
The Journal of Systems and Software 70 (2004) 143–154

www.elsevier.com/locate/jss
Defect evolution in a product line environment q

Marvin V. Zelkowitz a,b,*, Ioana Rus a

a Fraunhofer Center for Experimental Software Engineering, Maryland 4321 Hartwick Road, Suite 500, College Park, MD 20740, USA
b Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Received in revised form 23 October 2002; accepted 7 November 2002
Abstract

One mechanism used for monitoring the development of the Space Shuttle flight control software, in order to minimize any risks

to the missions, is the independent verification and validation (IV&V) process. Using data provided by both the Shuttle software

developer and the IV&V contractor, in this paper we describe the overall IV&V process as used on the Space Shuttle program and

provide an analysis of the use of metrics to document and control this process over multiple releases of this software. Our findings

reaffirm the value of IV&V, show the impact of IV&V on multiple releases of a large complex software system, and indicate that

some of the traditional measures of defect detection and repair are not applicable in a multiple-release environment such as this one.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Evolutionary software; Life and mission critical software; Software independent verification and validation; Metrics; Product line

development; Process characterization; Space Shuttle program; Software safety and reliability
1. Introduction

From the 1970s until 1999, the National Aeronautics

and Space Administration (NASA) released 22 versions
of a large complex software system that pilots the Space

Shuttle. Each version contains changes made to imple-

ment specific functionality for the next scheduled mis-

sion, and the collected set of releases can describe a

product line development.

Removing software defects is a primary goal in soft-

ware development, but for Shuttle mission safety is of

utmost importance, so the removal of non-critical de-
fects by modifying the source program must be weighed

against the increased risk of mission failure due to that

correction. This leads to questions about what is the

appropriate measure of defect detection and removal in

this environment. The use of a separate group to provide
qThis work was performed as part of NASA Subcontract No. 93-

393B-FUSA from the NASA IVV facility in Fairmont, WV to the

Fraunhofer Center, Maryland and National Science Foundation

grants CCR9706151 and CCR0086078 to the University of Maryland.
*Corresponding author. Tel.: +1-301-4038965; fax: +1-301-

4053691.

E-mail addresses: marv@zelkowitz.com (M.V. Zelkowitz), irus@

fc-md.umd.edu (I. Rus).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00013-X
independent verification and validation (IV&V) on a

software system is often cited as a means to ensure a

high quality software product. In this paper we present

an overview of this multi-level complex process for the
NASA Space Shuttle software IV&V. 1 We then discuss

the differences in defect detection and removal between a

more traditional custom software environment and this

multiple release product.

The NASA IV&V program for the Space Shuttle was

instituted in 1988; in 1997 management for IV&V was

transferred to the NASA/IV&V facility in Fairmont,

WV (NASA, 2000). For the Space Shuttle program
IV&V does not follow the common model, where an

independent group takes the artifacts developed by an-

other group and applies verification and validation

(V&V) activities to them. It is a more complex process,

where ‘‘independence’’ is more loosely defined and it is

manifested in some, but not all aspects of the process.

The activities performed by the IV&V contractor

span across the whole lifecycle and are not limited to
just product V&V; they also include risk analysis, re-

quirements analysis, issues tracking, and process evalu-

ation.
1 See also Zelkowitz and Rus (2001a,b).

mail to: marv@zelkowitz.com

144 M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154
In Section 2 of this paper we look at the classical

definition of IV&V and the existing models that imple-

ment IV&V. Then in Section 3 we present the process

model used for the Shuttle, given the specifics of the

system, software, and development environment and

constraints. We will discuss the purpose of IV&V, the
roles, activities, and interactions with the development

environment. The analysis in Section 4 shows that IV&V

proved to be successful and beneficial in the context of

this program. In Section 5 we discuss differences be-

tween this environment and the more traditional soft-

ware development environment.
2. Software independent verification and validation

According to the NASA Safety and Mission Quality

Office, IV&V is ‘‘a process whereby the products of the

software development life cycle phases are indepen-

dently reviewed, verified, and validated by an organi-

zation that is neither the developer nor the acquirer of

the software. IV&V differs from V&V only in that it is
performed by an independent organization.’’ (NASA

headquarters Safety and Mission Quality Office, 1992).

The IEEE Standard for Software Verification and

Validation (1998) identifies three parameters that define

the independence of IV&V: technical, managerial, and fi-

nancial. Depending on the independence along these

three dimensions, there are many forms of IV&V, most

prevalent being: classical, modified, internal, and em-
bedded. Classical independence embodies all three pa-

rameters. Modified preserves technical and financial

independence, with some compromise on managerial in-

dependence. Internal and embedded IV&V are performed

by personnel from the developer’s organization. There-

fore in these two cases all three independence aspects are

compromised, the difference between the two being that

for internal, the IV&V team reports to a different man-
agement level than does the development team.

For the Space Shuttle software, IV&V is a modified

type. Fig. 1 shows the modified model of IV&V. The

prime integrator (i.e., NASA) manages the entire soft-
Customer

“Prime Integrator”

Close relationship between
developers and IV & V

IV & V
contractor

Software
development
contractor(s)

Fig. 1. Modified IV&V (from Leveson et al., 1993).
ware development. Separate companies that report to

the prime integrator at the same level perform devel-

opment and IV&V. The IV&V personnel are collocated

with the developers and they have both informal and

formal communication.

