
Knowledge-Oriented Secure Multiparty Computation

Piotr Mardziel, Michael Hicks,
Jonathan Katz

University of Maryland, College Park
{piotrm,mwh,jkatz}@cs.umd.edu

Mudhakar Srivatsa
IBM T.J. Watson Research Laboratory

msrivats@us.ibm.com

Categories and Subject Descriptors D.2.0 [Software En-
gineering]: Protection Mechanisms

General Terms Security, Languages

Abstract
Protocols for secure multiparty computation (SMC) allow a
set of mutually distrusting parties to compute a function f
of their private inputs while revealing nothing about their
inputs beyond what is implied by the result. Depending on f ,
however, the result itself may reveal more information than
parties are comfortable with. Almost all previous work on
SMC treats f as given. Left unanswered is the question of
how parties should decide whether it is “safe” for them to
compute f in the first place.

We propose here a way to apply belief tracking to SMC
in order to address exactly this question. In our approach,
each participating party is able to reason about the increase
in knowledge that other parties could gain as a result of
computing f , and may choose not to participate (or partici-
pate only partially) so as to restrict that gain in knowledge.
We develop two techniques—the belief set method and the
SMC belief tracking method—prove them sound, and dis-
cuss their precision/performance tradeoffs using a series of
experiments.

1. Introduction
Consider a scenario where N parties P1, . . . , PN wish to
compute some (known) function f(s1, . . . , sN) of their re-
spective inputs, while ensuring privacy of their inputs to the
extent possible. If these parties all trust some entity PT , then
each party Pi can simply send its input si to this trusted en-
tity, who can in turn evaluate f(s1, . . . , sn) and return the
result to each party. In the more general case, where f is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’12 June 15, Beijing, China.
Copyright c© 2012 ACM ISBN 978-1-4503-1441-1/12/06. . . $10.00

a vector-valued function returning outputs out1, . . . , outN ,
the trusted entity gives outi to party Pi.

Cryptographic protocols for secure multiparty compu-
tation (SMC) [12, 7] allow the parties to accomplish the
same task without the involvement of any trusted entity.
(The reader can refer to a recent overview of SMC [10], or
a textbook-level treatment [6].) That is, by running a dis-
tributed protocol amongst themselves the parties can learn
the desired result f(s1, . . . , sN) (or, in the general case, each
party Pi learns the result outi) while ensuring that no in-
formation about other party’s input is revealed beyond what
is implied by the result(s). Section 2 provides further de-
tails about the precise notion of security that SMC protocols
achieve.

Most work on SMC provides an answer to the question of
how to compute f , but does not address the complementary
question of when it is “safe” to compute f in the first place,
i.e., when the output of f may reveal more information than
parties are comfortable with. The two exceptions that we
know of [4, 1] decide f ’s safety independently of the parties’
inputs and in isolation of any (known or assumed) prior
knowledge that parties have about each others’ inputs.

However, the information implied by a query’s result de-
pends both on the parties’ inputs and their prior knowledge.
As an example of the former, suppose two parties want to
compute the “less than or equal” function, f(s1, s2)

def
= s1 ≤

s2 with variables ranging in {1, . . . , 10}. This function could
reveal a lot about s1 to P2. If s2 = 1 and f(s1, s2) returns
true, then P2 learns that s1 can only be the value 1. How-
ever, if s2 = 5 then regardless of the output of the function,
P2 only learns that s1 is one of 5 possibilities, a lower level
of knowledge than in the first case.

On the other hand we may deem a pair of queries ac-
ceptable in isolation, but allowing their composition would
be too revealing. For example, suppose the parties also want
to compute “greater than or equal”, f2(s1, s2)

def
= s1 ≥ s2.

When s2 = 5, either query in isolation narrows the values
of s1 to a set of at least 4 possibilities from P2’s perspective.
But if f1 and f2 both return true, P2 can infer s1 = s2 = 5.

In recent work [11] we developed an approach to judg-
ing query safety called knowledge-based security enforce-
ment (KBSE). In this paper we show how KBSE can be gen-

eralized to SMC to address the limitations of current tech-
niques listed above.

KBSE relies on reasoning about other parties’ knowledge
of one’s own private data in order to determine whether a
given function f is “safe” to compute in a given instance.
Our previous work was in an asymmetric setting where only
one of the parties (say, P1) was concerned about privacy.
The other parties’ inputs could be revealed publicly, or at
the very least be revealed to P1; as such, the previous work
did not involve SMC at all. At a high level, and specializing
to the two-party case, party P1 knows its own private data s1

along with P2’s input s2, and also maintains a belief about
P2’s knowledge of s1 (represented as a probability distribu-
tion δ). Before agreeing to compute a function f(s1, s2), P1

determines whether computing the residual function f(·, s2)
would reveal “too much information” as determined accord-
ing to a threshold 0 < t1 ≤ 1 set by P1. In particular, P1

will not compute the function if P2’s belief about the likeli-
hood of a possible secret value (including the actual secret
s1) increases above t1.1 If P1 does reveal f(s1, s2) then it
determines what P2 will learn from the output and revises
its estimate δ2 of P2’s knowledge accordingly. It will use
this new estimate when considering subsequent functions.
(KBSE is reviewed in Section 3.)

In our prior work, P1’s determination as to whether it
should agree to compute f relied in an essential way on the
fact that P1 knows the input s2 of the other party. In the SMC
setting the privacy of all parties’ inputs should be preserved,
so our prior techniques cannot be applied directly. In this
paper we initiate the idea of combining KBSE and SMC, in
order to address the question of when it is safe to compute
some function f of multiple parties’ inputs.

We present two techniques (Section 4). The first, which
we call the belief set method, works as follows. Each Pi
maintains an estimate of the set of distributions ∆j for each
other principal Pj , one for each possible valuation of sj
(assigned probability 1). In short, Pj’s actual belief δj is a
member of the set ∆j . The same basic procedure as in the
prior work, lifted from distributions to sets of distributions,
can then be applied by each Pi, and if all agree to participate,
they perform the function evaluation via SMC.

The second technique we call SMC belief tracking. Rather
than have each principal Pi perform the KBSE procedure
individually before the SMC takes place, the KBSE proce-
dure is performed within the SMC itself. If the SMC-KBSE
procedure determines that any of the thresholds ti will be
exceeded by sending a response to Pj then Pj receives a
rejection, rather than the actual answer. However, because
Pk’s knowledge will be different, it could receive a proper
answer. By performing KBSE within the SMC, we can look
at the actual secret values of each of the participants and by

1 The release criterion considers all possible values for s1 — and not just
the actual value of s1 — so that a refusal to participate does not leak any
information about s1.

accepting/rejecting selectively, we can ensure that no infor-
mation is revealed by rejection. As we show in Section 5
using a series of experiments with our proof-of-concept im-
plementation, SMC belief tracking is strictly more precise
(in that fewer queries will be rejected) than belief sets. On
the other hand, SMC is known to be very slow, and so im-
plementing KBSE as an SMC could be quite costly. We leave
exploration of implementation strategies to future work.

