
Modular Information Hiding and
Type-Safe Linking for C

Saurabh Srivastava, Student Member, IEEE, Michael Hicks, Member, IEEE,

Jeffrey S. Foster, and Patrick Jenkins

Abstract—This paper presents CMOD, a novel tool that provides a sound module system for C. CMOD works by enforcing a set of four

rules that are based on principles of modular reasoning and on current programming practice. CMOD’s rules flesh out the convention

that .h header files are module interfaces and .c source files are module implementations. Although this convention is well known,

existing explanations of it are incomplete, omitting important subtleties needed for soundness. In contrast, we have formally proven

that CMOD’s rules enforce both information hiding and type-safe linking. To use CMOD, the programmer develops and builds their

software as usual, redirecting the compiler and linker to CMOD’s wrappers. We evaluated CMOD by applying it to 30 open source

programs, totaling more than one million lines of code. Violations to CMOD’s rules revealed more than a thousand information hiding

errors, dozens of typing errors, and hundreds of cases that, although not currently bugs, make programming mistakes more likely as

the code evolves. At the same time, programs generally adhere to the assumptions underlying CMOD’s rules and, so, we could fix rule

violations with a modest effort. We conclude that CMOD can effectively support modular programming in C: It soundly enforces type-

safe linking and information hiding while being largely compatible with existing practice.

Index Terms—Coding tools and techniques, C, modules/packages, information hiding, type-safe linking, CMOD, software reliability.

Ç

1 INTRODUCTION

MODULE systems allow large programs to be constructed
from smaller, potentially reusable components. The

hallmark of a good module system is support for information
hiding, which allows components to conceal internal
structure while ensuring that component linking is type
safe. This combination allows modules to be safely written
and understood in isolation, enhancing the reliability of
software [32].

While full-featured module systems are part of many
modern languages (such as ML, Haskell, Ada, and
Modula-3), the C programming language—still the most
common language for operating systems, network servers,
and other critical infrastructure—lacks direct support for
modules. Instead, programmers typically think of .c source
files as module implementations and use .h header files
(containing type and data declarations) as module inter-
faces. Textually including a .h file via the #include

directive is akin to “importing” a module.
Many experts recommend using this basic pattern [2],

[16], [17], [18], [20], but, to our knowledge, existing
presentations of the basic pattern are too weak to ensure
proper information hiding and type-safe linking. As a
result, programmers may be unaware of (or ignore) the
pitfalls of using the pattern incorrectly and, thus, may make
mistakes (or cut corners) since the compiler and linker

provide no enforcement. The result is the potential for link-
time type errors and information hiding violations, which
degrade the programs’ modular structure, complicate
maintenance, and lead to defects.

As a remedy to these problems, this paper presents
CMOD, a novel tool that enforces a sound module system
for C based on existing practice. CMOD works by enforcing
four programming rules that flesh out C’s basic modularity
pattern. We have formally proven that, put together,
CMOD’s rules ensure C programs obey information hiding
policies implied by interfaces and that linking modules
together is type safe, i.e., that the types of shared symbols
match across module boundaries.1 To our knowledge,
CMOD is the first system to enforce both properties for
standard C programs. Related approaches (Section 6) either
require linguistic extensions (e.g., Knit [28] and Koala [33])
or enforce type-safe linking but not information hiding (e.g.,
CIL [24] and C++ “name mangling”).

To evaluate how well CMOD’s rules match existing
practice while still strengthening modular reasoning, we
ran CMOD on a suite of programs cumulatively totaling
more than one million lines of code, split across 1,478 source
and 1,488 header files. Rule violations revealed more than a
thousand information hiding errors, dozens of typing
errors, and hundreds of cases that, although not currently
bugs, make programming mistakes more likely as the code
evolves. Nevertheless, most programs follow the basic
modularity pattern and we found that making them
compliant with CMOD’s rules requires only a modest effort.
CMOD is designed to be easy to use, requiring only that the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008 1

. The authors are with the Department of Computer Science, University of
Maryland, A.V. Williams Building, College Park, MD 20742.
E-mail: {saurabhs, mwh, jfoster}@cs.umd.edu, patjenk@gmail.com.

Manuscript received 24 June 2007; revised 24 Jan. 2008; accepted 21 Mar.
2008; published online 21 Apr. 2008.
Recommended for acceptance by P. Devanbu.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-06-0198.
Digital Object Identifier no. 10.1109/TSE.2008.25.

1. C’s weak type system still allows programmers to violate type safety
in other ways, e.g., by using unchecked casts. Other work, notably CCured
[23] and Deputy [6], can be used to strengthen C’s type system to eliminate
these problems. CMOD complements these efforts and vice versa.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

programmer redirect the compiler and linker commands in
their makefile to CMOD’s wrappers. We found that building
with our prototype implementation of CMOD takes roughly
4.1 times as long as the regular build process on average,
with a median slowdown of 3.1, and we believe the
overhead could be reduced to a minimal level with more
engineering effort. These results suggest that CMOD can be
integrated into current software development practice at
relatively low cost while enhancing software safety and
maintainability.

In summary, the contributions of this paper are as
follows:

. We present a set of four rules that ensure it is sound
to treat header files as interfaces and source files as
implementations (Section 2). To our knowledge, no
other work fully documents a set of programming
practices that are sufficient for modular safety in C.
While this work focuses on C, our rules should also
apply to languages that make use of the same
modularity convention, such as C++, Objective C,
and Cyclone [14].