For the Shuttle software there is an additional level
of IV&V, an internal IV&V, used by the development

contractors, who have their V&V groups separate and,

to some degree, managerially independent from the de-

velopment groups. In the current study we do not ad-

dress this aspect. Our goal is to understand the impact

that financially independent IV&V, performed by a

different contractor than the developer, has on Shuttle

software development.
3. IV&V for Space Shuttle software

3.1. Space Shuttle software characteristics

The NASA Space Shuttle program uses four orbiter

spacecraft. Software releases, called operational incre-
ments (OIs), are used for repeated missions on all four

orbiters. There have been over 22 OIs developed be-

tween 1981 and 1999.

Software OIs enjoy reuse across all four orbiters as

well as repeated use for each orbiter. The core func-

tionality of Shuttle software (common for all OIs) con-

sists of 765 software modules with a total of 450K

DSLOC (Delivered Source Line of Code). Each new
release requires on average 18K DSLOC in modified

mission-specific functionality and 26K DSLOC of new

or modified core functionality. This represents an aver-

age of approximately 6% of new or modified system

code (core functionality) with each release, thus pro-

viding for a stable base software system (Eickelmann

et al., 2000; Schneidewind, 1998; Schneidewind, 1999)

(Table 1).
This is not a simple example of staged product evo-

lution, where each new version of the product com-

pletely replaces the previous version. Rather it is more of

a product line architecture where a base system of core

functionality is reused and enhanced by extensions that

differ from mission to mission. The Shuttle software

could be viewed as a horizontal product line as it pri-

marily enjoys forward interoperability of the software,
but has been also applied with backward interoperabil-

ity on a limited basis (e.g., an earlier increment could be

used instead of a newer one in a coming mission).

Fig. 2 shows the overlapping lifecycle for the 10 OIs

completed since IV&V was instituted in 1988. Four

phases are indicated for each OI: an initial development

phase, which includes IV&V activities in understanding

the impact of the changed requirements on the existing
software base; a validation phase, which includes IV&V

activities to evaluate the validation process performed

Table 1

Size of modifications per OI

OI Total

modified

KSLOC/

OI

Modified

functions

KSLOC/

OI

Modified

core

KSLOC/

OI

% Modi-

fied of

core

KSLOC

% Modi-

fied of

total

KSLOC

I 55.7 29.4 26.3 6.5 12.4

J 44.3 21.3 23.0 5.1 9.8

K 44.0 34.4 9.6 2.1 9.8

L 47.3 24.0 23.3 5.2 10.5

M 50.7 10.4 40.3 9.0 11.3

N 50.4 15.3 35. 7.8 11.2

O 21.9 7.3 14.6 3.3 4.9

P 32.1 11.0 21.1 4.7 7.1

Q 57.2 12.1 45.1 10.0 12.7

Total 403.6 165.2 238.4

Average 44.84 18.36 26.49 6.0 9.97

Standard

Deviation

11.36 9.41 11.67

KSLOC¼Thousands of DSLOC.

M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154 145
by the software developer; a mission preparation phase

which includes additional IV&V processes monitoring

the evolution of the software; and an operational lifetime

executing on one or more Shuttle missions. As Fig. 2
shows, during most of this period there was concurrent

release development, about three OIs being in various

phases of development (development, validation, or mis-

sion preparation), and up to four releases were active

(either in execution or in development) during this period.

The software is written in high-order software lan-

guage for Shuttle (HAL/S), and executes on legacy

hardware with limited memory: general purpose com-
puters (GPCs) with a semiconductor memory of 256K

32-bit words. For each OI, new functionality is carefully

weighed against the memory requirements of the exist-

ing functionality.

The Shuttle has two main flight control subsystems:

the primary avionics software system (PASS) and the

back-up flight system (BFS), which provides backup

capabilities for the critical phases of a mission. Different
contractors developed PASS and BFS independently. A
I

K

M

O

Q

O
IR

el
ea

se

1 9 9 0 1 9 9 41 9 9 2 1 9 9 6

Fig. 2. Lifecycle f
third contractor built the Space Shuttle main engine

controller (SSMEC), but that system was outside of the

scope of our study.

The Shuttle uses five on-board computers––four

running the PASS software for redundancy and one

running the BFS. However, using redundancy as a risk
mitigation strategy does not work as well for software

failures as for hardware failures since a software failure

in one computer is likely to manifest in the others as well

(e.g., the Ariane 5 failure in 1996 (Lions et al., 1996)).

For this reason critical defects must be eliminated from

software, and IV&V is one of the means for doing so.

Mission safety and reliability are the most important

criteria for all missions and for each new software re-
lease. Because of this, changes to either the software or

hardware are made with great care, such that they do

not alter the achieved safety and the architectural in-

tegrity of the system. Therefore, an overall guiding

principle in OI development is that changing any mod-

ule, regardless of the reason, might leave the code open

to new errors. Thus non-critical changes (e.g., a mis-

typed comment) are often not made until the module
must be changed for other more important program-

matic reasons. Thus some changes often remain pending

across multiple releases of the software. In fact, some

proposed changes, as we later show, have remained

unresolved for over 3000 days (over 9 years).
3.2. Shuttle software development process

NASA uses a complex development process, with

numerous verification checks, to assure reliable devel-

opment of each new OI. For the purposes of this paper,

this process is briefly described in Fig. 3. Rectangles

represent the various processes for building a new OI,

whereas ovals represent the main data that tracks de-

velopment issues. Another set of records, the issues

tracking reports (ITRs), is used by the IV&V contractor
to monitor any potential problems that are uncovered

during development and will be discussed later. The

shaded rectangles refer to the major IV&V activities.

More complete descriptions of this process are given in
1 9 9 8 2 0 0 0

Development

Validation

Mission Preparation

Operational life time

or each OI.

Fig. 3. Overview of Shuttle software development for an OI.