In summary, the main contribution of this paper is a pair
of techniques for evaluating the safety of SMC computa-
tions. To our knowledge, ours is the first work to consider
the question of safety in the context parties’ actual secrets
and prior knowledge, and approach that should allow more
queries to be answered safely, even in composition.

2. Secure Multiparty Computation
This section presents basic background on secure multiparty
computation (a completely formal treatment of the secu-
rity provided by SMC is beyond the scope of this paper).
Throughout this paper we assume that all parties are semi-
honest. This means that they run any specified protocol ex-
actly as prescribed, but may try to infer information about
other parties’ inputs based on their view of the protocol exe-
cution. (A party’s view consists of its local state, along with
all messages that it sent or received.) We also assume that
parties do not collude. SMC can be extended to malicious
parties who behave arbitrarily, as well as to handle collu-
sion, but these complicate the treatment and are tangential to
our main thrust.

As described in the introduction, we consider a scenario
where N mutually distrusting parties P1, . . . , PN wish to
compute some (known) function f(s1, . . . , sN) of their re-
spective inputs, while ensuring privacy of their inputs to
the extent possible. In an ideal scenario, the parties would
all have access to a trusted entity PT who would compute
the function on their behalf. That is, each party Pi would
simply send its input si to PT , who would in turn evaluate
(out1, . . . , outn) = f(s1, . . . , sn) and return the result outi
to party Pi. We write out = f(...) if the same output is sent
to all participants. If f is a probabilistic function, then PT
evaluates it using uniform random choices.

Fix some distributed protocol Π that computes f . (This
just means that when the parties run the protocol using their
inputs s1, . . . , sN , the protocol terminates with each party
holding output outi.) We say that Π is secure if it emulates
the ideal computation of f described above (where a trusted
entity is available). Specifically, an execution of Π should
reveal no information beyond what is revealed in the ideal
computation.2 This is formally defined by requiring that any

2 Readers who are familiar with SMC may note that this definition is
slightly simpler than usual. The reason is that we are considering semi-
honest security, and in this paragraph assume a deterministic function for
simplicity. We are also glossing over various technical subtleties that are
inessential to get the main point across.

party in the ideal world can sample from a distribution that
is “equivalent” to the distribution of that party’s view in a
real-world execution of Π. Since any party Pi in the ideal
world knows only its own input si and the output outi that
it received from PT , this implies that Π achieves the level
of privacy desired. We stress that not only is no informa-
tion (beyond the output) about any single party’s input is
revealed, but also no joint information about several parties’
inputs is revealed either (just as in the ideal world).

The cryptographic literature considers several notions of
what it means for two distributionsD,D′ to be “equivalent”.
The simplest notion is to require D,D′ to be identical. If
this is the case for the distributions described above, then
Π is said to achieve perfect security. Alternately, we may
require that D,D′ be indistinguishable by computationally
bounded algorithms. (We omit a formal definition, though
remark that this notion of indistinguishability is pervasive
in all of cryptography, beyond SMC.) In this case, we say
that Π achieves computational security. Perfect security is
achievable for N ≥ 3, whereas only computational security
is possible for N = 2.

In the remainder of the paper we assume that the secrets
si remains fixed during a sequence of computations, so that
information gained about si from one computation carries
over to the next. We also assume that the Pi have no means to
communicate outside the SMC, so that what can be learned
about a particular secret depends only on the functions com-
puted via an SMC. We leave relaxation of these restrictions
to future work.

3. Knowledge-Based Security Policies
Our goal is to devise a method whereby each principal can
determine whether participation in an SMC would reveal too
much information about its secret. In prior work [11] we
developed a solution for a special case of this problem. In
this case we have two principals, P1 and P2, and only P1

has a secret value x1. In this situation, P2 wishes to compute
some function Q of x1, and P1 only wishes to proceed if P2

remains uncertain about x1 upon learning the result. If this
is the case, P1 computes the result n and sends it back to P2.
If not, it sends a rejection message.

The key question is: how does P1 reason what P2 might
learn about x1 based on the output of Q? To answer this
question, we adopted the approach of Clarkson et al. [2]. In
their approach, P2 has a belief about the possible values of
x1. They show how that belief can be revised upon learning
the output of a function over that secret. In our approach, P1

estimates what P2 might know about x1 (e.g., that it is uni-
formly distributed), and then uses Clarkson et al.’s method to
determine how much information P2 might gain from the an-
swer to Q. If this information exceeds a threshold, the query
is rejected.

In the remainder of this section, we describe Clarkson et
al’s technique, and then our application of it to knowledge-

Variables x ∈ Var
Integers n, s, o ∈ Z
Rationals r ∈ Q
Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 |
B1 ∧ B2 | B1 ∨ B2 | ¬B

Statements Q,S ::= skip | x := E |
if B then S1 else S2 |
pif r then S1 else S2 |
S1 ; S2 | while B do S

Figure 1. Core language syntax

[[skip]]δ = δ
[[x := E]]δ = δ [x→ E]

[[if B then S1 else S2]]δ = [[S1]](δ|B) + [[S2]](δ|¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S]] = lfp [λf : Dist→ Dist. λδ.

f ([[S]](δ|B)) + (δ|¬B)]

where

δ [x→ E]
def
= λσ.

∑
τ | τ [x→[[E]]τ]=σ δ(τ)

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

δ|B def
= λσ. if [[B]]σ then δ(σ) else 0

p · δ def
= λσ. p · δ(σ)

‖δ‖ def
=
∑
σ δ(σ)

normal(δ) def
= 1
‖δ‖ · δ

δ‖B def
= normal(δ|B)

Figure 2. Probabilistic semantics for the core language

based security enforcement. In the next section, we show
how this approach can be generalized to the SMC setting.

3.1 Clarkson et al.’s knowledge estimation
The programming language we use for computations is
given in Figure 1. A computation is defined by a statement
S whose standard semantics can be viewed as a relation be-
tween states: we write [[S]]σ = σ′ to mean that running state-
ment S with input state σ produces output state σ′, where
states map variables to integers:

σ, τ ∈ State def
= Var→ Z

Sometimes we consider states with domains restricted to
a subset of variables V , in which case we write σV ∈
StateV

def
= V → Z. We will write {x1 = s1, ..., xn = sn}

to represent a state σ whose domain is {x1, ..., xn} such that
σ(x1) = s1, σ(x2) = s2, etc. We may also project states to

a set of variables V :

σ � V
def
= λx ∈ VarV . σ(x)

The language is essentially standard. The semantics of the
statement form pif r then S1 else S2 is non-deterministic:
the result is that of S1 with probability r, and S2 with prob-
ability 1− r.