. We give a precise, formal specification of our rules
and prove that they are sound, meaning programs
that obey the rules follow the information hiding
policies defined by interfaces and are type safe at
link time (Section 3).

. We present our implementation, CMOD (Section 4),
and describe the results of applying it to a set of
benchmarks (Section 5). CMOD found more than a
thousand information hiding violations and dozens
of typing errors, among other brittle coding prac-
tices. We found that bringing code into compliance
with CMOD was generally straightforward.

An earlier version of this work was published in a
workshop proceedings [31]. The current version improves
on the prior work in several ways: The formalism now
explicitly handles duplicate inclusion, which was as-
sumed absent before—this seemingly small change
required an almost complete revamping of the soundness
proof; we found and addressed a subtle bug in our
previous system due to recursive inclusion; CMOD now
supports .c files that are #included but do not act as
interfaces; we have added more discussion of our
implementation; and we have expanded the experiments
to include more and larger programs, nearly tripling the
total lines of code considered.

2 MOTIVATION AND INFORMAL DEVELOPMENT

We begin our discussion by presenting C’s modularity
convention and informally introducing CMOD’s rules for
modular programming. Abstractly, we define a module
implementation M to be a set of term and type definitions
and we define a module interface I to be a set of term and
type declarations. Interfaces are used to declare the exported
terms and types of a module—when one module wishes to
refer to the definitions of another module M, it must do so
through M’s interface. Moreover, in most module systems,
the compiler ensures that each module implements its
interface, meaning that it exports any types and terms in

the interface (and may define additional, private terms and
types as well). These features ensure separate compilation
when module implementations are synonymous with
compilation units.

There are two key properties that make such a module
system safe and effective. First, clients must depend only on
interfaces rather than on particular implementations:

Property 2.1 (Information Hiding). Suppose that M imple-
ments interface I. Then, if M defines a symbol g, other
modules may only access g if it appears in I. If I declares an
abstract type t, no module other than M may use values of
type t concretely.

This property makes modules easier to reason about and
reuse. In particular, if a client successfully compiles against
interface I, it can link against any module that implements
I. Consequently, M may safely be changed as long as it still
implements I.

The second key property of a module system is that
linking must be type safe:

Property 2.2 (Type-Safe Linking). If module N refers to
symbols in some interface I and M implements I and M and
N are individually type safe, then the result of linking M and
N together is type safe.

The goal of CMOD is to define a backward-compatible
module system for C that enjoys these two properties. The
remainder of this section describes our approach.

2.1 Basic Modules in C

Our starting place is the well-known C convention in which
.c source files act as separately compiled implementations
and .h header files act as interfaces [2], [16], [17], [18], [20].
Fig. 1 shows a simple C program that follows this
convention. In this code, header bitmap.h acts as the
interface to bitmap.c, whose functions are called by
main.c. The header contains an abstract declaration of type
struct BM and declarations of the functions init and
set. To use bitmap.h as an interface, the file main.c

“imports” it with the directive #include “bitmap.h”,
which the preprocessor textually replaces with the contents
of bitmap.h. At the same time, bitmap.c also invokes
#include “bitmap.h” to ensure its definitions match the
header file’s declarations.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

Fig. 1. Basic C modules.

This program properly hides information and links
type safely. Since both main.c and bitmap.c include
bitmap.h, the C compiler ensures that the types of init
and set match across the files. Furthermore, main.c never
refers to bitmap.c’s symbol private and does not
assume a definition for struct BM (thus, treating it
abstractly) since neither appears in bitmap.h.

2.2 Header Files as Interfaces

One of the key principles illustrated in Fig. 1 is that symbols
are always shared via interfaces. In the figure, header
bitmap.h acts as the interface to bitmap.c. Clients
#include the header to refer to bitmap.c’s symbols
and bitmap.c includes its own header to make sure the
types match in both places [18], [20]. CMOD ensures that
linking in this way is mediated by an interface with the
following rule:

Rule 1 (Shared Headers). Whenever one file links to a symbol
defined by another file, both files must include a header that
contains the declaration of that symbol.

The C compiler and linker do not enforce this rule, so
programmers sometimes fail to use it in practice. Fig. 2
illustrates some of the common ways the rule is violated,
based on our experience (Section 5). One common violation
is for a source file to fail to include its own header, which
can lead to type errors. In Fig. 2, bitmap.c does not
include bitmap.h and, so, the compiler does not discover
that the defined type of init (line 9) is different than the
type declared in the header (line 2).

Another common violation is to import symbols directly
in .c files by using extern, rather than by including a
header. In the figure, line 15 declares that private is an
external symbol, allowing it to be called on line 24 even
though it is not mentioned in bitmap.h. This violates
information hiding, preventing the author of bitmap.c

from safely changing the type of, removing, or renaming
this function. It may also violate type-safe linking, e.g.,
when a local extern declaration assigns the wrong type to
a symbol. We have seen both problems in our experiments.
One way that the author of bitmap.c could prevent such

problems would be to declare private as static, making

it unavailable for linking. However, programmers often fail

to do so. In some cases, this is an oversight—for the

benchmarks we used in our experiments, we found that, on

average, 17 percent of a project’s symbols could be declared

static and as many as 79 percent in the most extreme

example. However, in other cases, a symbol cannot be

declared static because it should be available for linking

to some, but not all, files.
Rule 1 admits several useful coding practices. One

common practice is to use a single header as an interface

for several source files (as opposed to one header per source

file, as in Fig. 1). For example, the standard library header

stdio.h often covers several source files and, to adhere to

Rule 1, each source file would #include “stdio.h”.