146 M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154
Florac et al. (2000) and Leveson et al. (1993). Briefly, the

overall process is as follows:

• Flight software needs come from NASA headquar-

ters, the flight software community and from issues

raised by the development and IV&V teams on previ-

ous OIs. Each new requirement generally has a cham-
pion, who is seeking to add or change that

functionality to the existing software base.

• The flight software community, including the IV&V

contractor, performs an analysis and a risk assess-

ment on the new requirements such that a set of re-

quirements for a new software release is developed.

Multiple releases (i.e., OIs) are often under consider-

ation at one time, and proposed changes are often
strung out across several OIs to minimize disruption

of the software and schedule changes to be most ad-

vantageous to NASA.

• The Shuttle Avionics Software Control Board

(SASCB) approves these requirements and a new

OI is scheduled.

• The developer of the Shuttle software uses these re-

quirements and modifies a previous Shuttle software
release to meet the new requirements. This typically

takes about 8 months for initial development. Defects

(e.g., discrepancy reports [DRs] and change requests

[CRs]) detected by the developer are tracked once

each new module becomes part of a software build.

If critical, the CR or DR is implemented as part of

the current OI; if not critical it is added to the list

of new requirements to be evaluated for a future OI.
• After the developer adds all new functionality to the

base software, the milestone called the FACI (first

article configuration inspection) is reached. The de-

veloper performs V&V testing, and the IV&V con-

tractor begins to analyze these tests.

• At the configuration inspection (CI) milestone the

software is released by the developer to NASA, but

it undergoes further evaluation before it is ready for
use on a mission. At this time additional performance

and functionality testing occurs by NASA, the soft-

ware developer, and other groups to assure that all

performance, reliability, and safety criteria are met.

The CI milestone is called the release date for the

software, even though the process can take an-
other year before the software actually flies on the

Shuttle.

• After passing these evaluation criteria, the software is

certified for flight on the planned Shuttle mission at

the software readiness review (SRR) milestone.

A new OI is released about once a year. Since a single

OI can take up to 28 months to build, several OIs are
under simultaneous development, and the IV&V process

needs to keep track of potential problems that can cross

OI boundaries. This is significant as some CRs and DRs

are intentionally delayed for implementation across

multiple releases until a more advantageous time.

3.3. Shuttle IV&V process

Depending on the NASA program goals, there are

different goals for IV&V as well. For Shuttle the main

objectives are safety, reliability, and mission completion.

Therefore, the Shuttle IV&V program has four major

goals:

1. demonstrate the technical correctness of critical flight

software, including safety and security concerns;
2. assess the overall quality of the system and software

products;

3. ensure compliance with the development process

standards;

4. provide written evidence and traceability of this cor-

rectness so that software can be certified as ‘‘flight

ready’’.

An IV&V process requires that the evaluation group

(the IV&V team) have technical, financial and manage-

rial independence from the development group. Within

the Shuttle program this is accomplished as follows:

1. Technical––IV&V prioritizes its own efforts and has

its own (proprietary) set of analysis tools to deter-

mine which components to study.
2. Financial––The IV&V budget is independent from the

developer’s budget, although both are part of the

overall Shuttle program budget.

3. Managerial––IV&V is performed by a different orga-

nization from the development organization. There is

an independent reporting route to NASA program

management. The IV&V independently decides:

which areas of the system to analyze, what techniques
to use for IV&V; and the schedule of IV&V activities

to be performed.

M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154 147
The three shaded areas in Fig. 3 represent IV&V ac-

tivities. These activities occur during three phases in the

development process:

• Requirements analysis: Risk analysis and risk reduc-

tion activities such as hazard analysis, and change im-
pact analysis for safety, hardware and development

resources lead to problem detection in the early devel-

opment phases. The IV&V team represents a histori-

cal record (in terms of previous issues raised from

earlier OIs) in judging the impact of any proposed

change.

• Product evaluation: The IV&V team analyzes the im-

plemented code, evaluates the tests conducted by the
developer, and proposes changes where warranted.

This may involve informal negotiations in resolving

issues, uncovering new issues that need to be re-

solved, and formal decision making. The IV&V team

generally does not test the software, although in cer-

tain situations this might happen. Most of its activity

is in evaluating the results of the developer’s own test-

ing process.
• Flight certification: IV&V has to sign-off at the end of

the process to ensure traceability and disposition of

all critical issues that were uncovered during develop-

ment of that OI.

The IV&V contractor interacts with Shuttle software

development in four distinct ways:

1. Issues tracking. All open issues generated by IV&V

are tracked by the ITRs discussed below.

2. Flight software readiness assessments, which evaluate

critical software changes prior to the flight readiness

review. The IV&V Certification of Flight Readiness

statement is integral to the Shuttle program’s process

for verifying that the upcoming mission can be safely

and successfully executed.
3. Special studies investigate specific core functionality

changes to the flight software (e.g., the global posi-

tioning system (GPS) receiver/processor and the mul-

tifunctional electronic display system (MEDS) also

known as the ‘‘glass cockpit’’).

4. Facilitates channels of communication with the NASA

Office of Safety and Mission Assurance (OSMA) by

providing copies of status information and IV&V
presentations.

Due to cost limitations, not all Shuttle software is

subject to IV&V. Subsystems deemed mission critical

are candidates for IV&V, and there are varying levels of

IV&V effort for these subsystems. The IV&V contractor

concentrates on software used during the most critical

phases of flight, e.g., ascent and descent. Depending
upon the criticality and risk of the software changes that

have been made, and the allocated budget and available
resources, the contractor determines the level of IV&V

effort needed on a component (McCaugherty, 1998).