In our setting, we limit our attention to queries in this
language. A query as a statement Q that can read, but not
write, free variables x1, ..., xn (i.e., these are set in the initial
state σ), and sets the output to the variable out.
Example 1. As an example, consider the following query:

Q0
def
= if x1 ≥ 7

then out := True
else out := False

Given an input state σ = {x1 = 3}, we have that [[Q0]]σ =
σ′ where σ′ = {x1 = 3, out = False}.

A belief is represented as a probability distribution, which
is conceptually a map from states to positive real numbers
representing probabilities (in range [0, 1]).

δ ∈ Dist def
= State→ R+

In what follows, we often notate distributions using lambda
terms; e.g., we write λσ.if σ(x1) = 3 then 1 else 0 to
represent the point distribution assigning probability 1 to the
state σ in which x1 is 3, and probability 0 to all other states.

Given a principal’s initial belief, Clarkson et al. define a
mechanism for revising that belief according to the output
of a query. This works as follows. First, a principal evalu-
ates the query according to its belief using the probabilistic
semantics given in Figure 2. This semantics is standard (cf.
Clarkson et al. [2]) so, due to space constraints, we do not
describe it in detail here. It suffices to understand that [[S]]δ
represents probabilistic execution: we write [[S]]δ = δ′ to
say that the distribution over program states after executing
S with δ is δ′. We may view δ′ as a prediction of the like-
lihood of the possible input states according to the possible
output states. Upon seeing the actual output of the query, the
principal can revise this prediction; we write such revision
as [[S]]δ ‖ (out = n), where out = n is a boolean expression
B and n is the actual observed output. The definition of re-
vision δ ‖B is given at the bottom of Figure 2. The revised
belief can be used as the prior belief for a future query. The
revision operation itself is a conditioning, which usually re-
sults in a distribution with a mass not equal to 1, followed by
a normalization, which produces a real distribution.

Returning to Example 1, suppose that x1 represents P1’s
secret value, and P2’s belief δ2 is as follows

δ2
def
= λσ. if σ(x1) < 0 or σ(x2) ≥ 10 then 0 else 1/10

Thus, δ2 is a function from states to real numbers imple-
menting a uniform distribution: if x1’s value in σ is between

P1 P2

x1=s1

Q, σ = {x2=s2}

 σ' = σ + {x1=s1}
 if query safe:
 [Q]σ' = σ''
 where σ''(out) = o

out = o

δ2

δ2:=
δ2 ||
(out=o) reject otherwise

1
2

3

δ1
2

Figure 3. Asymmetric belief tracking

tcheck(q, δi, tj , xj)
def
=

1 δi := [[q]]δi
2 forall possible outputs o
3 δ̂i := (δi ‖(out = o)) � {xj}
4 if ∃n. δ̂i({xj = n}) > tj then

5 return reject
6 return accept

Figure 4. Threshold policy decision, tcheck

0 and 9 then σ is given probability 1/10, otherwise it is given
probability 0. To revise δ2 according to the actual output
out = False, principal P2 first computes [[q0]]δ2 = δ′2, which
when simplified can be written

δ′2
def
= λσ.if σ(x1) < 0 or σ(x2) ≥ 10 then 0

else if σ(out) = True and σ(x1) ≥ 7 then 1/10
else if σ(out) = False and σ(x1) < 7 then 1/10
else 0

Revising δ′2 under the assumption that out = False would
produce the following (simplified) distribution:

δ′2 ‖(out = False)
def
=

λσ. if σ(x1) < 7 or σ(x2) ≥ 10 then 0 else 1/7

Soundness. Clarkson et al. show that the probabilistic se-
mantics and revision exactly model the changing belief of
an adversary as it learns outputs of the queries, assuming no
other channel of information flow exists, and the adversary
is rational and has unbounded computational power.

Theorem 2 (Theorem 1 of [2]). A rational, computationally
unbounded agent, having belief δ about x1, updates its belief
to δ′ after learning output n of a query Q, with no other
channels, where δ′ is [[Q]]δ‖(out = n).

3.2 Enforcing knowledge-based security policies
Our prior work [11] uses Clarkson et al’s technique as a key
building block for handling the scenario given in Figure 3.
Here, in step 1 P2 sends a query Q and a state σ to P1. In
step 2, P1 decides whether Q is safe to compute, and if so,
executes [[Q]]σ′ = σ′′, where σ′ is σ with the added mapping
of x1 to P1’s secret s1. In step 3, P1 sends back the result

o = σ′′(out) if the query was safe, and otherwise rejects the
query. P2 revises its belief δ2 based on the outcome.

The main question to answer is how P1 determines
whether Q is safe, i.e., whether it “reveals too much in-
formation.” We propose that principal P1 assign to its secret
a knowledge threshold t1, where 0 < t1 ≤ 1, interpreted
to mean that P2 should never be certain of P1’s secret with
probability greater than t1. Returning to Example 1, suppose
that P1’s knowledge threshold t1 = 1/10 and x1 = 3. Run-
ningQ0 produces False, and P2’s revised belief δ′2 assigns to
the state {x1 = 3, out = False} the probability 1/7, which
exceeds the threshold. As such P1 ought to reject the query.
On the other hand, if the threshold was 1/2, then the query
could be accepted.

Keeping this intuition in mind, here is how the part no-
tated is the query safe in Figure 3 is implemented. First, P1

estimates P2’s belief δ2 about P1’s secret value. We write δ1
2

to indicate this estimate.3 ThenP1 calls tcheck(Q, δ1
2 , t1, x1),

the pseudocode for which is given in Figure 4. Here, δi is
bound to P1’s estimate δ1

2 , while tj and xj are bound to ti
and xi (that is, the variable name xi, not the value it is bound
to), respectively.

On line 1, P1 probabilistically executes [[Q]]δi producing
δi. Then, for each possible output o (line 2), P1 can revise
the belief, δi ‖ (out = o), from which we can project states
to involve only secret x1, written δ̂i = (δi|(out = o)) �
{x1} (line 3). We explain shortly why every possible output
must be considered, rather than just the output for P1’s
actual secret value. On line 4, we check whether for o and
corresponding revised belief δ̂i there exists a possible value
n such that (δ̂i)({x1 = n}) > t1. If so, the query Q must
be rejected, to avoid leaking too much information (line 5).
Otherwise, the query is acceptable (line 6).

If tcheck(Q, δ1
2 , t1, x1) returns accept then P1 can exe-

cute the query, send back the result, and update its estimate
δ1
2 to be δ1

2 ‖(out = o).

