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This paper discusses resource utilition over the lie cycle of 
software development and diiusses the rote that the current 
“waterfall” model plays in the actua! software life cycle. 
Software production in the NASA environment was analyzed to 
measure these differences. The data from 13 diierent pmjects 
were collected by the Software Engineering bboratory at 
NASA Goddard Space Fliiht Center and analyzed for similari- 
ties and differences. me results indicate that the waterfall 
model is not very reelistic in prectice, and that as technology 
introduces further perturbations to this model with wncepts like 
executable specifications, rapid prototyping, and wide-spec- 
trum languages, we need to modify our model of this process, 

1. INTFIODUCTION 

As technology impacts on the way industry builds 
software, there is increasing interest in understanding 
the software development model and in measuring both 
the process and the product. New workstation technol- 
ogy (e.g., PCs, CASE tools), new languages (e.g., Ada, 
requirements and specification languages, wide-spec- 
trum languages), and techniques (e.g., prototyping, 
object-oriented design, pseudocode) are affecting the 
way software is built, which further affects how man- 
agement needs to address these concerns in controlling 
and monitoring a software development. 

Most commercial software follows a development 
cycle often referred to as the waferfalf cycle. While 
there is widespread dissatisfaction with this as a model 
of development, there have been few quantitative studies 
investigating its properties. This paper addresses this 
problem and whether the waterfall chart is an appropri- 
ate vehicle to describe software development. Other 
models, such as the spiral model and value chaining, 
have been described, and techniques like rapid prototyp- 
ing have been proposed that do not fit well with the 
waterfall chart [ 1, 21. This paper presents data collected 
from 13 large projects developed for NASA Goddard 
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Space Flight Center that shed some light on tbis model of 
development. 

Data about software costs, productivity, reliability, 
modularity, and other factors are collected by the 
Software Engineering Laboratory (SEL), a joint re- 
search project of NASA/GSFC, Computer Sciences 
Corporation, and the University of Maryland, to im- 
prove both the software product and the process for 
building such software 133. It was established in 1976 to 
investigate the effectiveness of software engineering 
techniques for developing ground support software for 
NASA [4]. 

The software development process at NASA, as well 
as in most commercial development environments, is 
typically product-drive and can be divided into six major 
life-cycle activities, each associated with a specific “end 
product” [5, 61; requirements, design, code and unit 
test, system integration and testing, acceptance test, and 
operation and maintenance. In order to present consist- 
ent data across a large number of projects, this paper 
focuses on the interval between design and acceptance 
test and involves the actual implementation of the system 
by the developer. 

In this paper, we will use the term “activity” to refer 
to the work required to complete a specific task. For 
example, ‘coding activity refers to all work performed in 
generating the source code for a project, the design 
activity refers to building the program design, etc. On 
the other hand, the term “phase” will refer to that 
period of time when a certain work product is supposed 
to occur. For example, coding phase will refer to that 
period of time during software development when 
coding activities are supposed to occur. It is closely 
related to management-defined milestone dates between 
the critical design review (CDR) and the code review. 
But during this period other activities may also occur. 
For example, during the coding phase, design activity is 
still happening for some of the later modules that are 
defined for the system and some testing activity is 
already occurring with some of the modules that were 
coded into the source program fairly early in the 
process. 
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In the NASA/GSFC environment that we studied, the 
software life cycle follows this fairly standard set of 
activities [7]: 

dynamics software is usually not “mission criti- 

cal, ’ ’ in that a failure of the software dos not mean 
spacecraft failure but simply that the program has 
to be rerun. In addition, many of these programs 
(i.e., spacecraft) have limited lifetimes of 6 
months to about 3 years, so the software is not 
given the opportunity to age. 

1. 

2. 

3. 

4. 

5. 

The requirements activity involves translating the 
functional specification consisting of physical attrib- 
utes of the spacecraft to be launched into require- 
ments for a software system that is to be built. A 
functional requirements document is written for this 
system. 
A design activity can be divided into two subactivi- 
ties: preliminary design activity and detailed design 
activity. During preliminary design, the major 
subsystems are specified, and input-output interfaces 
and implementation strategies are developed, During 
detailed design, the system architecture is extended 
to the subroutine and procedure level. Data structures 
and formal models of the system are defined. These 
models include procedural descriptions of the sys- 
tem; data flow descriptions; complete description of 
all user input, system output, input-output files, and 
operational procedures; functional and procedural 
descriptions of each module; and complete descrip- 
tion of all internal interfaces between modules. At 
this time a system test plan is developed that will be 
used later. The design phase typically terminates 
with the CDR. 
The coding and unit test activity involves the 
translation of the detailed design into a source 
program in some appropriate programming language 
(usually Fortran, although there is some movement to 
Ada). Each programmer will unit test each module 
for apparent correctness. When satisfied, the pro- 
grammer releases the module to the system libraian 
for configuration control. 
The system integration and test activity validates 
that the completed system produced by the coding 
and unit test activity meets its specifications. Each 
module, as it is completed, in integrated into the 
growing system, and an integration test is performed 
to make sure that the entire package performs as 
expected. Functional testing of end-to-end system 
capabilities is performed according to the system test 
plan developed as part of preliminary design. 
In the acceptance test activity, a separate acceptance 
test team develops tests based on functional specifica- 
tions for the system. The development team provides 
assistance to the acceptance test team. 
6. Operation and maintenance activities begin 