When IV&V was first instituted in 1988, there were 15

functions covered by IV&V; in 1992 the set was reduced

to six functions from the set of 15. On these functions

the IV&V effort and scope may vary. The scope of IV&V
can be: limited, focused, or comprehensive. Limited

comprises activities (a)–(e), focused comprises activities

(a)–(i), and comprehensive comprises activities (a)–(k) in

the following list:

(a) problem/change description;

(b) system impact analysis;

(c) requirements analysis;
(d) risk assessment;

(e) disposition analysis;

(f) code analysis;

(g) level 6 and 7 testing (i.e., developer’s functional and

performance verification testing) analysis;

(h) documentation assessment;

(i) safety assessment;

(j) analysis of other system implementations;
(k) complete test/verification analysis.

The scope is determined by the criticality of the

component, the risk and impact of the changes that have

to be made to it, and the budget allocated. The con-

tractor uses a proprietary tool, CARA, (McCaugherty,

1998) to help decide on the level of IV&V scope to

apply.
The IV&V contractor usually evaluates the CRs and

DRs that are submitted to cover changes in the soft-

ware. However they also often submit CRs and DRs

themselves and in some cases use their specialized tools

and expertise to perform a detailed evaluation of the

software itself. Additional details of the Shuttle IV&V

process and an analysis of the data is given in Schne-

idewind (1999).
ITRs are IV&V contractor documents for keeping

track of all the actual and potential issues (anomalies)

associated with any CRs and DRs within the scope of

IV&V, across OIs. During requirements analysis for an

OI and thereafter (Fig. 3) the ITRs are used by IV&V to

track any further IV&V issues. By tracking their pro-

gress, and certifying their disposition, the IV&V con-

tractor provides a mechanism for NASA to certify the
OI as being safe and flight ready. At the end of each OI

all CRs and DRs are reviewed to ensure that there are

no open issues relevant to safety and also that the

changes did not activate issues in dormant code. This

has proved to be a successful mechanism for allowing

software to evolve safely across OIs.

The ITRs represent potential anomalies with the

Shuttle software systems, but do not necessarily repre-
sent errors or defects in the code. They simply represent

those issues needing further clarification. Some will

148 M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154
represent defects, which must be corrected, whereas

many others are closed with no further action necessary.

Once discovered, an issue is tracked until it is resolved

and the ITR is closed. Issues can be dispositioned in

several ways:

• After a discussion between the developer and the

IV&V team, the issue is deemed not to be an error

and the ITR is closed with no subsequent action.

For example, in some cases, the source code imple-

ments a correct, but different, algorithm than what

has been specified, and a decision is made to accept

what has been developed.

• If the problem is serious (e.g., mission safety is at
risk), a DR is created. At this point the ITR is closed

and the developer’s DR tracking mechanism assures

that the problem will be fixed.

• For an error that will not affect the safety of the cur-

rent mission, a CR is generated. CRs will be sched-

uled for implementation for a subsequent OI. This

represents almost half of the ITRs that have been

generated. With multiple OIs under concurrent devel-
opment, an ITR will often cause a change to the re-

quirements of a subsequent OI. Such changes are

delayed until a later OI because of the danger of spu-

rious modifications. Since all such changes need

extensive testing for all changed modules, such non-

critical changes are not made until needed at a later

date.

• Note that a CR does not necessarily represent a
change in a future OI. During the requirements pro-

cess for that new OI, this CR will be evaluated along

with all other proposed changes by the SASCB and

either accepted, rejected, or delayed until a still-future

OI.

• Approximately one third of the ITRs represent docu-

mentation errors, i.e., the implemented software and

the documentation do not agree. As with minor
errors, documentation changes are not made to the

software until the module in question is later changed

due to new functional requirements. In such cases the

ITR is kept open until the module is later modified.
2 We do not have details on the four severity 4 and 5 ‘‘unknown’’

ITRs from Table 1.
4. Characterizing Shuttle IV&V data

Much of the value of IV&V resides in problem

identification performed during the definition phase of

an OI. The IV&V team rates ITRs in severity from 1 to 5

with the following meaning:

Severity 1. A problem can cause loss of control, ex-

plosion, or other hazardous effect.

Severity 2. A problem can cause inability to achieve
mission objectives, e.g., launch, mission duration,

payload deployment.
Severity 3. A problem is visible to the user (crew),

which is not a safety or mission issue. It is usually

waived and a CR for a later OI is opened.

Severity 4. A problem is not visible to the user (crew).

It is an insignificant violation of the requirements.

This includes documentation and paperwork errors
(e.g., typo’s), intent of requirements met, and insig-

nificant waivers.

Severity 5. An issue is not visible to user (crew) and is

not a flight, training, simulation or ground issue. This

includes programming standards, maintenance issues,

and programming style issues (e.g., improper HAL/S

parameter name prefix, inefficient code that meets re-

quirements).

Severity 1 and 2 ITRs are the most critical and need

to be addressed during the development of that OI.

Severity 3 ITRs, if workarounds are possible, are often

resolved as CRs for a later OI and are not changed or

are documented as user notes. Many severity 3 ITRs

represent issues that are not safety related that are pre-

sent in that OI or could appear in a later OI. CRs are
written to ensure that the later OI does not develop any

problems. Severity 4 and 5 ITRs are generally CRs that

will be corrected when the appropriate documents are

updated due to some other required changes.

Some of the severity 1 and 2 ITRs represent issues

that are outside of the operating environment of the

software so they have a very small probability of oc-

currence, even though theoretically possible. Such issues
are classified as 1N or 2N and are generally grouped

with the severity 3 anomalies.