Avoiding leakage due to query rejection. Line 2 in Fig-
ure 4 requires we consider all possible outputs o. At first
glance, doing so seems unnecessarily conservative. For Ex-
ample 1, suppose that t1 = 1/5 and δ2

1 = δ2; then execut-
ing tcheck(Q0, δ

1
2 , t1, x1) would produce reject. But if the

actual secret is x1 = 3, then we have already established
that answering the query (with False) results in δ2 being re-
vised to assign {x = 3, out = False} probability 1/7 which
is below the threshold. On the other hand, suppose that x1

was 8 instead of 3, in which case answering the query with
True would cause P2’s revised belief to ascribe probability
1/3 to {x1 = 8, out = True}, which exceeds the threshold
t1 = 1/5. But if P1 rejects the query, and P2 knows thresh-

3 How P1 comes by this estimate is beyond the scope of this paper, but we
point out that for many kinds of data, good estimates are easy to come by.
For example, generic distributions over personal information like gender,
birthday, social security number, income, etc. can be gained from census
data or other public and private repositories (e.g., Facebook demographics).

old t1 it will be able to infer that the only reason for rejection
would be that the answer would have been True. Even if t1
is not known directly, it can be inferred by enough queries to
eventually make this sort of determination. P1 avoids this sit-
uation by rejecting any query for which there exists a secret
that could be compromised by the answer, even if that does
not happen to be its secret. This approach results in P1 de-
ciding to allow a query or not independetly of his true secret
value. Such policy decisions are simulatable [9] in that P2

could have determined on their own whether P1 will reject
the query, hence learning of P1’s decision tells them nothing.

4. Enforcing knowledge thresholds for SMC
In this section we show how to generalize knowledge-
based enforcement from the single-secret scenario given
in Figure 3 to the multi-secret setting of SMC. In this set-
ting, there are N principals, P1, ..., PN each with a secret
x1 = s1, ..., xN = sN . Each Pi maintains a belief δi about
the possible values of the other participating principals’ se-
crets. In addition, each Pi has a knowledge threshold ti that
bounds the certainty that the other principals can have about
its secret’s value.

Next we present an example to illustrate how belief es-
timation is adapted to the SMC case, and then we use this
example to illustrate two possible methods we have devised
for enforcing the knowledge threshold, the belief set method
(Section 4.2) and the SMC belief tracking method (Sec-
tion 4.4). We prove both methods are sound and discuss their
tradeoffs in Section 5.

4.1 Running example
Suppose we have three principals, P1, P2, and P3, each with
a net worth x1 = 20, x2 = 15, and x3 = 17, in millions
of dollars, respectively. Suppose they wish to compute Q1

which determines whether P1 is the richest:

Q1
def
= if x1 ≥ x2 ∧ x1 ≥ x3

then out := True
else out := False

Using the idealized view, each of P1, P2, and P3 can be seen
as sending their secrets to PT , which initializes σ such that
σ(x1) = 20, σ(x2) = 15, and σ(x3) = 17. Running Q1

using σ produces an output state σ′ such that σ′(out) =
True.

Now suppose that P1 believes that both P2 and P3 have at
least $10 million, but less than $100 million, with each case
equally likely. Thus principal P1’s belief is defined as

δ1
def
= λσ.if σ(x2) < 10 or σ(x2) > 100 or

σ(x3) < 10 or σ(x3) > 100 or
σ(x1) 6= 20 then 0 else 1/8281

States which ascribe either x2 or x3 a net worth outside
the expected range, or ascribe x1 to the wrong value, are
considered impossible, and every one of the remaining 8281

(that is 91 × 91) states is given probability 1/8281. The
beliefs of P2 and P3 are defined similarly.

Belief revision proceeds as before: once PT performs the
computation and sends the result, each Pi revises its belief.
For our example query Q1, principal P1 would perform
[[Q1]]δ1 = δ′′1 and since the output of the query is True, then
revision produces δ′1 = [[Q1]]δ1| (out = True). This revised
belief additionally disregards states that ascribe x2 or x3 to
values greater than P1’s own wealth, which is $20M:

δ′1
def
= λσ.if σ(x2) < 10 or σ(x2) > 20 or

σ(x3) < 10 or σ(x3) > 20 or
σ(x1) 6= 20 then 0 else 1/121

The revised beliefs of P2 and P3 will be less specific, since
each will simply know that P1’s wealth is at least their own
and no less than the rest of the parties.

4.2 Knowledge-based security with belief sets
Now we wish to generalize threshold enforcement, as de-
scribed in Section 3.2, to SMC. In the simpler setting P1

maintained an estimate δ1
2 of P2’s belief δ2. In the SMC set-

ting we might imagine that each Pj maintains a belief esti-
mate δji and then performs tcheck(q, δji , tj , xj) for all i 6= j.
If each of these checks succeeds, then Pj is willing to par-
ticipate.

The snag is that Pj cannot accurately initialize δji for all
i 6= j because it cannot directly represent what Pi knows
about xi—that is, its exact value. So the question is: how
can Pj estimate the potential gain in Pi’s knowledge about
xj after running query without knowing xi?

One approach to solving this problem, which we call the
belief set method, is the following. Pj follows roughly the
same procedure as above, but instead of maintaining a single
distribution δji for each remote party Pi, it maintains a set
of distributions where each distribution in the set applies to
a particular valuation of xi. As a first cut, suppose that Pj
initializes this set to be as follows:

∆j
i

def
= {δji ‖(xi = v) : v = σ(xi), σ ∈ support(δj � {xi})}

Thus ∆j
i is a set of possible distributions, one per possible

valuation of xi that Pj thinks is possible according to its
belief δj .

However, this method for initializing the set is not quite
expressive enough, since it may fail to take into account cor-
relations among beliefs of multiple principals. For example,
if it were known (by all principals) that only one of the prin-
cipals in the running example can have secret value equal to
15, then P2 would know initially, based on this own secret
x2 = 15, that P1’s value x1 cannot be 15. However, P1 can-
not arrive at this conclusion without knowing x2, which is,
of course, outside of its knowledge initially.

Therefore, we define the initial belief set using a distribu-
tion δ over all principals’ secret data which sufficiently cap-
tures any correlations in those secrets. Such a distribution

 σ = {x1=s1}+{x2=s2}+{x3=s3}
 σ' = [Q]σ
 σ'(out) = o

P1

x1=s1 PTx1=s1 x2=s2

out=o out=o

do tcheck_all

δ1
Δ2, Δ3

P2

x2=s2

δ2
Δ1, Δ3

P3

x3=s3

δ3
Δ1,Δ2

Q

2

x3=s3

out=o

 Each Pj revises belief δj, Δi
based on out=o

3

1
5

do tcheck_all

do tcheck_all

3 3

3

4 4

4

2

2

Figure 5. Threshold enforcement for SMC using belief sets

tcheck all(q, j)
def
=

1 forall i ∈ 1..n with i 6= j

2 tcheck(q,∆i, tj , xj)

3 if all threshold checks succeed then

4 agree to participate
5 else

6 refuse to participate

Figure 6. tcheck all check for belief set enforcement

can then be used, given some valuations of secret variables,
to derive what a principal’s initial belief would be.

∆i
def
= {δ‖(xi = v) : v = σ(xi), σ ∈ support(δ � {xi})}

Since we are starting from a globally held belief δ, there is
no need to distinguish ∆j

i from ∆k
i —they are the same ∆i.

