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Abstract

The primary goal of active networking is to increase the
pace of network evolution. The approach to achieving this
goal, as well as the goal of enhancing customizability, is
to allow network nodes to be extended by dynamically
loaded code. Most active network implementations em-
ploy plug-in extensibility, a technique for loading code
characterized by a concrete, pre-defined abstraction of fu-
ture change. After giving examples of plug-in extensi-
bility, we argue that while it is flexible and convenient,
it is not sufficient to facilitate true evolution of the net-
work. To remedy this problem, we propose the use of
dynamic software updating. Dynamic software updating
reduces thea priori assumptions of plug-in extensibility,
improving flexibility and eliminating the need to pre-plan
extensions. However, this additional flexibility results in
additional complexity and creates issues involving valid-
ity and security. We discuss these issues, and describe the
state-of-the-art in systems that support dynamic software
updating, thus framing the problem for researchers devel-
oping next-generation active networks.

1 Introduction

Active networks(AN) are networks whose elements are,
in some way, programmable. The idea of AN was devel-
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oped in 1994 and 1995 during discussions in the broad
DARPA research community, and since then a significant
number of prototypes (e.g. [10, 23, 24, 3, 18, 15]) have
emerged. Reviewing the early AN discussions, we find
one chief motivation driving the initiation of research into
AN: faster network evolution. For example, the Switch-
Ware project proposal, from the University of Pennsylva-
nia, states ([21], p. 1):

The pace of network evolution (not switch
evolution,networkevolution) proceeds far too
slowly. To a large degree this is a function of
standardization.

How, then, does active networking address this problem?
Early work by Tennenhouse and Wetherall motivates that
active networking facilitate evolution bycustomization
([22], p. 2):

The [active network] programming abstraction
provides a powerful platform for user-driven
customization of the infrastructure, allowing
new services to be deployed at a faster pace than
can be sustained by vendor-driven standardiza-
tion processes.

For the most part, existing AN implementations embrace
this philosophy and employ customization as the means
to evolution. Usually customizability is achieved through
extensibility: the network elements may be extended with
user (or administrative) code to add or enhance function-
ality. For example, many systems allow new packet pro-
cessing code to be dynamically loaded, as in ALIEN [4]



and Netscript [24]. In some systems the extensions re-
side in the packets themselves, as in PLAN [10], and
ANTS [23].

While it is clear that all of these implementations add
flexibility to the network by way of extensibility, we be-
lieve that no existing system truly solves the problem of
slow network evolution. Other authors have cited inade-
quate resource management and security services as the
main inhibitor of active network deployment, but we be-
lieve the problem is even more fundamental: no existing
system isflexible enoughto anticipate and accommodate
the future needs of the network.

In this paper, we look closely at the extensibility strat-
egy employed by many AN systems with an eye towards
network evolution. In particular, we find that implementa-
tions at their core rely onplug-in extensibility, a strategy
for loading code that abstracts the shape of future changes
with a pre-defined interface. Plug-ins simply and effi-
ciently support a customizable network service, but they
are not flexible enough to support true evolution. Drawing
from our own experience with PLAN(et) and related past
work, we propose a more flexible alternative, termeddy-
namic software updating, that we believe can much more
effectively address the evolution problem.

Our presentation is divided into three parts. In Sec-
tion 2, we defineplug-in extensibilityand provide two
concrete examples of its use, the Linux kernel and the
PLANet [12] active internetwork. We then show how
many mature AN implementations, including ANTS [23],
and Netscript [24], among others, also employ plug-in ex-
tensibility. In Section 3, we explain how plug-in extensi-
bility is inherently limited with respect to how a system
may change; here we present some concrete experience
with PLANet. Finally, in Section 4, we propose an alter-
native to plug-in extensibility, termeddynamic software
updating. We explain the benefits and potential problems
with this approach, and then point to past and future work
that will make it a reality. We conclude in Section 5.