Another common practice is to have several headers for a

single source file to provide “public” and “private” views of

the module [20]. In this case, the source file would include

both headers, while clients would include one or the other.
The last error in Fig. 2 is in main.c, which violates the

information hiding policy of bitmap.h by defining

struct BM on line 18. In this case, the violation also results

in a type error since the definitions on lines 6 and 18 do not

match. Rule 1 does not prevent this problem because it

refers to symbols and not types. Our solution is to treat type

definitions in a manner similar to how the linker treats

symbols. The linker requires, in general, that only one file

define a particular function or global variable name. This

ensures there is no ambiguity about the definition of a given

symbol during linking. Likewise for types, we can require

that there is only one definition of a type that all modules

“link against” in the following sense.
We say that a type definition is owned by the file in which

it appears. If the type definition occurs in a header file (and,

hence, is owned by the header), then the type is transparent

and many modules may know its definition. In this case,

“linking” occurs by including the header. Alternatively, if

the type definition appears in a source file (and, hence, is

owned by that file), then the type is abstract: Only that

module, which implements the type’s functions, should

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 3

Fig. 2. Violations of Rules 1 and 2.

know its definition. CMOD requires that a defined type have
only one owner, eliminating the problem in Fig. 2:

Rule 2 (Type Ownership). Each type definition in the linked
program must be owned by exactly one source or header file.

Notice that this rule is again somewhat flexible, allowing
a middle ground between abstract and transparent types. In
particular, the rule allows a “private” header to reveal a
type’s definition, while a “public” header keeps it abstract.
Files that implement the type and its functions include both
headers and those that use it abstractly include only the
public one.

This notion of ownership makes sense for a global
namespace in which type and variable names have a
single meaning throughout a program. For variables, the
static qualifier offers some namespace control, but C
provides no corresponding notion for type names. While
we could imagine supporting a static notion for types,
we use our stronger rule because it is simple to
implement and we have found programmers generally
follow this practice.

2.3 Preprocessing and Header Files

Rules 1 and 2 form the core of CMOD’s enforcement of
information hiding and type-safe linking. However, for
these rules to work properly, we must account for the
actions of the preprocessor.

Consider the code shown in Fig. 3, which modifies our
example from Fig. 1 to represent bitmaps in one of two
ways (lines 12-14 or 16-18), depending on whether the
COMPACT macro has been previously defined (line 23 or
25). The value of COMPACT itself depends on whether
__BSD__ is set, which is determined by the initial
preprocessor environment when the compiler is invoked

(more on this below). We say that a file f1 depends on

file f2 when f1 uses some macro M set by f2. In this case,
we also say that f1 depends on M. Here, bitmap.h

depends on config.h.
Such preprocessor-based dependencies are very useful

since they allow programs to be configured for different
circumstances. However, they can also unintentionally
cause a header to be preprocessed differently depending
on where it is included. In Fig. 3, if we were to swap lines 8
and 9 but leave lines 28 and 29 alone, then bitmap.c and
main.c would have different, incompatible types for init,
and main.c might therefore invoke init with the wrong
arguments (line 34 or 36). Thus, preprocessing can under-
mine information hiding and type-safe linking, even when
files satisfy Rules 1 and 2.

To solve this problem, we introduce two additional rules,
discussed below, to enforce the following principle:

Principle 2.3 (Consistent Interpretation). Each header in the

system that is used as an interface must have a consistent
interpretation, meaning that, whenever the header mediates

linking to enforce Rule 1 or owns a type definition to enforce

Rule 2, the text produced by preprocessing the header is

identical wherever it is included.

Enforcing this principle allows us to keep Rules 1 and 2
simple and it makes it easier for programmers to reason
about headers since their meaning is less context-dependent
(though not entirely, as we discuss below). This is the same
principle underlying proper use of precompiled headers [27]
and, thus, programs that adhere to CMOD’s rules can also
use such headers safely.

The first rule to ensure consistent interpretation enforces
safe idioms for header file inclusion:

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

Fig. 3. Using the preprocessor for configuration.

Rule 3 (Proper Inclusion). Header files that act as interfaces
must be vertically independent, must ignore duplicate
inclusions, and must avoid inclusion cycles.

We say that file h is vertically dependent on f if h depends
on f and h is #included after processing f in the course of
processing a given source file. This could happen, for
example, when a source file first #includes h and then
#includes some f that depends on h. In the example,
bitmap.h is vertically dependent on config.h. As
another example, a source file f could #define a macro
that a header h it subsequently #includes depends on.
Eliminating vertical dependencies ensures that the inter-
pretation of a header is the same no matter the order in
which the header is included in a source file.

We forbid vertical dependencies because we believe they
add unnecessary complication. In particular, the program-
mer must remember to always include the headers together
in some particular order. We believe a better practice is to
convert vertical dependencies into horizontal dependencies,
which are more self-contained. We say that two header files
are horizontally dependent if one of the headers is dependent
on and #includes the other. A horizontal dependence
adheres to Principle 2.3 because a header always “carries
along” the other headers on which it depends, ensuring a
consistent interpretation.

