981.

8. M. V. Zelkowitz, The Effectiveness of Software in
Prototyping: A Case Study, ACM Washington Chapter
26th Tech. Symposium, Gaithersburg, MD, pp. 7-15,
1987.