4.1. A characterization of the ITRs

Table 2 summarizes the set of ITRs that have been

collected. For four of the severity 4 and 5 ITRs it was

difficult to determine which system they affected. Al-
though the PASS is the primary avionics system (538

ITRs or 69.2%), 314 ITRs (40.4% of the ITRs) concern

the BFS. About 10% concern both systems.

As shown in Table 3, of the 773 ITRs for which we

have a disposition, 2 461 (59.6%) of the ITRs were

closed and 312 (or 40.3%) of the ITRs were still open in

mid-1999. However, all of the severity 1 and 2 PASS

ITRs were closed and only two of the severity 1 BFS
ITRs were still open at the time of our initial analysis. In

both open ITR cases, which date from the early 1990s,

the BFS requirements differ from the PASS require-

ments in the instance of aborting a mission. Those were

not specified in BFS requirements and so were imple-

mented differently in both the PASS and BFS systems.

Table 4

Disposition of ITRs, 1988–1999

No chg Chg CR Process Total

Severity 1 8 2 7 1 18

Severity 2 2 4 1 0 7

Severity

1N,2N,3

54 19 47 19 139

Total 64 25 55 20 164

Table 5

Early vs. late ITRs

Early ITRs Late ITRs

Severity 1 9 8

Severity 2 6 1

Severity 1N,2N,3 68 67

Total 83 76

Table 2

Summary of ITRs collected, by severity and location, 1988–1999

Severity 1 2 1N,2N,3 4 5 Total

PASS 7 6 85 219 142 459

PASS/BFS 3 0 13 43 20 79

BFS 8 1 41 115 70 235

Unknown 0 0 0 3 1 4

Sum 18 7 139 380 233 777

Table 3

Closed and still open ITRs in 1999

Severity 1 2 1N,2N,3 4 5 Total

Open 2 0 59 138 113 312

PASS or both 0 0 44 104 84 232

BFS 2 0 15 34 29 80

Closed 16 7 80 239 119 461

PASS or both 10 6 54 158 78 306

BFS 6 1 26 81 41 155

M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154 149
The ITRs indicate a possible resolution to the problems,

but the ITRs have not been marked closed by the time of

our analysis. 3 For the following analysis we limited our

study to the severity 1, 2, and 3 ITRs, since severity 4

and 5 ITRs are of lesser impact and do not affect mission

performance. There were 164 severity 1–3 ITRs. We

classified these ITRs according to their disposition

(resolution) into one of the following categories:

• No change––ITR was resolved as not being a defect.

The ITR is closed with no corrective action. This hap-

pens when the description of a requirement, software

module, or module test case is incomplete, but the ar-

tifact is developed correctly. However, the reason for

no action is recorded.

• Change––A software defect was found and corrected.
In some cases, a formal DR is created indicating a

problem to be fixed by the developer. The ITR is

closed when the code is changed if no DR was cre-

ated.

• CR––A change to the software for later implementa-

tion is planned. This may involve creation of a CR

document for later SASCB approval.

• Process––The ITR reflects V&V activity of the devel-
oper that is unclear, e.g., a certain condition in the re-

quirements is not part of the given test case. In such

cases either the test is performed or the developer ex-

plains that the condition is actually tested.

In Table 4 we present the disposition or proposed

disposition of severity 1, 2, and 3 ITRs. Of the 164, 64

result in no action and 20 require process ITRs for the
developer to reconsider certain tests. Thus 64þ 20 ¼ 84
3 Since we performed this analysis, these 2 ITRs have been closed.
of 164 ITRs or 51.2% of the ITRs represent no changes

to the developed software, whereas 48.8% (80 ITRs) do

reflect changes proposed by the IV&V process.

It is often stated that the earlier a defect is found, the

easier it is to repair. Looking at the creation dates for

each ITR sheds light on this. In Table 5 we divide the
ITRs into those found during the requirements and

development phases (early ITRs) and those found after

software release, that is after the CI milestone (late

ITRs). 4 More than half (83 of 159) of the issues were

discovered prior to release of the new OI.

Table 5 represents all ITRs, including those resolved

with no change to the software. By looking at only the 80

ITRs from Table 4 that represent proposed changes (the
CR and Chg columns), the data from Table 5 is reduced

to that shown in Table 6. About 62% of the severity 1 and

2 issues (8 out of 13) were found during the requirements

and development phases and 59% of all major defects (47

out of 80) were found during these early phases. In ad-

dition, five severity 1 defects were detected in the OI

software after the CI milestone, thus representing a real

risk of a latermission failure if the defects were not found.
Table 7 gives the distribution of 51 severity 1–3 ITRs

that were identified with a particular OI. We limited this

table to those OIs that were fully evaluated by IV&V

after 1988. Each pair of columns in the table represents

the early (E) and late (L) ITRs for that severity level. By

comparison, the rightmost two columns in the table

represent the 1095 early and late DRs (defects) found by

the developer of the PASS subsystem for each OI.
Typically IV&V ITRs numbered around 2–5% of the

early defects that were not found by the developer, but

from 15% to almost 25% of the late DRs for a particular

release.
4 Five of the ITRs were not identified with a specific OI, so the

phase of discovery could not be determined.

14

3

9

1

3

0
0

2

4

6

8

10

12

14

16

Pre-1988 Post-1988

Released severity 1 errors

Flown severity 1 errors

Exposed severity 1 errors

Fig. 5. Severity 1 defects.