2 Plug-in Extensibility

Most AN systems provide network-level extensibility by
allowing network nodes to dynamically load new code.
This is a popular technique in areas outside of AN as well,
including operating systems (OS’s), like Linux and Win-

main
program extension

extension

extension
interface

Figure 1: Plug-in extensibility: extensions are “plugged-
in” to an extension interface in the running program.

dows, and web browsers. When a new service is needed,
some code may be loaded that implements the service.
Typically, this code is constrained to match a pre-defined
signatureexpected by the service’s clients. We refer to
this approach asplug-in extensibility.

Essentially, plug-in extensibility is a technique thatab-
stracts the shape of loadable code. Loaded code is ac-
cessed by the running program through an extension in-
terface. Extensions, while internally consisting of arbi-
trary functionality, may only be accessed by the current
program through the extension interface, which does not
change with time. This idea is illustrated abstractly in Fig-
ure 1. In this section we present some concrete examples
of how this works, both to make the ideas concrete, and
to demonstrate some problems and limitations of this ap-
proach. The impatient reader may skip to Section 3 where
we argue that plug-in extensibility is insufficient for evo-
lution.

2.1 Linux

The Linux kernel code uses plug-ins extensively; plug-ins
are called modules in Linux terminology. Typically the
kernel code will perform some test; if the test fails the ker-
nel will load an appropriate module and then retry the test.
While the module is being loaded an initialization rou-
tine will be called, which alters some of the kernel’scur-
rently visibledata-structures so that the test will succeed
the second time. Similarly, when a module is unloaded,

2



-
time

-
user code

socket code (client)

protocol code (plug-in)

A

C

D F

B GB’

Figure 2: Linux protocol code

a cleanup function is called to remove any vestiges of the
module from these data-structures. Web browser plug-ins
are implemented using a similar technique.

A specific example for the Linux network stack is
shown pictorially in Figure 2, where the code is divided
into user code, the socket code, and the plug-in code; time
proceeds to the right. The letters label important points in
the execution and the text that follows is keyed to these
labels.

Suppose a user attempts to open a socket that will use
the IPX protocol family (A). The kernel first checks a list
of structures, indexed by the protocol family, to see if the
IPX handler is present (B). Each handler structure consists
of a number of function pointers that implement the func-
tions expected of a network protocol, effectively defining
the interface, orsignature, of an abstract protocol handler.
If the IPX handler is not present in this list, then the socket
code attempts to load a module that implements it (C).
During loading, the IPX module’s initialization function
will be invoked (D). This function allocates and initial-
izes a new handler structure for its functions, and stores
the handler in the kernel’s handler list. Afterwards, the
socket code checks the list again (B’); when found, the
socket code will invoke the handler’s socket creation func-
tion (F), which will return a new socket structure. The
socket code then keeps track of the structure in its file de-
scriptor table, and returns the file descriptor to the user
(G). After some period of quiescence, or by user-directive
when the handler is not in use, the handler may be un-
loaded, which will cause the removal of the handler struc-
ture from the kernel list.

This technique allows the protocol handling code in the
kernel to be extensible. Protocol handlers are treated ab-
stractly by the socket code via the extension interface. In
this way, changes may be made on the granularity of pro-

tocol handlers—the user and socket portions of the fig-
ure will always be fixed, but the plug-in code can change.
New protocol handlers for different protocol families may
be added, and existing handlers may be removed and re-
placed with new versions. All loaded handlers must match
the the extension interface of the socket code if they are
to be accessed correctly.

There are, however, some important limitations. First,
it is not possible to change the standard procedure for
dealing with protocols. For example, while we could dy-
namically change the handler signature with some new
function types, the old client code will never use them.
Similarly, we cannot usefully change the types of cur-
rent functions, because they will be interpreted using the
old types. We could solve this problem if we could alter
the client code to take advantage of the new or changed
features. But this is not possible because the system has
not been programmed to allow the client code to change.
Thus, to make these kinds of changes, we would have to
recompile and redeploy the system.

Another limitation of Linux protocol modules is that
they may not be updated (that is, replaced with an “im-
proved” implementation) while in use. This is because
unloading of a module is not allowed while it is use and,
more fundamentally, there is no way to transfer the state
of the current version of the module to the new version,
which would be needed to allow open connections to op-
erate seamlessly. Such a state transfer would have to be
anticipated and facilitated by the client code (we demon-
strate an example of this idea in the next section). Disal-
lowing updates to active code is probably reasonable for
this application, but we will argue that it is not an ideal
choice for active networks.