after acceptance testing when the system becomes 
operational. For flight dynamics software at 
NASA, these activities are not significant with 
respect to the overall cost. Most software that is 
produced is highly reliable. In addition, the flight 

The waterfall model makes the assumptions that all 
activity of a certain type occurs during the phase of that 
same name and that phases do not overlap. Thus all 
requirements for a project occur during the requirements 
phase; all design activity occurs during the design phase. 
Once a project has a design review and enters the coding 
phase, then all activity is coding. Since many companies 
keep resource data based on hours worked by calendar 
date, this model is very easy to track. However, as 
Figure 1 shows, activities overlap and do not occur in 
separate phases. We will give more data on this later. 

2. THE WATERFALL CHAFIT IS AU WET 

Table 1 summarizes the raw data on the 13 projects 
analyzed in this paper. They are all fairly large flight 
dynamics programs ranging in size from 15,500 lines of 
Fortran code to 895 13 lines of Fortran, with an average 
size of 57,890 lines. The average work on these projects 
was 8.90 staff-months; thus, all represent significant 
effort. 

In most organizations, weekly time sheets are col- 
lected as part of cost accounting procedures so that phase 
data are the usual reporting mechanism. However, in the 
SEL, weekly activity data are also collected. The data 
consist of nine possible activities for each component 

Table 1. Project Size and Staff-Month Effort 

Project Size (lines Total effort staff- 
number of code) hours’ months 

1 15,500 17,715 116.5 
2 50,911 12,588 82.8 
3 61,178 17,039 112.1 
4 26,844 10,946 72.0 
5 25,731 1,514 10.0 
6 67,325 19,475 128.4 
7 66,260 17,997 118.4 
8 _b _b -b 

9 55,237 15,262 100.4 
10 75,420 5,792 38.1 
11 89,513 15,122 99.5 
12 75,393 14,508 95.4 
13 85,369 14,309 94.1 

Average 57,890 13,522 89.0 

’ All technical effort, including programmer AUKI manmgcment time. 
b Raw data not available in data base. 
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(e.g., source program module). In this paper, these will 
be grouped as design activities, coding activities (includ- 
ing unit test), integration activities, acceptance testing 
activities and other. Specific meetings, such as design 
reviews, will be grouped with their respective activity 

(e.g., a design review is a design activity, a code 
walkthrough is a coding activity, etc.) 

Table 2 classifies the data presented in this paper. 
Each column represents a type of work product (design, 
code, test). The “by phase” part represents the effort 
during that specific time period, while the “by activity” 
part represents the actual amount of such activity. 
“Other” does not enter into the “by phase” table, since 
these activities occur during all phases. At NASA, 22% 
of a project’s effort occurs during the design phase, 
while 49 % is during coding. Integration testing takes 
16% while all acceptance activities take almost 13 % . 
(Remember that requirements data are not being col- 
lected here. We are simply reporting the percentage of 
design, coding, and testing activities. A significant 
requirements activity does occur.) 

By looking at all design effort across all phases of the 
projects, we see that design activity is actually 26% of 

the total effort rather than the 22% listed above. The 
coding activity is a more comparable 30% rather than 
the 49% listed by phase data, which means that the 
coding phase includes many other tasks. “Other” 
increased from 12 % to 29 % and includes many time- 
consuming tasks that are not accounted for by the usual 
life-cycle accounting mechanism. Here, “other” in- 
cludes acceptance testing as well as activities that take a 
significant effort but are usually not separately identifi- 
able using the standard model. These include corporate 
(not technical) meetings, training, travel, documenta- 
tion, and various other tasks assigned to the personnel. 
The usual model of development does not include an 
“other, ” and this is significant since almost one-third of 
a project’s costs are not effective at completing it. More 
on this later. 