If we wanted to remove the vertical dependence in the
example, we could convert it to a horizontal dependence by
moving line 8 just prior to line 1. However, notice that then
config.h would be included twice in main.c, once
directly and once via bitmap.h. The double inclusion is
harmless because of the #ifndef pattern [7], [13] begin-
ning on line 20, which causes any duplicate inclusions of
config.h to be completely ignored. Our implementation
requires that the #ifndef pattern be used in every header
to eliminate duplicate inclusions.

The #ifndef pattern is essentially a kind of self-
dependence. Somewhat surprisingly, such self-dependen-
cies can result in violations of the consistent interpretation
principle in the presence of recursive inclusion. Fig. 4
illustrates the issue. Here, a.h first includes b.h and then,
depending on the value of macro X, declares x to be either
an int or a float. The header b.h first includes a.h and
then defines X. Given that we allow self-dependence, a.h is
horizontally dependent on b.h, which is permitted, and
there are no vertical dependencies.

Suppose that one source file contains #include “a.h”

and another contains #include “b.h”. In the first case, X

will be defined (from the nested inclusion of b.h) and,
therefore, x will have type int. In the second case, X will
not be defined when a.h is included since the second
inclusion of b.h is nullified by the #ifndef pattern; hence,
x will be of type float. Thus, these two files satisfy Rule 1
(including a common header), but disagree on the type of x,
violating consistent interpretation.2

The root of the problem is that the two headers form an
inclusion cycle, but the dependencies between them cause
their interpretation to differ depending on which is
included first. We can recover consistent interpretation
while allowing self-dependence by forbidding cyclic header
inclusion. Fortunately, this restriction does not appear to be
onerous: None of our benchmarks had any cases of
recursive inclusion. We did find one instance of recursion
in limits.h from the GNU standard C library, but this
particular case was both highly unusual and benign,
involving GCC-specific preprocessor directives to include
two files with the same name from different directories.

Note that Rule 3 allows vertical dependencies on files
that are not meant to be interfaces. We have found this
flexibility to be useful in practice. For example, the gawk

distribution builds two executables, gawk and pgawk,
where the latter performs extra profiling. To implement
this, the developers #include the file eval.c in the file
eval_p.c, first defining a macro to change its processing:

1 #define PROFILING

2 #include “eval.c”

Then, gawk is linked with eval.c and pgawk is linked
with eval_p.c. We have seen similar parameterizations in
other programs, including bison and gnuplot.

Clearly, eval.c is vertically dependent on eval_p.c

since eval_p.c defines a macro that affects the processing
of the eval.c. Nevertheless, this is not a Rule 3 violation
because eval.c is not being used as an interface. CMOD

makes this intuition precise by considering eval.c to be
inlined within eval_p.c. Thus, when checking Rule 1 for
pgawk, eval.c is not considered a shared header and,
when checking Rule 2, any types textually appearing in
eval.c are considered owned by eval_p.c. In our
implementation, we heuristically assume that files ending
in .h are meant to be interfaces, while all other included
files are not and are thus treated as inlined. It would be
interesting future work to discover this distinction based on
usage, rather than filename extension.

Preventing vertical dependencies solves one problem
with the preprocessor, but we also need to reason about the
initial preprocessor environment. Recall that the __BSD__

flag used in lines 22-26 of Fig. 3 is not set within the file.
Instead, it is either supplied by the system or induced by a
compiler command-line option (e.g., as an argument to
-D).3 If bitmap.c were compiled with this flag set and
main.c were compiled without it, then the two inclusions
of bitmap.h (lines 9 and 29) would produce different

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 5

Fig. 4. Pathological cyclic dependence between two headers.

2. These subtle dependencies could be the reason that some coding style
guides encourage vertical dependencies in lieu of horizontal ones [2].

3. Note that flags other than -D can affect the environment. For example,
passing the -O flag causes the __OPTIMIZE__ macro to be set and
__NO_INLINE__ to be unset.

declarations of init. We can prevent this by enforcing
CMOD’s final rule:

Rule 4 (Consistent Environment). All files linked together
must be compiled in a consistent preprocessor environment.

By consistent we mean that, for any pair of linked files
that depend on a macro M, the macro must be defined (or
not defined) identically in the initial preprocessor environ-
ments for each file. Processing each module in a consistent
environment ensures that all of its included headers (which,
by Rule 3, are not vertically dependent) are interpreted the
same way everywhere, following Principle 2.3.

2.4 Discussion

In essence, Rules 3 and 4 allow the program—all of its
linked source files and their interfaces—to be treated as a
very large functor [26], parameterized by the initial
preprocessor environment and optionally by a uniformly
included config.h (see below). Thus, while CMOD allows
individual headers to be parameterized, they must be
consistently interpreted throughout the program if they are
to be treated as interfaces. Consistent interpretation works
well in practice: Since a .h file acting as an interface
represents a .c file that is typically compiled once, there is
usually little reason to interpret the .h file differently in
different contexts.

While we feel that vertical dependencies between
interfaces are generally undesirable, the interfaces in many
large programs are vertically dependent on a config.h

header like the one in Fig. 3. This is safe—that is, it ensures
consistent interpretation—as long as config.h is always
included first so that other included headers are consistently
interpreted with respect to it. Thus, CMOD allows the
programmer to optionally supply the name of a config.h
file and vertical dependencies on the config.h file are
permitted. CMOD also checks that config.h is included
first in every file. In essence, we can think of config.h as
part of the initial macro environment, so this relaxation is in
the spirit of Rule 4.

Note that, while Principle 2.3 ensures consistent inter-
pretation of headers, this does not imply that a header
means the same thing wherever it is included. This is
because a header could refer to type definitions that precede
it and, more rarely, variable definitions if the header
contains static (possibly inline) functions or macro
definitions that include code.