Table 6

ITRs representing proposed changes

Early ITRs Late ITRs

Severity 1 3 5

Severity 2 5 0

Severity 1N,2N,3 39 28

Total 47 33

Table 7

Early and late defects found, by OI

OI ITRs by severity level DRs

1–2 E 1–2 L 3 E 3 L E L

I 2 32 13

J 1 139 52

K 3 2 110 25

L 2 2 133 32

M 1 114 10

N 2 81 11

O 5 5 89 28

P 1 6 60 17

Q 1 5 3 67 12

R 1 2 7 61 9

Total 2 4 22 23 886 209

150 M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154
From 1988 until mid-1999 777 ITRs have been en-

tered in the issues tracking database. Of those occurring

in the 10 releases that we studied in detail, Fig. 4 shows:

• Issues are found fairly uniformly across OIs.

• Although the number of critical ITRs is quite low,

they still exist; IV&V uncovered some of them that

otherwise might have been not detected.
• A total of 20 severity 1 and 2 ITRs were found attrib-

utable to these 10 OIs. As explained previously, many

of the severity 3–5 ITRs are held until a later OI to

avoid changing source programs needlessly.

A more operational measure of IV&V effectiveness is

determining if any critical errors have been present on

Shuttle missions (Fig. 5). A total of 17 severity 1 errors
have been found in released Shuttle software (as speci-
0
10

20
30
40

50
60

70
80

I J K L M

OI relea

Severity 1 Severity 2 Sever

N
u

m
b

er
 o

f
IT

R
s

Fig. 4. ITRs across
fied in Section 3, for the Shuttle program, released

software dates from the CI milestone, that is over a year
prior to launch). Of these, 10 defects have flown on

missions. However, of these, nine flew on pre-IV&V

software (i.e., before 1988), where three were in dormant

code that did not execute. Since IV&V was instituted,

only three severity 1 errors have been found on released

software, and only one of these was on an actual mis-

sion. In this one case, it was in dormant code that did

not execute.
IV&V effectiveness can also be implied by looking at

the early detection rate (EDR) of each OI. The EDR is

reported to NASA as a measure of how early all soft-

ware defects are discovered for each OI. It is computed

simply as (number of early errors)/(total number of

errors). Thus it starts at 1.00 and drops below 1 as later

testing errors are found.

NASA uses a date of 400 days (about 1 year) before
release (CI milestone) as the date for baselining early

errors. Plotting the EDR for a typical OI results in a

graph much like Fig. 6. A flat line means that most er-

rors were found early, a decaying line means that more

errors were found later.

The final value of the EDR for the OIs analyzed here

is given by Table 8. The overall EDR rate for all OIs is

0.81 (meaning 81% of all defects were found more than
N O P Q R

se

ity 3 Severity Severity 5

OI releases.

70

75

80

85

90

95

100

105

-400 -200 0 200 400 600 800 1000 1200 4000

COMPOSITE EARLY DETECTION
VERSUS TIME

C
o

m
p

o
si

te
 E

ar
ly

 D
et

ec
ti

o
n

-P
er

ce
n

t

Time Relative to Release (CI) - Calendar Days

Fig. 6. Early detection rate.

Table 8

Composite EDR for multiple OIs

OI EDR

I 0.71

J 0.73

K 0.81

L 0.81

M 0.92

N 0.88

O 0.77

P 0.78

Q 0.86

R 0.87

Total 0.81

M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154 151
400 days before software release). In Table 8 the first

four OIs have EDRs of about 0.7–0.8 and the last four

have EDRs that ranged from about 0.75 to almost 0.9.

While other software development improvements might

have affected the error detection process, the IV&V

process has definitely had an impact.
I

J

K

L

M

N

O

P

Q

R

O
IR

el
ea

se

1990 19941992 1996 1

• •

•

Fig. 7. Severity 1
5. Product line defect detection

The previous section provides a set of quantified

measures of the benefits of the IV&V process for defect

detection and elimination. However, we also want to

understand the propagation of defects across multiple
releases of the software. In Fig. 7, we reproduce the

lifecycle given in Fig. 1 with the lifetime of the severity 1

and 2 ITRs. Under each OI there are the severity 1

(circles) and 2 (diamonds) ITRs attributed to that OI.

Those that precede release I were attributed to OIs that

precede the introduction of IV&V in 1988 and are drawn

above the bar corresponding to OI I. The bar connecting

two dots represents the elapsed time from creation to
closure of that ITR. A single dot represents an ITR that

was opened and closed within a relatively short time

period.

Fig. 7 indicates that 22 ITRs (18 severity 1 and four

severity 2) are attributed to the graphed releases. Note

that 10 were found in code added to OIs that precede

release I with three of the ITRs remaining open for up to

10 years. However, after the introduction of IV&V for
OI I, only 12 severity 1 and 2 anomalies were found, and

none remained open for more than one additional OI.

(The one severity 2 OI was identified during the re-

quirements process before development of OI Q began.)

A more meaningful chart would be the set of cur-

rently open ITRs. This was summarized earlier in Table

3. For the 312 still open ITRs in 1999, Fig. 8 plots the

date each one was first uncovered. (Several ITRs are not
listed, being part of an OI still incomplete at the time of

analysis.) Note that they are all relatively harmless se-

verity 3–5 ITRs, except for the two severity 1s that were

discussed earlier with Table 3 (and Footnote 3).

By plotting the open ITR data of Fig. 8 according to

the OI where it was created, we get an overview of how

ITRs evolve over time. In Fig. 9, for each OI, we give the

number of ITRs detected in that OI, the number of ITRs
Development

Validation

Mission Preparation

Operational lifetime

998 2000

Severity

Severity

1

2

and 2 ITRs.