2.2 PLANet

Although the details differ between systems, AN imple-
mentations make use of plug-in extensibility in much the
same way as Linux. As an example of this, we will first
focus on our own system, the PLANet [12] active inter-
network. Other AN systems will be shown to fall into the
same mold in Subsection 2.3.

PLANet is based on a two-level architecture that pro-
vides lightweight, but limited, programmability in the
packets of the network, and more general-purpose exten-
sibility in the routers. Packet headers are replaced by pro-
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grams written in a special-purpose language PLAN [10],
resulting in much greater flexibility than traditional head-
ers. When packets arrive at a node to be evaluated, their
PLAN programs may call node residentservice routines,
which form the second level of the architecture. The ser-
vice routine namespace is extensible, allowing new ser-
vice routines to be installed or removed without stopping
the execution of the system. This is implemented by dy-
namically linking code that implements the new service
and registering it in a symbol table used by the PLAN in-
terpreter.

The PLANet service-level uses plug-in extensibility.
To clarify why this is so, consider the following exam-
ple. Suppose we want to add a new PLAN servicege-
tRand that returns a pseudo-randomly generated integer.
We must load some new code to implement the service.
We present this code piecemeal below, in C.1 At the core
of the new functionality is the functionrand , which ac-
tually generates the random numbers (code not shown):

int rand(void);

Additionally, we must include aninterface function
randIfc , which mediates access between the PLAN
interpreter and the actual code. The arguments to
all service interface functions include a structureac-
tive packet t , which describes the current PLAN
packet, and a list of PLAN values, which are the actual
arguments to the service provided by the PLAN program.
The value t structure is a tagged union that describes
all possible PLAN values. In this case, the arguments are
ignored (the list of values should be empty), while the re-
turnedvalue t is tagged with theINT tag:

value_t *randIfc(active_packet_t *p,
list_t *values) {

value_t *v = malloc(sizeof(value_t));
v->tag = INT;
v->val = rand();
return v;

}

Finally, the interface function must be added to the PLAN
symbol table, so that it is visible to PLAN programs. This
is done via theregister svc function, which takes as
arguments the name that the function will be referred to by
PLAN programs, and a pointer to the interface function.
When the new code is loaded, itsinit function will be

1The code examples shown here are in C, but in reality, PLANet uses
the type-safe language Ocaml [14] for its implementation.

executed (just as in the Linux protocol handler example),
which callsregister svc with the namegetRandand
a pointer to the interface function:

extern void register_svc(
char *planSvcName,
value_t *(*ifcFun)(active_packet_t *,

list_t *));

void init(void) {
register_svc("getRand",randIfc);

}

Why is this plug-in extensibility? The giveaway is the
type of register svc . All service routines that may
be added and later accessed by PLAN functions must cor-
respond to the type ofifcFun , which is essentially the
extensibility interface for the system. In the Linux proto-
col code, plug-ins are allowed to be new or improved pro-
tocol handlers; for PLANet, plug-ins are PLAN services.
Services are not theonly kind of plug-in in PLANet, as
we shall see in the coming sections.

2.3 Other Active Networks

Just because PLANet uses plug-in extensibility does not
imply that all active network approaches are so limited.
For the remainder of this section we touch on some of the
more mature AN implementations and show that while the
makeup of plug-ins differ, all systems use plug-in exten-
sibility. Typically, systems fall into two categories, those
based onactive packets(or capsules), and those based
on active extensions. For the former, we concentrate on
the Active Network Transport System [23] (ANTS) as the
representative system, and for the latter we focus on Net-
script [24].

2.3.1 ANTS and Active Packet Systems

ANTS is similar to PLANet in that it makes use of packets
that (logically) contain programs, termedcapsules. These
capsules are written in Java, and dynamically linked into
the ANTS implementation with access to a node program-
ming interface including a subset of the JVM libraries
and some additional utilities. Rather than carry the packet
code in-band, the code occurs in the packetby reference.
In the common case, the reference will be to code present
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typedef struct {
void f(fields_t *pkt_fields,

list_t *args,
void *payload);

} capsule_t;

Figure 3: Packet program abstract signature

in the node’s code cache; otherwise, a built-in distribution
system will retrieve and dynamically link the code.