For example, consider the code in Fig. 5. Here, the header
files ti.h and tp.h each have a different definition of
type T (lines 1 and 2), which is used in header a.h (line 3).
Source file ti.c includes a.h after ti.h and, thus, in this
file, tvar has type int. However, source file tp.c includes
tp.h first and, thus, in this file, tvar has type int *. Notice
that there are no vertical dependencies as we have defined
them since none of the three header files use any
preprocessor directives and thus produce the same text no
matter where they are included. However, the meaning of T
within a.h has changed, depending on which source file
included the header.

Fortunately, allowing this situation to occur does not
compromise either information hiding or type-safe linking.

In particular, Rule 2 requires that every type is owned by
exactly one file which, for our example, would preclude
ti.c and tp.c from being linked together. Symbols can be
used a bit more flexibly, but are still safe. The standard
linker forbids multiple definitions of exported symbols,
while static symbol definitions cannot be linked against
from different files, thus precluding any sort of type-safe
linking or information hiding violation among them.

Another possible design point for CMOD would be to
require static symbols to be singly defined, just like
exported symbols, to make code easier to understand.
However, extending CMOD to track such dependencies
would add significant implementation complexity when
compared to our current approach (Section 4) and, in our
experience, dependencies on symbols are rare.

3 FORMAL DEVELOPMENT

In this section, we describe CMOD precisely by formalizing
its four rules on a small preprocessor and source language.
Using this formalism, we prove that our rules are sound.
Fig. 6 presents the core language. Here, a source program P
consists of a list of fragments f .4 At the top level of a
program P, a fragment represents a separately compiled
source file, where the program is what results from linking
the fragments together. Syntactically, a fragment is just an
ordered list of program statements s, which may be either
preprocessor commands c or definitions d.

Preprocessor commands c model those of the C pre-
processor. The commands def m and undef m, respectively,
define and undefine the preprocessor macro m from that
point forward. The conditional ifdef m then f1 else f2

processes f1 if m is defined and, otherwise, processes f2.
Since each branch is a fragment, it may contain further
preprocessor commands.

Our source language uses two distinct commands to
model C’s #include directive: import h represents import-
ing a module interface and inline h represents any other
uses of file inclusion. Both commands cause the file h to be
textually inserted, but import has two additional behaviors:
First, any occurrences of import h after the first one are
treated as no-ops; this models the #ifndef pattern
(Section 2.3), which avoids duplicate inclusion. Second,
recursive imports are disallowed, which enforces part of
Rule 3. In contrast, inline performs pure textual inclusion,
allowing duplicate and recursive inlining, if present. In our
implementation, we treat occurrences of #include as

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

Fig. 5. Nonpreprocessor dependency among header files.

4. The term fragment is due to Cardelli [3].

import when the name of the included file ends with
extension .h, in which case we also check that it uses the
#ifndef pattern and does not recursively include itself. All
other uses of #include are modeled by inline. The last
preprocessor command, end h, is inserted by the prepro-
cessor to mark the end of an imported file and never
appears in a source program.

Core language definitions d model their C counterparts.
The definition let g : � ¼ e binds the global name g to term e
of type � ; this form represents the C global variable and
function definitions. Since we are interested in linking, the
form of e itself is unimportant and, so, we use simply typed
lambda calculus terms for convenience. The definition
extern g : � is analogous to C’s extern and declares the
existence of global g of type � , which is used in header files
to import a symbol. The definition lettype t ¼ � is analogous
to C’s struct or typedef definitions and defines a named
type t to be an alias for � . Finally, the definition type t
declares that t may be used as a type name, which is
analogous to a C struct declaration where the name of the
struct is declared but no fields are given. We say that g
and t are defined by let g and lettype t ¼ � , while g and t are
declared by extern g : � and type t. Within a program, we
allow many declarations of a global variable or type name
but only one definition.

Our formalism simplifies features of both C’s prepro-
cessor and proper language to make formal proofs more
tractable. Section 4.2 discusses the differences in more detail
and argues that our formal soundness result still applies to
the full C language.

3.1 Preprocessor Semantics

We begin by defining an operational semantics for our
language. Our semantics has three phases. First, we
generate traces by executing preprocessor commands and
recording the sequence of actions. Having traces allows us
to attribute actions to particular header files included
within a larger evaluation, e.g., the trace that starts with
the inclusion of h and ends with processing end h describes
the contents of h. Second, we convert traces into accumu-
lators, which contain (unordered) summary information,
e.g., the set of macros defined in a file or the types of each
exported symbol. Most of CMOD’s rules are specified as
properties of accumulators, but specifying order-indepen-
dence requires appealing to traces. Last, we compile the

accumulator into an object file. In this section, we discuss
the first two phases and defer compilation to Section 3.3.

The rules for trace generation are given in Fig. 7. A trace ~f
consists of core language definitions and trace commands ~c,
which represent the decisions that have been made during
preprocessing. Trace commands def m and undef m
represent the definition or undefinition of m, respectively,
and ifdef mþ and ifdef m� represent a conditional in which
m was defined or not defined, respectively. The trace
command import h records the inclusion of h due to import
and the trace command nullimport h represents a duplicate
import of h that was nulled-out. Occurrences of inline are
not separately recorded in the trace. Last, end h indicates
the completion of h’s preprocessing.