Now each Pj follows the procedure depicted in Figure 5
for the idealized view (with a trusted principal PT). First,
the principals agree on the query Q. Second, each principal
Pj performs the threshold check tcheck all(Q, j), whose
code is given in Figure 6. Notice that calls to tcheck(...) on
line 2 are with the set ∆i, rather than a single distribution
δji . The definitions of the operations in the pseudocode in
Figure 4, when applied to sets ∆ rather single elements δ, are
defined in Figure 7. In all but the last case, these operations
are just straightforward liftings of the operations on single
distributions. For ∆(σ), we return the highest probability
for σ of those ascribed to it by distributions in ∆, to assure
that our decision to participate or not is safe. Also note that
we will always be dealing with non-empty ∆, hence the

Semantics

[[S]]∆ = {[[S]]δ : δ ∈ ∆}

Operations

∆ � V
def
= {(δ � V) : δ ∈ ∆}

normal(∆)
def
= {normal(δ) : δ ∈ ∆ , ‖δ‖ > 0}

∆‖B def
= normal({(δ|B) : δ ∈ ∆})

∆(σ)
def
= maxδ∈∆ δ(σ)

Figure 7. Probabilistic semantics using sets of distributions

maximum probability is sufficiently defined. On the other
hand, the normalization procedure for distributions δ is only
well defined whenever ‖δ‖ > 0. Because of this, we make
sure the normalization for distribution sets only normalizes
the normalizable distributions, and discards the rest. The
way in which some member distributions of ∆ could become
non-normalizable, that is, having mass of 0, is by way of the
conditioning operation, where the condition is inconsistent
with all possible states in the distribution.

In the third step, if the query is acceptable for all Pj , each
sends its secret xj = sj to PT , which executes Q using the
secret state σ constructed from each secret. Fourth, the result
o is sent back to each principal. Finally, as usual, P1 revises
each of its estimates ∆i and its own belief δj . Note that all
principals make the same update for ∆i, hence there really
is only one ∆i, known by all, estimating Pi’s knowledge.

While we have depicted this procedure in the idealized
view of SMC, it is easy to see that we can simply implement
steps 3 and 4 as a normal SMC and the remainder of the
procedure is unchanged.

4.3 Soundness of belief sets
Now we can show that the belief set procedure is sound, in
that for all Pi, participating or not participating in a query
will never increase another Pj’s certainty about Pi’s secret
above its threshold ti.

Remark 3. Suppose principals P1, ..., PN wish to execute
a query Q. The secret state σs = {x1 = s1, ..., xN = sN}
contains all their secrets. Assume that for each Pi:

1. Pi has a belief δi.
2. Pi’s belief δi is consistent with σs, that is, δi(σs) > 0.
3. Pi’s belief δi is within the public estimate of his knowl-

edge, that is, δi ∈ ∆i.

Suppose [[Q]]σs = σ′s such that σ′s(out) = o. That is, the
actual output of the query Q is o. Then, the belief of each
agent, after learning the output, is δi ‖ (out = o), and is a
member of the estimated set ∆i ‖(out = o).

Proof. Theorem 2 tells us that δ′i = [[Q]]δi ‖(out = o) are the
new beliefs of the principals, having learned that out = o.

By assumption we had δi ∈ ∆i, and since δi was consistent
with σs, it must be that δ′i is consistent (having non-zero
mass), and therefore δ′i ∈ ∆′i = ∆i ‖(out = o).

This remark is merely a lifting of Theorem 2 to sets of
beliefs. The more interesting point arises when the principals
are also interested in enforcing a knowledge threshold.

Lemma 4. Suppose the same premise as Remark 3. Also
suppose that policy thresholds ti are public, and [[Q]]σs =
σ′s such that σ′s(out) = o. That is, the actual output of the
query Q is o, and each Pi learns either

• the output o of the query, or
• which principals Pj rejected the query.

Then, the belief of each agent, in the first case is δi ‖
(out = o), and is within the estimate ∆i ‖ (out = o), or
in the second case, remains at δi.

Proof. The lemma effectively states that the policy decisions
have no effect on the beliefs; if a query is rejected, learning
which principals rejected it reveals nothing. Similarly, if
the query is not rejected, the additional information each
principal gets (that no one rejected the query), also does not
change the belief.

The lemma holds due to the simple fact that the policy
decisions do not depend on private information (see Fig-
ure 6), every single principal could determine, on their own,
whether another principal would reject a query. Thus the pol-
icy decisions, as a whole, are a simulatable procedure. The
rest follows from Remark 3.

Some subtleties are worth mentioning. First, a premise
of the lemma is that ∆i are known by all principals. This
fact needs to remain as the query is answered so the same
premise will hold for the next query. Fortunately this is the
case, as the revised belief sets in the case of policy success,
∆i ‖ out = o are also known by all participants, as o is
known, and so are the initial ∆i.

A second subtlety is that the queries themselves must be
chosen independent of anyone’s secret. In some situations,
where the principals are actively attempting to maximize
their knowledge, and are allowed to propose queries to ac-
complish this, the query choice can be revealing. This prob-
lem is beyond the scope of this work, and we will merely
assume the query choice is independent of secrets.

4.4 SMC belief tracking: ideal world
Now we present an alternative to the belief set method, in
which the decision to participate or not, involving check-
ing thresholds after belief revision, takes place within the
SMC itself. As such, we call this method SMC belief track-
ing. Once again we present the algorithm using the ideal
world with a trusted third party PT . The steps are shown
in Figure 8. The first step is that each Pi presents its se-
cret xi = si to PT , along with the collective belief δ. Prin-
cipal PT then initializes the computation state by calling

P1

x1=s1 PT

t1=r1,
x1=s1

t2=r2,
x2=s2

out=o
or reject

out=o
or reject

δ1

P2

x2=s2

δ2

 execute threshold_SMC(Q)

P3

x3=s3

δ3

Q

3

t3=r3,
x3=s3

out=o or
reject

 Each Pi revises belief δi
based on out=o

11

1

4

44

2

5

 execute init_SMC(...)
1

δ

Figure 8. SMC belief tracking scenario (ideal view)

init SMC(s1...sN , r1...rN , δ)
def
=

1 σs := {x1 = s1, ..., xN = sN}
2 δ1 := δ‖(x1 = s1); t1 := r1

...

n+1 δN := δ‖(xN = sN); tN := rN

threshold SMC(Q)
def
=

1 o := ([[Q]]σs)(out)

2 forall j ∈ 1..n

3 forall i ∈ 1..n with i 6= j

4 tcheck(Q, δj , ti, xi)

5 if all threshold checks succeed then

6 δj := [[Q]]δj ‖(out = o)

7 return o to Pj
8 else

9 return reject to Pj

Figure 9. SMC belief tracking (ideal view)

init SMC(s1...sN , δ), given in Figure 9. On line 1, this code
initializes the secret state σs that contains all of the secrets.
On lines 2..(n+1), it initializes each principal Pi’s belief as
in the belief set case, by specializing δ with the knowledge
unique to Pi. It also initializes each threshold ti to ri.