In ANTS, the plug-ins are the capsule programs them-
selves. Each capsule plug-in essentially has the signature
shown in Figure 3: all packet programs are a single func-
tion whose arguments are the packet’s fixed fields (like
source and destination address), some protocol-specific
arguments (like a sequence number, or flow identifier),
and finally a generic payload.

Because capsules are the only plug-in, much of the
ANTS system is not subject to change; this includes the
code distribution service, the entire node programming in-
terface, the packet marshalling and unmarshalling code
(for the protocol-specific arguments), the code cache, the
security enforcement mechanisms, etc. The only way that
an ANTS node can change with time is by loading dif-
ferent capsule programs. If some aspect of the node pro-
gramming interface, or the distribution protocol, needs to
be changed, then the nodes would have to be changed,
recompiled, and redeployed.

In general, this reasoning applies to other active packet
systems, like SmartPackets [19], PAN [17], and the packet
programs of PLANet.

2.3.2 Netscript and Active Extension Systems

Netscript is a system for writing composable protocol pro-
cessors. The central abstraction in Netscript is called a
box, which is conceptually some piece of code with a
number ofin-portsandout-ports; in-ports receive incom-
ing packets, and out-ports transmit packets. Boxes are dy-
namically loaded and connected together by these ports to
form modular protocol processing units.

In Netscript, the form of plug-in is the box: all loadable
objects must subclass theBox class (Netscript uses Java
as its underlying implementation). Because the majority
of a system built with Netscript is composed of boxes,

much of the system is subject to change. Exceptions in-
clude the Java libraries (the box programming interface,
in some sense), the box-loading system, and the top-level
packet filter. However, some boxes are in essence un-
changeable because they encapsulate state, and thus can-
not be safely replaced, along the same lines as the Linux
example.

An interesting way to improve the evolutionary ability
of a Netscript system would be to wrap the library rou-
tines in boxes. For example, we could create aHash-
Box box to represent theHashtable class. To create
a new “hashtable”, we would send a message to one of
the box’s in-ports, and it would emit an object on one of
its out-ports. By sending the object and some arguments
through variousHashbox in-ports, and extracting results
from selected out-ports, we simulate the normal function
call semantics. The benefit would be that an improved
hashtable implementation could replace the old one, if
needed. However, this technique is clearly tedious and
error-prone, and thus not really practical. We will return
to this idea in the next section.

A number of other systems are similar in spirit to Net-
script. ALIEN [3] was primarily designed for building
modular networking code. CANES [15] makes use of
program templates (called theunderlying programs) pa-
rameterized by someslotsthat contain user-defined code.
In all cases, the elements that may be loaded are limited
in the same way as Netscript boxes.

2.3.3 Other systems

Some AN systems do not rely on dynamic linking as their
underlying means of extensibility. Instead, they use a
more traditional hardware-based, process model for ex-
tensions. For example, ABLE [18] is an architecture
whose extensions are processes spawned by the node’s
session manager.

In these systems, plug-ins are essentially whole pro-
grams whose extensibility interface consists of the al-
lowed IPC mechanisms to the rest of the system. Just
as plug-ins are limited by the programming interface with
which they may be called, these programs are limited by
their IPC interface.
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pktQ_t packetQ = global packet queue
void queue_packet (active_packet_t *p) {

queue p onto packetQ;
}
active_packet_t *dequeue_packet () {

if queue length is > 0
dequeue top element from packetQ;

else
throw an exception

}
...

Figure 4: A Simple Queue

3 Why Plug-in’s are Insufficient

Plug-in extensibility is convenient, useful, and
widespread. Despite this, we believe that if AN is
to facilitate substantial network evolution we must go
beyond plug-ins. In this section we argue why this is so,
and in the next section we propose how to do better.