Trace generation is specified as a reduction from states to
states, where a state has the form ~f ; I ; �; f

� �
. Here, ~f is a

trace of actions thus far, I is a set of header files that have
been (possibly partially) preprocessed, � is a set of
currently defined macros, and f is the remaining source
fragment to be preprocessed. Reduction judgments have the
form F ‘ ~f ; I ; �; f

� �
�! ~f 0; I0; �0; f 0
� �

, where F is a file
system that maps header names to fragments and is used
when an import or inline command is encountered. Pre-
processing fragment f begins with ~f set to the empty
trace ð�Þ, I set to ;, a given F , and an initial (possibly
empty) set of macro definitions �. We call this initial set of
definitions the initial environment. In practice, � is supplied
by the user on the command line when the compiler is
invoked (e.g., by using -D options). The initial environment
can therefore vary from one fragment to another, most
typically for projects that build intermediate libraries which
might be compiled with some set of flags not used by the
main part of the project.

We briefly discuss the rules in Fig. 7. [DEF] and [UNDEF]
add or removem from the set of currently defined macros �
and record the command in the trace. [IFDEFþ] and
[IFDEF�] reduce to either fþ or f� depending on whether
m has been defined or not and record the decision in the
output trace.

The semantics of import is given by the next two rules.
[IMPORT] applies when the header h has not yet been
preprocessed, in which case, import h expands to the
fragment FðhÞ with end h appended to it to mark the end
of the file. The included file h is also added to I in the
output state. [IMPORT-EMPTY], on the other hand, applies
when h has already been preprocessed, in which case, no
expansion occurs and nullimport h is added to the trace.
Since [IMPORT] ensures ðend hÞ 2 f while h is being
preprocessed, [IMPORT-EMPTY] requires that ðend hÞ 62 f
to forbid h from recursively including itself, as required by
Rule 3.

[EOH] simply records the marker end h in the trace.
[INLINE] expands to the contents of FðhÞ. Notice that we do
not record any effect in the trace nor do we tag the end of
the file. The latter choice means that any definitions inside
of h are attributed to the including file for purposes of rule
checking. Last, [TERM] copies a definition d, which may be a
let, extern, lettype, or type, into the trace.

Fig. 8 gives the rules for producing an accumulator from a
trace. An accumulator A is a tuple that summarizes

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 7

Fig. 6. Source language.

information about the core language program and macro

usage. The first three components of the accumulator are

lists that track information about the core language

program: N maps global variables to their types, H maps

global variables to their defining expressions, and T maps

each type name t to its definition � . In T , types are

annotated with either the header file h in which the type

was defined or � if it was defined in a source file rather than

a header file. The next three components of the accumulator

record information about symbols, namely, the set of global

variables that have been exported ðEÞ, by defining them

with let and imported ðIÞ by referring to them in

declarations or terms. Finally, the last three components

of the accumulator record information about macros that

have been changed ðCÞ or used ðUÞ and the set of type

names that have been declared ðZÞ. For macros in C or U, we

also record the file in which the change or use occurred.

The first two rules in Fig. 8 define the function

first-endð~fÞ, which returns the file name from the leftmost,

nonmatched occurrence of end in ~f ([IN-HEADER]), or � if

there is no such occurrence ([IN-SOURCE]).
The remaining rules define accumulator generation as a

set of reduction rules on states A; ~f
� �

, where A is the

accumulator thus far and ~f is the remaining part of the

trace. We write A½X !þ x� for the accumulator that is the

same as A except that its X component has x added to it.

Accumulator generation starts with an accumulator whose

components are all ;, which we write A;, and all of the rules

monotonically add to the accumulator.
[DEF] and [UNDEF] mark m as being changed and used;

counting both as uses is most likely not required, but our

proof technique relies on it [30]. [IFDEF�] marks m as being

used. All three rules use first-end to determine in what file

the macro change and/or use occurs. [IMPORT], [IMPORT-

EMPTY], and [EOH] all have no effect on the accumulator.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

Fig. 7. Trace generation.

The last four rules handle declarations and definitions.

[EXTERN] records the declaration of g and notes its type in

N . Here, we append the typing ðg 7! �Þ onto the list N , i.e.,

we do not replace any previous bindings for g. The compiler

ensures that the same variable is always given the same

type within a fragment (Section 3.3). [LET] adds g to the set

of defined global variables H, adds g’s type to N , and adds

any global variables mentioned in e (written fgðeÞ) to the

imports. Finally, [TYPE-DECL] declares a type, which is

noted in Z, and [TYPE-DEF] defines a type, which is noted

in T and tagged with the containing file using first-end.

3.2 CMOD Rules

We now formally specify the four rules presented in
Section 2. To state the rules more concisely, we use the
following notation to describe a file’s complete processing:

Definition 3.1 (Complete Preprocessing). We write �;F ‘
f e>A; I as shorthand for F ‘ �; ;; �; fh i�!� ~f ; I ; �0; �

� �
and

A;; ~f
� �

�!� A; �h i.