In step 2 (of the diagram), the query Q is made available
to PT , which then runs (in step 3) threshold SMC(Q), also
shown in Figure 9. On line 1 we compute the actual output
o for the query, based on the secret state. On line 2 we loop
over each principal Pj . The remainder of the code aims to

decide whether answering the query and sending the result
to Pj would reveal too much information; if not, we send Pj
the answer o (line 7) and otherwise we reject.

Returning to the body of the loop, the next step is to
make sure that for every Pi (line 3) its threshold check
(Figure 4) will not reject Pj . That is, given the query q
and the estimated knowledge of Pj , we make sure that the
answer to the query will not reveal too much about Pi’s
secret xi (where by “too much” we mean Pj’s certainty
about Pi’s possible secret exceeds threshold ti). Assuming
all Pi threshold checks succeed (line 5), we then revise the
Pj’s belief according to the output o (line 6), which we
then send to Pj (step 4 in the diagram). No revision is done
on Pj’s belief if the query is rejected for Pj . Finally, each
principal revises its own belief δj based on the output.

We can repeat steps 2–5 for each subsequent query Q′,
and PT will use any beliefs δj revised from the run of
Q. By performing threshold SMC as part of an SMC, no
participant Pi is ever shown the opposite’s secret, and yet
an accurate determination is made for each about whether to
participate.

Importantly, the fact that Pj receives a proper answer or
reject is not (directly) observed by any other Pj ; such an
observation could reveal information to Pj about xi. For
example, suppose Q2

def
= x1 ≤ x2 and both secrets are

(believed to be) between 0 and 9. If x2 = 0 then [[Q2]]σs
will return True only when x1 is also 0. Supposing t1 = 3/5,
then P2 should receive reject since there exists a valuation of
x1 (that is, 0) such that P2 could guess x1 with probability
greater than 3/5. Similar reasoning would argue for reject
if x2 = 9, but acceptance in all other cases. As such, if P1

observes that P2 receives reject, it knows that x2 must be
either 0 or 9, independent of t2; as such, if t2 < 1/2 we have
violated the threshold by revealing the result of the query.

This asymmetry means that threshold SMC may return
a result for one participant but not the other, e.g., P1 might
receive reject because t2 is too low while P2 receives the
actual answer because t1 is sufficiently high. Nonetheless
each Pi’s threshold will be respected.

4.5 SMC belief tracking: real world
Lacking a trusted third party in the real world, the partici-
pants can use secure multi-party computation and some stan-
dard cryptographic techniques to implement PT ’s function-
ality amongst themselves. There are two aspects of PT that
they need to handle: the computation PT performs, and the
hidden state PT possesses in between queries.

The first aspect is exactly what SMC is designed to do.
For the second aspect, we need a way for the participants
to maintain PT ’s state amongst themselves while preserving
its secrecy. (Since we are using the semi-honest adversary
model, we do not concern ourselves with integrity; in the
malicious setting, standard techniques could be used to en-
force integrity.) This state, initially constructed by init SMC
(Figure 9) consists of (1) the parties’ secrets, encoded as a

state σs; (2) policy thresholds ti; and (3) the current beliefs
δi. We will refer to this state as ΣT .4 We assume ΣT can be
encoded by a binary string of length (exactly) `, for some
known `.

The initialization procedure formulated in the idealized
world does not output anything to the participants. In the real
world, however, the secure computation of init SMC returns
secret shares of ΣT to the parties. That is, the secure compu-
tation implements the following (randomized) function after
computing ΣT : choose random c1, . . . , cN−1 ∈ {0, 1}` and
set cN = ΣT ⊕

(⊕N−1
i=1 ci

)
. Then each party Pi is given ci.

The query-evaluation procedure threshold SMC receives
(c1, ..., cN) along with the queryQ. The procedure begins by
reconstructing ΣT =

⊕N
i=1 ci, and then proceeds as usual.

Upon completion, threshold SMC computes (new) shares
c′1, . . . , c

′
N of Σ′T (as before), and gives c′i to Pi along with

the actual output. (At this point, each Pi can erase the old
share ci.)

Note that each time the sharing is done, nothing addi-
tional about ΣT is revealed from any individual fragment
(“share”) ci. (Indeed, each ci is simply a uniform binary
string of length `.) In particular, just as in the ideal world,
Pi does not learn whether its policy rejected another partici-
pant Pj .

Remark 5. Honest (but curious) participants can derive
exactly the same knowledge about each other’s secrets from
the real-world SMC implementation of PT that they do from
interacting with PT in the idealized world. Specifically, PT
reveals only the following to each agent Pi in the ideal
world:

• Output of a query, if policy checks on δi succeed, or
• rejection, if a policy fails.

4.6 Soundness of SMC belief tracking
Suppose that no dishonest parties are detected during the
runs of SMC belief tracking. Then, by Remark 5, we can jus-
tify soundness in the real world by considering the approach
in the idealized world.

Lemma 6. Suppose principals P1, ..., PN wish to execute a
query Q. The secret state σs = {x1 = s1, ..., xN = sN}
contains all their secrets. Each has a public threshold ti for
their policy check. Assume the following for each Pi:

1. Pi has a belief δi about the secret variables.
2. Pi’s belief δi is consistent with σs, that is, δi(σs) > 0.

Suppose [[Q]]σs = σ′s such that σ′s(out) = o. That is, the
actual output of the query Q is o. Then, for each agent Pi:

• If Pi receives output o from PT , its revised belief is
δi ‖(out = o).

4 Technically, secrets si and thresholds ti could be provided to each invo-
cation of threshold SMC; we consider them part of the state to emphasize
that they are set in place initially, and assumed to not change.

• If Pi is rejected, its belief does not change.

Specifically, in either case, the procedure threshold SMC
maintains the correct beliefs.

Proof. The proof of this lemma reasons similarly Lemma 4:
rejection reveals nothing new, and acceptance tracks beliefs
precisely. We can see from line 4 of Figure 9, that the proce-
dure used to determine whether Pj will receive an answer or
rejection depends on four things:

• The query Q, which is assumed to be public, and chosen
independently of secrets.

• Pj’s belief, δj , about the secrets. This is naturally known
by Pj .

• Thresholds ti for i 6= j. These are also assumed to be
publicly known.

• Variables xi, which is just the names of the various secret
variables, also known by all.

Since Pj knows all these things, he could determine himself
whether PT will reject him or not. Hence a rejection reveals
nothing. In the case Pj receives an answer, we first note
the acceptance itself reveals nothing due to the previous
argument, and then further, that its belief changes to δi ‖
(out = o) as claimed. This is due to Theorem 2, as Pj here
too is provided only the output of the query.

Note that the condition of consistency in the lemma is
only required for the revision operation in the conclusion to
be defined.