3.1 Limitations of Plug-ins

Plug-ins are convenient because they abstract the kinds of
changes that may be made in the future, and thus give the
current code an interface to deal with those changes. In
the Linux case, the socket code does not carewhat code
it is calling, only that it will perform the properkind of
function (like setting up a socket object and returning it).
Similarly with PLAN services, the caller (the PLAN in-
terpreter) only cares that the service function performs
some action with the given arguments and returns a PLAN
value.

However, to create a system that is robust to long-term
change, as is the goal in active networking, we need to
minimize our assumptions about the system. Concretely,
we want to minimize the size of theunchangeable pro-
gram. This is the part of the program that is not made of
plug-ins, and therefore is not amenable to change. The
larger this part of the program, the more likely that some
future demand will be impossible to accommodate. To
make this point more concrete, we consider a practical
example that we encountered with PLANet.

/* Type of the queue plug-in */
typedef struct {

void (*q)(active_packet_t *);
active_packet_t *(*dq)(void);
...

} queue_plugin_t;

Figure 5: Queue Plug-in Type

3.2 Evolving PLANet’s Packet Queue

During the development of PLANet, we decided that a
useful AN application would be to allow administrators to
change their queuing discipline on demand, to meet cur-
rent network conditions.2 In particular, we wanted to be
able to change from a single FIFO queue shared by all
devices to a set of queues, one per device, serviced round-
robin to obtain fair-queuing. But we could not do this
unless queues could be plugged-in; otherwise, we could
not force the current code to use the new implementation.
Therefore, at the time, we coded the queuing discipline to
be a plug-in in PLANet.

Our initial queuing implementation, which did not an-
ticipate change, is shown in Figure 4, defining queuing
operations likequeue packet , dequeue packet ,
etc., to operate on a globally defined queue. This is simple
and easy to read.

To make queues a plug-in, we first defined the type
of the plug-in, shown in Figure 5. We then created
a default implementation, and provided a means to ac-
cess and change the implementation at runtime, shown
in Figure 6. Here, the default queue implementation
is created withdefaultQ . Users of the packet queue
access its functionality through the interface functions
queue packet , dequeue packet , etc. These func-
tions call the plug-in’s functions and return their results.
Future replacements are installed usinginstall qp .
This setup is almost exactly the same form as the Linux
protocol code, but with one difference:install qp
transfers the old state (the packets in the queue) to
the new implementation, and thus the timing of the
change is not limited to when the queue is inactive. All
queue replacements are constrained to match the type of

2In fact, this application arose out of the need to demonstrate network
evolution.
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/* Global queue */
static queue_plugin_t *q = NULL;

/* Default implementation */
void defaultQ(void) {

q = malloc(sizeof(queue_plugin_t));
q->q = ...;
q->dq = ...;
...

}

/* User interface */
void queue_packet (active_packet_t *p) {

q->q(p);
}
active_packet_t *dequeue_packet () {

return q->dq();
}
...
/* To load a new queue implementation */
void install_qp (queue_plugin_t *nq) {

Move packets in old q to new one, then
q = nq;

}

Figure 6: A Complicated Queue

queue plugin t .

While queues are now dynamically updateable, there
are two basic problems. First, we needed to anticipate not
just the need for the implementation to evolve, but even
the form the evolution should take (that is, the interface
of the queue plug-in). Second, the code that is “plug-in
enabled” is substantially more complicated and less clear
that the code written in the natural way. We can easily
imagine that constructing a large system in this way, with
many kinds of plug-ins, will result in obfuscated, error-
prone code. Or equally likely, we can imagine that pro-
grammers will decide to sacrifice the ability to one day
extend the code, to make their immediate task easier.

There is a more important problem. In this case, we
anticipated that queues should be plugged-in, and coded
the system as such. However,evolution implies change
in ways we cannot anticipate, and thus may not fit our
pre-defined mold. For example, the designers of the In-
ternet did not anticipate its current demand for Quality

of Service—it was specifically excluded from the design
of the best-effort network service (the telephone network
already did QoS well). Yet, high demand for QoS is pre-
cipitating proposals to change the Internet, including diff-
serv [1], intserv [2], RSVP [6], etc. Therefore, we feel it
is not really reasonable to think we can choose just the
right abstractions now and have those choices hold up
over many years.