0

50

100

150

200

250

300

350

I+prev J K L M N O P Q R
0

50

100

150

200

250

300

350

Opened Closed Pending

Fig. 9. Growth in open ITRs.

Fig. 10. Days an ITR remained open.

1

2

3

4

5

Date ITR opened

1990 19941992 200019981996
S

ev
er

it
y

le
ve

l

Fig. 8. Open ITRs.

5 The annual budget for IV&V the last 3 years has been approx-

imately $3–3.5 million, which is approximately 3% of the budget

allocated annually for the complete software development and

assurance process.

152 M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154
closed eventually that were initially opened in that OI

and the number of ITRs still pending from all previous
OIs.

It clearly shows that the number of ITRs remaining

open due to each OI is an increasing function. However,

recall from Table 3, that except for two, severity 1 and 2

ITRs have all been closed and over 250 of the remaining

open ITRs are severity 4 and 5.

A measure of defect detection that is often used in

software development needs to be reexamined in the
light of the Space Shuttle experience. Usually the num-

ber of days a problem report remains open is a measure

of the effectiveness of the defect removal process. But

this may not be useful from a product line perspective.

Recall that Fig. 9 shows that the set of open ITRs in-

creases over time. From the closed serious ITRs (se-

verity 1–3, Table 3), we computed the number of days

that each remained open. This is displayed as Fig. 10.
The average number of days an ITR was open was 284,

and ranged from 1 to 3049. The closure rate was fairly

constant between 10 and 180 days. 24% of the ITRs

were closed in 10 days or less and slightly more than

25% took more than 420 days.

In a traditional development, an average days-open

time of 284 days would be seen as a poor defect removal

process. However, the goal of defect tracking in the
Shuttle is to certify flight readiness of a future OI where

for safety concerns changes are only made in software
where necessary. The IV&V ITR process keeps track of

multiple issues over several OIs.

Non-critical issues may not be resolved for several

years until that section of the software is modified. The

number of days an ITR remains open is not of critical

importance, but the fact that the process can keep track

of all of these over a span of some 3000 days is vital to

the success of the activity.
6. Conclusions

In this paper we present an overview of the NASA

Space Shuttle software IV&V process and an analysis of

the ITRs produced during the IV&V process. The value

of this study resides in capturing and describing a suc-
cessfully implemented model for IV&V. It is a process

that carefully weighs the value of IV&V against the high

costs 5 of providing verification to all work products in

the development. The ability to manage a large database

of issues across multiple releases of the software with-

out losing integrity of the product was a major goal of

the process. Shuttle software is highly reliable, and the

number of defects that manage to ‘‘slip through the

M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154 153
cracks’’ has declined substantially from the pre-IV&V

1980s.

In our analysis we found that an ITR does not nec-

essarily reflect a single issue in the development of that

OI. Some represent a single discrepancy in one of

the artifacts, whereas others may represent the results
of an inspection reflecting 10–20 such issues. This

study is only a first approximation of IV&V for this

program.

Therefore, relative to IV&V on the Space Shuttle

program we found the following:

• There is a demonstrated value of IV&V to the NASA

Space Shuttle program. From Table 6 we can see that
there were 80 serious issues, which were found by the

IV&V process on Shuttle software over a 10-year pe-

riod, including 13 possible defects that if not resolved,

could endanger a mission.

• Quantitative IV&V studies are unfortunately quite

rare. Our results are similar to a small controlled

study performed at NASA Langley Research Center

(Arthur et al., 1998), and although we could not at-
tach a cost savings for this activity, previous studies

have shown a return on investment of between 1.3

and 1.8 on similar NASA software (Rogers et al.,

2000).

• Many of these defects were found during the require-

ments analysis phase. Almost one half (24 out of 51

from Table 7) of the serious issues were found during

requirements and development. We also cannot de-
termine the additional savings that resulted from

the risk mitigation strategy employed during defini-

tion and requirements analysis that prevented defects

from even surfacing. We can only guess at the quan-

titative savings that resulted from this early detection

of defects.

• The IV&V process uncovered some additional short-

comings in the overall testing process. Many of the 29
ITRs (the 20 of Table 4 plus nine severity 4 ITRs) in-

dicated insufficient testing of various modules. These

could have resulted in additional defects on later OIs

had they not been discovered.

• Only one severity 1 defect has flown on a Shuttle

flight since IV&V was instituted, and that error was

in dormant code that did not execute. This contrasts

to nine severity 1 errors on Shuttle flights prior to the
introduction of the IV&V process.

Important note: It is important to state that this

analysis is not meant to be a criticism of either the de-

veloper or the IV&V team. The precise reading of doc-

umentation by the IV&V contractor led to numerous

issues that could affect the current or future Shuttle

missions. Many requirements problems were discovered
via this route. The dual product and process evaluation

by the developer and the IV&V team allows for in-
creased safety and reliability of the product. It clearly

shows in some cases (e.g., the 64 ITRs that were re-

solved with no changes) that a fresh look at the software

(via the IV&V process) demonstrated that some docu-

mentation was unclear and a restatement of the speci-

fication resolved the issue. The independence of the
two groups shows those different approaches to evalu-

ating software leads to an increased defect discovery

process.

Most IV&V processes have been organized around

developing a correct and risk free system––from re-

quirements to delivery. However, as this paper demon-

strates, the NASA Space Shuttle program is a multi-year

ongoing development where IV&V is an integral part of
a multi-release process. Understanding the interactions

among developers and evaluation teams for complex

systems is important for achieving reliability in such

critical systems in the future.

Because of safety considerations, defects are not

necessarily fixed when found in the Shuttle’s product

line development model. The development process must

adapt and be able to track such issues across multiple
versions of the software.