The situation is actually more complex, since the 
distribution of activities across the project is not re- 
flected in Table 2. These data are presented in Tables 3- 
5. Only 49% of all design work actually occurs during 
the design phase (Table 3), and one-third of the total 
design activity occurs during the coding period. Over 
one-sixth (10.3% + 6.4%) of all design occurs during 
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Table 2. Devdopmenl Effort Table 3. Design Activity During Life-Cycle Phases 

Project Design code Integration Acczpt. test 
number (%) ($6) act. (%) ancl other (96) 

By Phase 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Average 

20.6 38.6 
16.2 48.4 
21.8 47.9 
35.9 39.5 
18.2 68.8 
16.3 48.6 
19.0 50.4 
22.9 48.4 
22.6 68.3 
24.4 44.6 
22.7 39.4 
16.9 53.1 
28.2 43.5 

22.0 49.2 

16.5 24.3 a 41.8 53.6 
19.3 16.2 3 33.3 

17.4 12.9 4 45.3 

24.5 0.1 5 17.4 

13.0 0.0 6 58.9 

10.9 24.3 7 63.9 

14.9 15.7 8 28.1 

13.0 15.8 t 9 61.8 

8.1 1.1 IO 57.8 

20.2 10.8 1t 58.7 

21.4 16.5 12 58.9 

10.9 19.1 13 60.5 

20.1 8.2 Average 49.2 

16.2 12.7 

By Activity 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Average 

17.4 16.4 
30.1 39.4 
26.3 20.3 
27.3 28.7 
31.0 35.5 
14.9 21.8 
20.2 25.9 
11.0 13.9 
31.3 43.5 
38.2 37.3 
29.3 31.0 
23.7 46.5 
32.6 36.3 

25.6 30.5 

9.9 
20.8 
19.3 
6.0 
9.4 

24.0 
14.3 
9.3 

18.9 
6.1 

17.2 
24.0 
15.6 

15.0 

56.3 
9.7 

34.2 
38.0 
24.1 
39.2 
39.6 
65.8 

6.4 
18.4 
22.5 

5.9 
15.6 

28.9 

testing when the system is “supposed” to be finished. In 
almost one-third of the projects (4 out of 13), about 10 % 
or more of the design work occurred during the final 
acceptance testing period. 

As to coding effort, Table 4 shows that while a major 
part (70%) does occur during the coding phase, almost 
one-quarter (16% + 7 %) occurs during the testing 
periods. As expected, only a small amount of coding 
(7 %) occurs during the design phase; however, the table 
indicates that some coding does being on parts of the 
system while other parts are still under design. These 
data have the widest variability as a range from 0% 
(project 10) to over 22% (project 3). 

Similarly, Table 5 shows that significant integration 
testing activities (almost one-half) occur before the 
integ~tion testing period. Once modules have been unit 
tested, programmers begin to piece them together to 
build larger subsystems, with almost half (43%) of the 
integration activities occurring during the coding phase. 

Due to the wide variability of the ‘“other” category in 
Table 2, Table 6 presents the same data as relative 
percentages for design, coding, and inaction testing 

project Design Coding Integration Accept. test 
number Ph= f%) phase (%) test f%) Ph= (%) 

-- 

33.9 
31-2 
37.1 
32.6 
69.1 
30.7 
15.3 
56.9 
38.2 
27.2 
13.7 
32.8 
24.7 

34.1 

10.0 
9.2 

19.7 
22.0 
13.5 
4.3 
6.8 
7.1 
0.0 
7.0 

16.67 
5.9 

11.9 

10.3 

14.3 
6.0 
9.9 
0.1 
0.0 
6.2 

14.1 
8.0 
0.0 
8-O 

10.9 
2.4 
2.9 

6.4 

with the other category removed. As can be seen, design 
took about one-third of the development effort and 
varied between a low of 25 % and a high of 47%-a 
factor of almost 2. On the other hand, coding took an 
average of 42 % of the relative effort and varied between 
36% and 49%-a factor of only 1.36. Testing ranged 
f~malowof7.5% toahighof39*5%,wi~~ave~ge 
of 22 % , for a relative factor of over 5. 

From Table 2, the “other” category was 29% of the 
effort on these projects, and of the 13 measured projects, 
other activities consumed more than one-third of the 
effort on six of them. The other category consists of 
activities such as travel, completion of the data collec- 
tion forms, meetings, and training. While these activities 
are often ignored in life-cycle studies, the costs are 
significant. Table 7 presents the distribution of other 

Table 4. Coding and Testing Activity During Life-Cycle 
Phases 

project Design Coding Integration Accept. test 
number phase (A) phase (%) test (96) ph= (%) 