The lemma itself is only useful, however, when its
premises hold. Specifically, we require PT to possess the
actual beliefs of the participants to start with. This, in turn,
means that the initial init SMC procedure produced them.
How the participants arrived at δ, the common belief about
the secret variables, used by init SMC to compute δj , is be-
yond the scope of this work. Once the premises hold, how-
ever, Lemma 6 states that they will continue to hold; the
tracked beliefs will remain correct and thus the protections
of the threshold policies will be maintained.

5. Discussion and experiments
The belief set method and the SMC belief tracking methods
present an interesting tradeoff. On the one hand, SMC belief
tracking is clearly more precise than belief sets for the sim-
ple reason that Pi’s estimate of the gain in the other princi-
pals’ beliefs can consider their secret values exactly without
fear that rejection will reveal any information.

On the other hand, SMC belief tracking has two draw-
backs. First, the estimate δi of what the other parties believe
about Pi’s secret must be kept hidden from Pi to avoid in-
formation leaks. This is unsatisfying from a usability point
of view: Pi can be sure that its threshold is not exceeded but
cannot see exactly what others know at any point in time.
Second, while the performance of SMC has improved quite

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

δ1
x2 δ1

x3 δ2
x1 δ2

x3 δ3
x1 δ3

x2

pr
ob

ab
ili

ty

belief median quartiles

Figure 10. Running example Q1; plot of max beliefs

a bit over time [8], computing a query Q via SMC is still
orders of magnitude slower than computing it directly. The
belief tracking computation of Q as we have previously im-
plemented it [11] is already orders of magnitude slower than
computing Q on the actual values, so performing this com-
putation as an SMC will be significantly slower still. Worse,
belief tracking is a recursive procedure, since it is an inter-
preter, and recursive procedures are hard to implement with
SMC. So it remains to be seen whether SMC belief tracking
can be implemented in a practical sense.

The belief set method has more hope of seeing a realistic
implementation, essentially as an extension of our prior im-
plementation, which is based on abstract interpretation [11].
In our approach, we model a distribution as a set of proba-
bilistic polyhedra, which can be thought of as a set of shapes
with probabilities attached to them. For example, we could
represent that x1 is uniform distributed in {1, . . . , 10} as the
singleton set {(1 ≤ x1 ≤ 10, 1/10)}. To improve perfor-
mance at the cost of precision, we permit abstracting these
sets; we elide the details due to space constraints. We can
very easily produce a naive implementation of belief set
tracking (and indeed, have done so), by simply enumerat-
ing each of the beliefs δ ∈ ∆ when computing [[Q]]∆, and
combining the results. We believe we could extend our ab-
straction to compute with the ∆ directly, and reasonably ef-
ficiently.

As a step towards a more thorough evaluation of the
precision/performance tradeoff, the remainder of this section
compares the precision of the belief set and SMC belief
tracking methods on three simple queries. We simulate the
SMC belief tracking computation by running our normal
implementation in the ideal world setup. We find that SMC
belief tracking can be significantly more precise than belief
sets, but that belief sets can nevertheless be useful.

“Am I the richest?” example (Q1). Consider the running
example query Q1. If all the principals were to evaluate
threshold policies to determine the safety of Q1, they would

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 o

f m
os

t p
ro

ba
bl

e
x 2

x1

Figure 11. Running example Q1; δx1
1 ; plot of P1’s max

belief about x2 vs. values of x1

reason about possible revised beliefs of the participants,
where the possibilities vary in their valuation of those par-
ticipants’ secret values, as is described in Section 4.2. If the
principals perform this policy check via SMC, they would
do so for only one of those possible valuations.

We can better understand the relationship between the
two approaches by looking at the range of possible revised
beliefs achievable. For some secret values, a principal might
learn little; for others, they might learn a lot. We measure
this range in terms of the probability of the most probable
secret in a principal’s belief, for a given valuation of their
own secret.

Figure 10 demonstrates the situation for the running ex-
ample, query Q1, starting from the initial belief δ uniformly
distributing values in 10 ≤ x1, x2, x3 ≤ 100. There are 6
relationships considered, for each principal Pi, during their
policy decision to allow Pj , with j 6= i, to see the query
output, they would compute Pj’s potential belief about xi
(labeled δxi

j in the figures). These beliefs depend on xj ; the
figure shows the potential belief for every possible xj , the
median belief achievable over them as well as the 1st and
3rd quartiles, showing the range of Pj’s likely knowledge.5

Figure 11 focuses on the first column of Figure 10, δx2
1 ,

showing P1’s knowledge about x2, depending on the value
of x1. At the very top, the most P1 could learn is when x1 =
10 and the query returns true, meaning P1 was the richest,
with the smallest amount of wealth. This lets P1 conclude
that x2 = 10 and x3 = 10. P1’s potential knowledge of x2

decreases as P1’s wealth grows, up to x1 = 65. At 65, if
P1 is the richest, it is able to narrow x2 down to 56 values
(10 through 65). Starting with x1 = 66, however, P1 can

5 It is important to mention that our probabilities are sometimes not exact
due to the limitations of the implementation used for the analysis. The true
probabilities, however, cannot be larger than those presented here. This
imprecision is the reason why belief sets representing P2 and P3’s beliefs
about each other, or about P1, in Figure 10 appear different, though in
actuality they are the same.

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

w=0 w=1 w=2 w=4 w=8 w=16

pr
ob

ab
ili

ty

belief median quartiles

similarw
def
= avg := x1+x2+x3

3
if |x1 − avg| ≤ w ∧
|x2 − avg| ≤ w ∧
|x3 − avg| ≤ w
then out := True
else out := False

Figure 12. similarw example; plot of max belief for a
variety of windows w sizes

learn more if the query returns false, stating that either P2

or P3 is richer than P1. Further increase in x1, increases its
potential knowledge of x2, culminating at x1 = 99 which
lets P1 conclude that x2 = 100 with a probability close to
0.5. At x1 = 100, the query can only return true, hence P1

learns nothing, keeping its knowledge of x2 unchanged at
1/91.

We see that for this query, the belief sets approach would
conservatively conclude that all participants could learn x1

exactly, and that P1 could learn x2 and x3 exactly. On the
other hand, it is impossible for P2 and P3 to learn each
other’s values to any confidence.

The benefit of the SMC approach to policy enforcement is
that it is free from the overly conservative view of the belief
sets approach. In 75% (observing the upper extent of the
quartile boxes) or more of the situations, the actual beliefs
of the participants do not exceed probability of 2−4 ≈ 0.06,
which is comparable to the 1

91 ≈ 0.01 probability each agent
started with. In terms of utility, if the participants set their
policy thresholds to as little as 0.06, their policies would
allow Q1 in most cases. The belief sets approach would
reject Q1 for all ti < 1.

Not all queries are pathological for the belief sets ap-
proach. We next look at a parameterized query that offers
a security vs. utility tradeoff.