Ideally, we would makeevery program component a
plug-in, but without the problems of code obfuscation and
fixed interfaces that we saw above. What we really need
is a solution that allows more general changes to be made
without having to choose theformof those changes ahead
of time; we shall explore this idea in the next section.

4 Dynamic Software Updating

Ideally, we would like to code our system in the manner of
the simple queue implementation, but still be able to sup-
port evolution by updating components dynamically, as
with the plug-in version. Furthermore, evolution would
be facilitated if we had more flexibility in how we per-
form the updating than is typically afforded by plug-ins.
For example, we would like to be able to change the type
of components at runtime, rather than limiting the replace-
ment type to match the original compile-time type. In this
section we argue that rather than just plug-in extensibility,
active networks require what we term asdynamic software
updatingto achieve true evolution.

We begin by defining the requirements of dynamic soft-
ware updating, and their ramifications in terms of theva-
lidity and security of the system. We finish by point-
ing to some promising past and present efforts to real-
ize dynamic software updating, with the hope that AN re-
searchers will integrate these techniques into their next
generation systems.

4.1 Dynamic Software Updating

In order to facilitate systemevolution, we have the fol-
lowing requirements, which comprisedynamic software
updating:

• Anyfunctional part of the system should be alterable
at runtime, without requiring anticipation by the pro-
grammer. In the queue example, we would be able
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to code the queue in the simple, straightforward man-
ner, but still change it at runtime.

• Alterations should not be limited to a predefined
structure, i.e. component signatures should be
changeable, allowing the implementation to evolve
as demands change.

For example, suppose we want the queue to track
how many packets have been processed. With queue
plug-ins, while we could dynamically add a new
queue implementation that counts packets, we could
not make this information available; the type of
queue plugin t (Figure 5) constrains all queue
replacements to implement exactly the functions
listed. Instead, we would like be able to change this
type, either to add new functionality, such as to count
packets, or to alter the types of existing functions.

• The timing of updates should not be restricted by the
system. In the IPX example, we could not unload the
module while it was in use to replace it with a better
version. In PLANet and other ANs, some compo-
nents of the system mayalwaysbe in use; for ex-
ample, the packet queue may always contain some
packets. In the queue plug-in code, we dealt with
this situation by transferring all packets from the old
queue to the new at installation time. We must allow
for a similar mechanism when changes are unantic-
ipated, which implies that when new code replaces
the old, it must be able to take care of transferring
any necessary state.

While a system that meets these requirements will be sig-
nificantly better equipped to deal with network evolution,
the additional flexibility leads to complications. In partic-
ular, it becomes more difficult to ensure that a dynamic
extension isvalid, and tosecurethat extension.

4.1.1 Validity

Returning to the example of PLANet services, say we
wish to update theregister svc function to addition-
ally include the PLAN type of the service:

extern void register_svc(
char *planSvcName,
value_t *(*ifcFun)(active_packet_t *,

list_t *),

list_t *argTypes,
plan_type_t returnType);

We have added two additional arguments:argTypes ,
which describes the expected types of the PLAN ser-
vice function’s arguments, andreturnType , which de-
scribes the type of the return value.

This information will be stored in the service symbol
table (along with the old information) to type-check the
services called by a particular PLAN program. To do
so, we have to alter the table’s format to include the new
fields, which has two implications. First, before the new
code that implementsregister svc can be used, the
data in the current symbol table will have to be converted
to match the new type.3 The second implication is that we
will have to change the other functions that directly access
the table to be compatible with the new type. We cannot
sidestep these issues, as we did in the IPX handler case,
by waiting for the symbol table to become empty before
making the change because it may never become empty.

Now we have several new concerns:

• What about old client code that calls symbol table
access functions likeregister svc ? This code
will still expect these functions to be of the same
type as before. A quick answer would be that all the
old code must be updated to use the new functions.
However, this is not feasible since other parties may
have loaded code that calls these functions, and we
may not have access to that code. We therefore need
some way to allow the old code to access the new
functions.

• When is a reasonable time to make the change? If
the node is accessing the table, perhaps in another
thread, when the transformation takes place, then
changes to the table could be lost or made incon-
sistent. Thus, we need to time the transformation
appropriately, perhaps with assistance from the ap-
plication.