Recently the management of the NASA IVV center

was moved from the Ames Research Center to the

Goddard Space Flight Center, with a goal of expanding

IV&V activities to additional NASA projects across the

agency. This data provides a baseline that is useful for

setting up additional IV&V-like activities at NASA and

elsewhere. We already know that absolute perfection in
software is an unrealizable goal. With data such as this

from a well-organized large complex development, we

can set a standard that other organizations can try to

achieve.

It is clear from the data presented here, that finding

all defects in NASA’s highly engineered development

process is still beyond the realm of current software

practices. Although some defects still manage to slip by,
NASA’s IV&V process clearly shows a vast improve-

ment in defect avoidance and the production of robust

Shuttle software since 1988.

The question to be asked is how well can organiza-

tions do who do not have the resources of an agency like

NASA? The danger of someone reading this paper is

that they may deem IV&V as too complex or too ex-

pensive to install. The real danger is that they do not
install such a process, and a correspondingly important

system later fails.
Acknowledgements

We would like to acknowledge the cooperation of the

NASA IVV Center in Fairmont, WV, AverStar, Inc.,
and United Space Alliance for their support in providing

the data that was used in this analysis.

154 M.V. Zelkowitz, I. Rus / The Journal of Systems and Software 70 (2004) 143–154
References

Arthur, J.D., Groener, M.K., Hayhurst, K.J., Holloway, C.M., 1998.

Adding value to the software development process: a study in

independent verification and validation. Technical Report 98–15,

Virginia Tech., Blacksburg, VA.

Eickelmann, N., Rus, I., Zelkowitz, M., 2000. Preliminary case study

findings of the Space Shuttle software evolution as a product line

process, ISAW-4 workshop at ICSE 2000. Limerick, Ireland.

Florac, W., Carlson, A., Barnard, J., 2000. Statistical process control:

analyzing a Space Shuttle onboard software process. IEEE

Software (July), 97–106.

IEEE Standard for Software Verification and Validation, Std.1012–

1998, Annex C.

Leveson, N. et al., 1993. An Assessment of the Space Shuttle Flight

Software Development Process. National Academy Press, Wash-

ington, DC.

Lions, J.L. et al., 1996. Report by the Inquiry Board on the Ariane 5

Flight 501 Failure. Available from <http://www.esrin.esa.it/htdocs/

tidc/Press/Press96/ariane5rep.html>.

McCaugherty, D., 19998. The criticality and risk assessment (CARA)

method. NASA Workshop on Risk Management, Farmington,

PA, October 1998.

NASA, 2000. Business plan for the effective utilization of independent

verification and validation to reduce risk in NASA missions.

NASA Goddard Space Flight Center, May 31, 2000.

NASA headquarters Safety and Mission Quality Office (Code Q) letter

of 13 January 1992; Clarification of NASA’s Independent Verifi-

cation and Validation (IV&V) Perspective.

Rogers, R., McCaugherty, D., Martin, F., 2000. A case study of IV&V

return on investment. In: Third Ann. Systems Eng. and Support-

ability Conference, October 2000.

Schneidewind, N.F., 1998. How to evaluate legacy system mainte-

nance. IEEE Software (July), 34–42.
Schneidewind, N.F., 1999. Measuring and evaluating maintenance

process using reliability, risk, and test metrics. IEEE Transactions

on Software Engineering 25 (6), 769–781.

Zelkowitz, M.V., Rus, I., 2001(a). Understanding IV&V in a safety

critical and complex evolutionary environment: the NASA Space

Shuttle program. In: IEEE Computer Society and ACM Interna-

tional Conf. on Soft. Eng., Toronto, CA, May 2001. pp. 349–357.

Zelkowitz, M.V., Rus, I., 2001(b). The role of independent verification

and validation in maintaining a safety critical evolutionary

software in a complex environment: the NASA Space Shuttle

program. In: International Conference on Software Maintenance,

Florence, Italy, November 2001. pp. 118–126.

Ioana Rus is a scientist at Fraunhofer Center for Empirical Software
Engineering, Maryland. Her research interests focus on software
process modeling and simulation, process improvement, measurement,
and empirical studies in software development and evolution. Her
work also addresses models and methods for software dependability
engineering, as well as experience and knowledge management in
software engineering. She has a Ph.D. in Computer Science and En-
gineering and is a member of the IEEE Computer Society and ACM.
She has worked as software engineer, assistant professor, and re-
searcher.

Marvin V. Zelkowitz is a professor of Computer Science at the Uni-
versity of Maryland holding a joint appointment with the University’s
Institute for Advanced Computer Studies. He is also Chief Scientist of
the Fraunhofer Center for Experimental Software Engineering,
Maryland, an applied research and technology transfer organization
located near the campus of the University of Maryland in College
Park. Prof. Zelkowitz received the MS and Ph.D. degrees from Cornell
University in Computer Science in 1969 and 1971, respectively and the
BS in mathematics from Rensselaer Polytechnic Institute in 1967. He
is a fellow of the IEEE, a Golden Core member of the IEEE Com-
puter Society, and a member of ACM. He is the series editor of Ac-
ademic Press’ ‘‘Advances in Computers’’ book series, and on the
editorial boards of Empirical Software Engineering and Computer
Languages.

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html

	Defect evolution in a product line environment
	Introduction
	Software independent verification and validation
	IV&V for Space Shuttle software
	Space Shuttle software characteristics
	Shuttle software development process
	Shuttle IV&V process

	Characterizing Shuttle IV&V data
	A characterization of the ITRs

	Product line defect detection
	Conclusions
	Acknowledgements
	References