“Similar” example The query similarw, depicted at the
bottom of Figure 12, determines whether each principal’s se-
cret is within w of the average. The choice of window size

w determines how much the principals can learn.6 The plot
at the top of the figure shows the possible beliefs after eval-
uating similarw with a variety of window values w, with
the initial assumption that all values xi are in uniformly dis-
tributed in 1 ≤ xi ≤ 100 (so each of the 100 possibilities
has probability 0.01). The scenario is thus completely sym-
metric in respect to the agents, hence only one of the beliefs
is shown in the figure.

When w = 0, the query can be completely revealing, as
when it returns true, all secrets are equal. Relaxing the win-
dow reduces how much each agent can learn. Atw = 2, each
agent, in the worst case, learns every other principal’s secret
with confidence of 0.25. This worst case already allows non-
trivial threshold policies. Going further, with the window set
to 16, the query becomes barely revealing, resulting in con-
fidence never reaching over 0.05, comparable to the initial
0.01. Further increase of w can make the query even less re-
vealing to the point of not releasing any information at all,
though of course also not providing any utility.

“Millionaires” example. The common motivating exam-
ple for SMC is a variant of Q1 involving a group of million-
aires wishing to determine which of them is the richest, with-
out revealing their exact worth. The query richestp, given at
the bottom of Figure 13, accomplishes this goal, determin-
ing which of 3 participants is (strictly) richer than the other
two. An addition to this query has been made to provide a
means of injecting noise into its answers to limit potential
knowledge gain.

The output out = 0 designates that none of the three
were strictly richest. The query is concluded with a step that
noises the result. The assignment out := uniform {0, 1, 2, 3}
is shorthand notation for a series of pif statements, whose
effect is to set out to one of the 4 values, with uniform
probability. Thus given the parameter p, this query will just
randomly return, with probability p, one of the 4 possible
outputs.

A significant benefit of using probabilistic programming
languages is that the effect of non-determinism described
using these probabilistic statements is taken into account; we
can determine exactly what a rational agent would conclude
from learning the output of such a noised query.

Figure 13 summarizes the beliefs of every agent assuming
initially each is equally likely to be worth between $10 and
$100. This scenario is also symmetric hence only the belief
of one agent about a single other agent is shown.

With p = 0, that is, no chance of random output, the
query is potentially fully revealing, but in most cases still
keeping the participants below 0.5 certainty. With a 0.01
chance of random output, the worst case no longer results in

6 Note that the language described in Figure 2 cannot directly express
this query due to the lack of the division and absolute value operations.
However, we can achieve the same effect by multiplying all expressions by
3 and replacing the conditions on absolute values by a pairs of upper and
lower bounding conditions.

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

p=0 p=0.01 p=0.1 p=1

pr
ob

ab
ili

ty

belief median quartiles

richestp
def
= out := 0

if x1 > x2 ∧ x1 > x3 then out := 1
if x2 > x1 ∧ x2 > x3 then out := 2
if x3 > x1 ∧ x3 > x2 then out := 3
pif p then out := uniform {0, 1, 2, 3}

Figure 13. richestp example; plot of max belief for a vari-
ety of noising probabilities p

absolute certainty, though close to it. Randomizing the out-
put with p = 0.1, keeps the agents’ certainty almost below
0.5 in the worst case. Getting closer to p = 1 the beliefs ap-
proach the initial ones. At p = 1 the query reveals nothing,
though our approximate implementation does produce some
variation in the upper bound.

6. Related Work
Almost all prior work on SMC treats the function f being
computed by the parties as given, and is unconcerned with
the question of whether the parties should agree to compute
f in the first place. The only exceptions we are aware of are
two papers [4, 1] that consider SMC in conjunction with dif-
ferential privacy [5, 3]. Dwork et al. [4] show that if f is a
differentially private function, then the process of running an
SMC protocol that computes f is also differentially private
(at least in a computational sense). Beimel et al. [1] observe
that if the end goal is a distributed protocol that is differen-
tially private, then SMC may be overkill and more efficient
alternatives may be possible.

The security goal we are aiming for is incomparable with
that of differential privacy. Moreover, in contrast to above-
mentioned work, our determination of whether a function
f is “safe” to compute will explicitly depend on the parties’
actual inputs as well as any (known or assumed) prior knowl-
edge that parties have about each others’ inputs.

7. Conclusions
In this paper we have presented two methods that apply
knowledge-based security policies to the problem of deter-

mining whether participating in a secure multiparty compu-
tation could unsafely reveal too much about a participant’s
secret input. Ours are the first techniques that consider the
actual secrets and prior knowledge of participants (poten-
tially gained from previous SMC’s) when making this deter-
mination, making our approach more permissive (in accept-
ing more functions), and potentially safer, than techniques
that disregard this information. Experiments with the two
methods show that the SMC belief tracking method is the
more permissive of the two, but it remains to be seen whether
this method can be implemented efficiently.

References
[1] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed

private data analysis: Simultaneously solving how and what.
In Advances in Cryptology — Crypto 2008, volume 5157 of
LNCS, pages 451–468. Springer, 2008.

[2] Michael R. Clarkson, Andrew C. Myers, and Fred B.
Schneider. Quantifying information flow with beliefs. J.
Comput. Secur., 17(5), 2009.

[3] Cynthia Dwork. Differential privacy. In 33rd Intl. Colloquium
on Automata, Languages, and Programming (ICALP), Part
II, volume 4052 of LNCS, pages 1–12. Springer, 2006.

[4] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, and Moni Naor. Our data, ourselves: Privacy
via distributed noise generation. In Advances in Cryptology
— Eurocrypt 2006, volume 4004 of LNCS, pages 486–503.
Springer, 2006.

[5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data analysis.
In 3rd Theory of Cryptography Conference — TCC 2006,
volume 3876 of LNCS, pages 265–284. Springer, 2006.

[6] O. Goldreich. Foundations of Cryptography, vol. 2: Basic
Applications. Cambridge University Press, Cambridge, UK,
2004.

[7] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game, or a completeness theorem for protocols with
honest majority. In 19th Annual ACM Symposium on Theory
of Computing (STOC), pages 218–229. ACM Press, 1987.

[8] Yan Huang, David Evans, Jonathan Katz, and Lior Malka.
Faster secure two-party computation using garbled circuits.
In USENIX Security, 2011.

[9] Krishnaram Kenthapadi, Nina Mishra, and Kobbi Nissim.
Simulatable auditing. In PODS, 2005.

[10] Y. Lindell and B. Pinkas. Secure multiparty computation for
privacy-preserving data mining. J. Privacy and Confidential-
ity, 1(1):59–98, 2009.

[11] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mud-
hakar Srivatsa. Dynamic enforcement of knowledge-based
security policies. In Proceedings of the Computer Security
Foundations Symposium (CSF), June 2011.

[12] A. C.-C. Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science
(FOCS), pages 162–167. IEEE, 1986.