To clarify this point, consider that the old version of
register svc is running in threadt1 and is just

3In general, for large amounts of state, we may be concerned about
the time taken to perform the conversion; we may prefer it to happen
incrementally rather than all at once. This is especially important for
communications systems, like active network nodes, that may have soft-
real-time requirements.
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about to add a new entry to the table, when in another
threadt2 the new version is loaded to replace it. We
might naively think that, at the time of update,t2
could translate the state from the old representation
to the new and store this in the new module, similar
to what we did in the queue example. However, this
translation may not correctly include changes made
to the state by threadt1. At best, all that will happen
is that the change will not be reflected in the new
program. At worst, e.g. if the translation begins just
after t1 starts to alter the table, the translated table
will be inconsistent. Therefore, properly timing the
changes to ensure that state is consistent is extremely
important.

These questions follow from the general question of
what constitutes avalid change to a program. That is,
when will an update leave a program in a “reasonable”
state? Not surprisingly, Gupta has shown that determin-
ing the validity of a change is in general undecidable [8].
Therefore, we must rely on structuring our program so
as to simplify the question. When we use plug-in exten-
sibility we essentially limit the forms that changes may
take, and can therefore more easily understand their effect
on the system. We must similarly learn how to formu-
late sound methodologies, preferably with a formal basis,
for ensuring validity when making the more sophisticated
kinds of changes mentioned here. Because the methodol-
ogy used depends on the kind of change, we do not want
to impose a general set of restrictions. However, having
some notion, whether enforced by the system or not, of
what constitutes a valid change is critical to the practical
use of the system.

4.1.2 Security

A topic related to validity is security. Assuming we can
avoid integrity failures by using type-safe dynamic link-
ing (in a language like Java, or Typed Assembly Lan-
guage [7, 16]), we must still worry because the greater
a system’s flexibility, the greater the risk of problems. For
example, in the current plug-in version of PLANet, there
is generally no possibility of new code maliciously or in-
advertently preventing the operation of the packet pro-
cessing loop since this code was not coded to expect pos-
sible change. However, when we add the ability to change

any part of the system, as proposed above, this property is
no longer guaranteed, constituting a significant threat to
node security. A related problem is information security.
That is, certain services may contain private information
that should not be made available to other services. How-
ever, if complete access to those services is available to
all new or updated code, then there can be no privacy.

Both problems may be avoided viamodule thinning[3,
11], a technique whereby new code may access old code
commensurate with its level of privilege. For example, a
routing table service in the node may allow anyone to read
the table, but only certain individuals to write to it. This
can be controlled by thinning the table-writing function
from the environment of inappropriately-privileged code.

In general, while the total space of threats to security in-
creases with flexibility, the need to deal with these threats
is application-dependent. For example, the security of a
personal computer operating system is probably less im-
portant than that of a generally-available active network
node.

4.2 Achieving Dynamic Software Updating

Given the evolutionary benefits of dynamic software up-
dating over plug-in extensibility, how can we implement
it and mitigate its additional problems of validity and se-
curity? In this subsection, we present some of the more
recent work in the area and point to some promising ap-
proaches. In general, no existing system meets all of the
requirements we have mentioned. We hope to draw from
this work to arrive at a more comprehensive solution [9].

4.2.1 Erlang

Erlang [5] is a dynamically-typed, concurrent, purely
functional programming language designed for building
long-running telecommunications systems. It comes with
language-level and library support for the dynamic update
of program modules. If the old module is active when the
update occurs, then it continues to be used until called
from an external source. If any call to a procedure is
fully-qualified (i.e. functioniter in moduleMsyntacti-
cally specifies its recursive call asM.iter() rather than
simply iter() ) then the new version of the function is
called, if it is available. Only two versions of code may
be available in the system at any given time; the current
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old version of code must be explicitly deleted (if any ex-
ists) before new code may be loaded, and certain library
routines may be used to detect if the old code is still in
use.