CMOD’s rules are shown in Fig. 9. To reduce notation, we

write AX for the X component of A. The first three rules

(Figs. 9a, 9b, and 9c) assume there is a common initial macro

environment � under which all fragments are preprocessed

and the fourth rule (Fig. 9d) ensures this assumption makes

sense. Fig. 9a defines the judgment �;F ‘ R1ðf1; f2Þ, which

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 9

Fig. 8. Accumulator generation.

enforces Rule 1: For each pair of fragments f1 and f2 in the

program, any global variable defined in one and used in the

other must be declared in a common header file. [RULE 1]

uses auxiliary judgment �;F ‘ g �decl I , which holds if g is

declared by some header in the set I , where we compute

the declared variable names by preprocessing each header

file h in isolation. Then, for any variable name g in N (which

contains names imported by one fragment and defined by

the other), it must be the case that �;F ‘ g �decl I1 \ I 2, i.e.,

g is declared in a header file that both f1 and f2 include. By

the consistent interpretation principle, enforced by Rules 3

and 4, we know that each file sees the same declaration of g.
Fig. 9b defines the judgment �;F ‘ R2ðf1; f2Þ, which

enforces Rule 2: Each named type must have exactly one

owner, either a source or a header. This rule examines two

fragments, preprocessing each and using [NAMED-TYPES-

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

Fig. 9. CMOD rules. (a) Rule 1: Shared headers. (b) Rule 2: Type ownership. (c) Rule 3: Vertical independence. (d) Rule 4: Environment

compatibility. (e) Rules 1-4 combined.

OK] to check that the resulting type definition maps T1

and T2 are compatible. There are two cases. First, any type t
in T1 with no marked owner is owned by f1 and thus should
be abstract everywhere else, meaning t should not appear in
T2 (and vice versa). Note that we are justified in treating Ti
as a map because the compiler forbids the same type name
from being defined twice. Second, any type t appearing in
both T1 and T2 is transparent and, hence, must be owned by
the same header. Then, by Rules 3 and 4, we know that �1

and �2 are the same.

Fig. 9c defines the judgment �;F ‘ R3ðfÞ, which

enforces the key part of Rule 3: Any two headers h1 and

h2 that are both included in some fragment must be

vertically independent. (The other requirements of Rule 3

are that recursive includes are forbidden and duplicate

imports are nulled-out and both of these are enforced by

[IMPORT-EMPTY] from Fig. 7.) For each header h included

in f , [RULE 3] checks �;F ‘ f � h, defined by [PARTIAL-

INDEP]. The first two premises of [PARTIAL-INDEP] pre-

process f , resulting in the trace ~f1 up to the (only) import of

h and the trace ~f2 that contains the full processing of h. The

last premise ~f1 � ~f2, defined by [TRACE-INDEP], checks that

the preprocessing steps taken in ~f1 do not influence the

steps taken in ~f2. In particular, no macros changed in A1

(described by AC1) are used by h (described by AU2) unless

the macro change and use occurred in the same file and,

thus, h is vertically independent of any files that came

earlier.
Notice that, in [TRACE-INDEP], we also require that no

macros used in A1 are changed by h, i.e., we forbid a use
before a change. Although this restriction may be surpris-
ing, we include it for two reasons. First, it seems desirable to
make programs as robust as possible against the reordering
of headers and a use-before-change among headers could
become a vertical dependency if those inclusions are for
some reason swapped. Second, without this restriction, our
formalization of Rule 3 would not enforce consistent
interpretation. The reason for this is rather subtle and a
full explanation can be found in the Appendix.

Also notice that this rule only refers to imported files, not
inlined files. Since inlined files are not added to I and can
never be type owners, they are not relevant to Rules 1 and 2.
This means that they need not be consistently interpreted
individually; rather, their contents are considered part of
the including file, which may require a consistent inter-
pretation if it is a header. Also notice that config.h files
are forbidden by [RULE 3]. As mentioned earlier, our
implementation allows the programmer to specify a
config.h that all files must include first; the equivalent
in our formal system is to start with an accumulator and
initial � from preprocessing config.h.

Fig. 9d defines the judgment �;F ‘ R4ðf;�fÞ, which
enforces [RULE 4]: All fragments must be compiled in
compatible environments. This rule holds if the initial
environment �f—in which f is assumed to have been
compiled—agrees with � on those macros used by f (in
AU). This implies that preprocessing under � produces the
same result as preprocessing under �f .

Fig. 9e defines the judgment �; E;F ‘ RðPÞ, which holds
if a program P satisfies Rules 1, 2, and 3 in a common � that

is consistent with E by Rule 4, where E maps each fragment
to its initial environment (recall the initial environments
may differ from one fragment to another). Thus, if �; E;F ‘
RðPÞ holds, then every pair of fragments in P must use
shared headers for global variables, must have a single
owner for each type definition, must use vertically
independent header files, and must be compiled in a
consistent environment.

3.3 Formal Properties

To prove that the rules in Fig. 9 enforce Properties 2.1 and
2.2, we need to define precisely the effect of compilation
and linking. Normally, a C compiler produces an object file
containing code and data for globals, a list of exported
symbols, and a list of imported symbols. To establish that
linking is type safe, we will also need to track type
information about symbols. We use Glew and Morrisett’s
MTAL0 typed object file notation [12], allowing us to appeal
to their type safety result in our proof (though with some
limitation, as we discuss below). MTAL0 typed object files
have the form ½�I) H : �E �, where H is a mapping from
global names g to expressions e and �I and �E are both
mappings from global names to types � . Here, �I are the
imported symbols and �E are the exported symbols.