1 
2 
3 
4 

: 
7 
8 
9 
10 
11 
12 
13 

x.4 
0.0 

22.2 
16.4 
21.2 

0.5 
1.3 

14.7 
5.2 
0.0 
2.2 
0.3 
4.6 

78.3 
72.8 
56.2 
58.5 
68.7 
77.3 
73.9 

E: 
73:o 
70.5 
74.8 
63.6 

11.3 
19.7 
11.8 
25.1 
10.1 
11.3 
15.6 
21.0 

3.1 
22.5 
20.1 

8.3 
26.9 

9.1 
7.5 
9.8 
0.1 

1::: 
9.2 
9.7 
0.6 
4.5 
7.2 

16.6 
4.9 

Average 6.9 70.3 15.9 6.9 
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Table 5. Integration Activity Daring Life-Cycle Phases Table 7. Otber Activities Effort in Each Phase 

Coding Coding 

project Design and unit Integration Accept. test Project Design and testing Integration Accept. test 

number phase (W) phase (4%) test (96) Phase (%6) number phase (4%) phase (36) test (%%) Phase (96) 

1 0.0 17.8 27.4 54.7 

2 0.0 45.2 30.1 24.7 

3 6.1 53.9 21.1 18.9 
4 21.0 39.3 39.7 0.0 
5 28.4 71.0 0.6 0.0 

6 1.0 40.9 17.6 40.5 

7 0.5 54.1 26.3 19.2 

8 2.9 33.8 19.2 44.1 

9 0.0 46.4 29.2 4.4 

10 0.0 23.1 41.5 35.5 

11 0.0 36.4 35.1 28.5 
12 0.1 32.7 22.4 44.8 

13 1.5 49.5 28.8 20.2 

Average 4.7 43.4 26.1 25.8 

activities across all phases. While such effort varies 
widely from project to project, no general trends can be 
observed, except that it does take a significant effort as a 
percent of total costs. 

3. CONCLUSIONS 

Using data from the SEL database, it seems that the 
software development process does not follow the 
waterfall life cycle but appears to be more a series of 
rapids as one process flows into the next. Significant 
activities cross phase boundaries and do not follow 
somewhat arbitrary milestone dates. The classical prod- 
uctdriven model has many shortcomings, 

In the SEL environment, as well as elsewhere, other 
classes of activities take a significant part of a project’s 
resources. At almost one-third of the total effort, it 

Table 6. Relative Activity 

Integration 
act. (%D) 

project 
number 

Design 
act. (%) 

1 39.9 37.5 
2 33.3 43.7 
3 39.9 30.8 
4 44.0 46.3 
5 40.8 46.8 
6 24.6 35.9 
7 33.5 42.8 
8 32.2 40.7 
10 46.8 45.7 
I1 37.8 40.1 
12 25.2 49.4 
13 38.6 43.0 

Average 36.2 42.2 

Coding 
and unit 
act. (%) 

22.6 
23.0 
29.3 

9.7 
12.3 
39.5 
23.6 
27.1 

7.5 
22.1 
25.5 
18.4 

21.6 

1 23.3 32.2 18.1 26.5 
2 0.0 9.1 26.4 64.6 
3 21.7 47.8 16.8 13.7 
4 46.2 30.2 23.6 0.0 
5 11.0 67.7 21.3 0.0 
6 18.2 44.2 9.0 28.7 
7 14.4 51.6 14.5 19.5 
8 26.5 47.7 11.4 14.4 
9 15.9 65.5 18.7 0.0 
10 12.4 30.2 35.9 21.5 
11 21.4 32.2 18.9 27.6 
12 47.3 46.6 4.6 1.5 
13 42.5 30.0 12.7 14.9 

Average 23.1 41.2 17.8 17.9 

might be part of an explanation of why software is 
typically over budget. Estimating procedures often use a 
work breakdown structure where the system is divided 
into small pieces and estimates for each piece are 
summed up. Inclusion of a significant “other” usually 
does not occur. 

Newer technology is affecting this traditional model 
even more. In one NASA experiment, a prototype of a 
project was developed as part of the requirements phase 
[8]. In this case, 33,000 lines of executable Fortran were 
developed at a cost of 93.1 staff-months-already a 
significant project in ‘this SEL environment. When 
viewed as a separate development, the prototype had a 
life cycle typical of the data presented here, but if 
viewed as only a requirements activity it puts a severe 
strain on existing models. 

Current models do not handle executable products as 
part of requirements. Other questions arise: Are Ada 
package specifications design or code? Are executable 
specification languages specification or design? When 
does testing start? 

It is clear that our current product-driven models need 
to be updated. Other models, such as the spiral model, 
which is an iterative sequence of risk-assessment deci- 
sions, or value chaining, which addresses value added 
by each phase, are alternative approaches that need to 
enter our vocabulary and be further studied for effective- 
ness. 
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