In Erlang, we could code our system in a straightfor-
ward manner but still replace its components at runtime.
However, Erlang does not provide any automated support
for ensuring validity or security—the programmer must
ensure reasonable timing and shape of updates. On the
other hand, Erlang has language features that make this
process more straightforward: 1) all data is write-once
(no mutation), and 2) all thread-communication occurs
via message passing. This effectively means that only one
thread will ever “change” long-lived data (by passing a
modified copy to its recursive call), and all other threads
may only access this data in some distilled form via mes-
sage passing. In this way, essentiallyall function calls to
other modules are stateless: the state carried around by
a thread is in its argument list, and the only way to get
at state managed by another thread is to pass it a message
and receive its response (which is different than a function
call).

In general, we believe that the Erlang model of dy-
namic software updating is a good step towards facilitat-
ing evolution: it is simple and yet very flexible. In future
work [9], we plan to generalize the updating notions in Er-
lang to less restricted environments (i.e., ones that allow
mutation), to add further automated support (i.e. load-
time type-checking), and to better formalize the program-
ming patterns necessary to preserve correctness. We have
begun to implement this sort of model in Typed Assembly
Language [7].

4.2.2 Dynamic C++ classes

Hjalmtysson and Gray have designed and implemented
mechanisms for the dynamic update of classes in
C++ [13]. Their implementation requires the program-
mer to specially code classes that may be dynamically
replaced using a proxy classDynamic . Dynamic al-
lows objects of multiple versions of a dynamic class to
coexist: it maintains a pointer to the most recent version
of a class, directing constructor calls to that class, while
instance methods are executed by the class that actually
created the object.

This project demonstrates the appeal of an object-

oriented approach to dynamic software updating: by us-
ing instance methods, an instance’s operations are consis-
tent throughout its lifetime, even if a newer version of its
class is loaded later. However, determining which set of
static methods to use at runtime may be difficult, so the
system prevents their replacement. This may be overly
restrictive, as all conceptually global data must be antici-
pated at deployment.

The chief drawback of this approach for our purposes
is the lack of safety of the C++ language. While the au-
thors state that the loading of new classes preserves type
safety if it exists, C++’s lack of strong typing makes it
inappropriate for loading untrusted code.

4.2.3 PODUS

PODUS [20] (Procedured-Oriented Dynamic Update Sys-
tem), developed by Mark Segal and Ophir Frieder, pro-
vides for the incremental update of procedures in a run-
ning program. Multiple versions of a procedure may co-
exist, and updates are automatically delayed until they are
syntactically and semantically sound (as determined by
the compiler and programmer, respectively). This is in
contrast to Erlang and Dynamic C++ classes, which allow
updates to occur at any time.

Updates are only permitted for non-activeprocedures.
Syntactically active procedures are those that are on the
runtime stack, and/or may be called by the new version
of a procedure to be updated. Semantically related pro-
cedures are defined by the programmer as having some
non-syntactic interdependency. Thus, if a procedureA is
currently active, and is semantically related to procedure
B, thenB is considered semantically active.

Updates to procedures are allowed to change type, as
long as specialinterproceduresare provided to mediate
access; interprocedures are stubs that have the old type,
perform some translation, and then call the new function
at its new type. This is especially useful in AN, since code
originates from different sources. Library functions may
be updated to new interfaces even though their client code
may not be available for change.
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5 Conclusions

Active network research to date has made great strides
in defining a customizablenetwork architecture; most
projects add non-trivial flexibility to the use and adminis-
tration of the network. However, no existing system truly
solves the problem of slow, long-term network evolution,
because the form of future updates is too restricted. In
particular, most systems use plug-in extensibility as their
means of loading code. In this paper, we have identified
some of the shortcomings of plug-in extensibility with re-
gard to system evolution, and have proposed a way to ease
those restrictions in the form of dynamic software updat-
ing.

While the topic is quite old, research into dynamic soft-
ware updating is really in its early stages, and more ex-
perience is needed. Because of its applicability to many
areas outside of active networks, we hope that more ad-
vances will be made in the coming years, to allow system
engineers to construct systems simply that are nonethe-
less updateable. Work is especially needed to ensure that
updates are applied to these systems in a safe and secure
manner. We feel that this is one of the most important
problems facing the active networking community today
and plan to vigorously pursue it in future work [9].
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