We omit the full definition of compilation and linking as it
is largely straightforward; details can be found in our
companion technical report [30]. Fig. 10 shows the key rules.
Rule [COMPILE] describes the object file produced by the C
compiler from a fragment f , given an initial set of macro
definitions � and a file system F . The rule requires that,
following preprocessing, the global type environment N
always assigns the same symbol the same type ð‘ NÞ and
the code and data in the file are locally well-typed (N ‘ H;
we discuss this judgment in more detail below).5 Then, the
exported symbols �E are those that are defined (here, NjE
is the mapping N with its domain restricted to E) and the
imported symbols �I are those that are declared but not
defined. Rule [LINK] describes the process of linking two
object files, which resolves imports and exports as expected.
Because C’s linker is untyped, there is almost no checking in
this rule. The only thing required is that the two files do not
define the same symbols.

We can now formally state the information hiding and
link-time type safety properties of CMOD. Proofs of the

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 11

Fig. 10. Key compiler and linker rules.

5. Interestingly, because this rule refers to the accumulated results, the
order of definitions and uses as they appear in the original fragment is
irrelevant. Thus, a fragment could legally use a variable before it is defined
in the same file (assuming the use was type safe). This formulation is
simpler, and more flexible, than C’s disallowance of forward references.

theorems in this section are in our companion technical
report [30].

Observe that, although each fragment f is preprocessed
in its own initial �f , by Rule 4, we can assume there is a
single, uniform � under which each fragment produces the
same result:

Lemma 3.2. �;F ‘ R4ðf;�fÞ implies that, if �f ;F ‘ f e> A; I ,
then �;F ‘ f e> A; I and, if

�f ;F ‘ f �!
comp ½�I): H : �E �

then

�;F ‘ f �!comp ½�I): H : �E �:

Thus, we assume a single � for all fragments. Moreover,
given such a consistent environment, Rule 3 guarantees that
header files are consistently interpreted:

Lemma 3.3 (Consistent Interpretation). If �;F ‘ f e> A; I
and �;F ‘ R3ðfÞ and h 2 I and

�;F ‘ ðFðhÞ; end hÞe> Ah; Ih;
then Ah 	 A.

Thus, wherever a header file is imported, it produces the
same result as if it were processed in isolation and, thus,
header files have the same meaning everywhere.

We begin with information hiding. First, observe that
linking is commutative and associative so that we are
justified in linking files together in any order. Also, to be a
well-formed executable, a program must have no free,
unresolved symbols. Thus, we can define the compilation of
an entire program:

Definition 3.4 (Program Compilation). We write �;F ‘
P �!comp ½;) H : �E � as shorthand for compiling each frag-

ment in P separately and then linking the results together to

form ½;) H : �E �.
Then, we can prove that any symbol not in a header file

is never imported and, thus, is private.

Theorem 3.5 (Global Variable Hiding). Suppose

�; E;F ‘ RðPÞ, suppose �;F ‘ P �!comp ½;) HP : �EP�
and suppose, for all fi 2 P, we have �;F ‘ fie> Afi; I fi
and, for all hj 2

S
i I fi , that �;F ‘ FðhjÞe> Ahj; Ihj . Then,

for all fi 2 P, g 62
S
j domðA

N
hjÞ implies g 62 �Ii, where

�;F ‘ fi �!
comp ½�Ii) Hi : �Ei�.

This theorem says that if P obeys the CMOD rules and
includes headers hj (which have the same meaning every-
where by Lemma 3.3), then any symbol g that is not in
domðANhjÞ for any j (i.e., is not declared in any header file) is
never imported.

For type names, we can prove a related property:

Theorem 3.6 (Type Definition Hiding). Suppose �;F ‘
RðPÞ and, for some fi 2 P, we have �;F ‘ fie> Ai; I i. If

ðt7!��Þ 2 ATi , then, for any fragment fj 2 P such that fi 6¼ fj
and �;F ‘ fje> Aj; I j, we have t 62 domðATj Þ. Also, if

ðt 7! �hÞ 2 ATi , then h 2 I i.
The first part of this theorem says that if P obeys the

CMOD rules and contains fragment fi, then any type t

defined by fi (and not in a header) is not defined by any
other fragments fj 6¼ fi, which implies it must be treated
abstractly by those fragments. The second part of the
theorem says that if fragment fi contains a declaration of a
type t from header file h, then h must have been imported
by fi and, since, by Lemma 3.3, headers have the same
meaning everywhere, all fragments that get the type t from
the same header assign it the same type. Together,
Theorems 3.5 and 3.6 give us Property 2.1.

To show that linking is type safe, we first prove that if the

program compiles and passes the CMOD checks, then each

pair of object files is well-formed and link-compatible. Well-

formedness, according to the judgment ‘ ½�I) H : �E �,
implies that ½�I) H : �E �’s definitions in H are well-typed

internally and match the types given in �E and that �E and

�I are disjoint. Link-compatibility, according to the judg-

ment ‘ ½�Ii) Hi : �Ei� $
lc ½�Ij) Hj : �Ej�, implies that the

types of imported and exported symbols common to the

two files match and thus linking them will produce a well-

formed object file.

Theorem 3.7 (Type-Safe Linking). Suppose �; E;F ‘ RðPÞ,
and suppose �;F ‘ P �!comp ½;) HP : �EP�. Also suppose
that, for any fi; fj 2 P that are distinct ði 6¼ jÞ, it is the case
that

�;F ‘ fi �!
comp ½�Ii) Hi : �Ei�;

�;F ‘ fj �!
comp ½�Ij) Hj : �Ej�;

�;F ‘ ½�Ii) Hi : �Ei� � ½�Ij) Hj : �Ej� �!
comp

Oij:

Then, ‘ ½�Ii) Hi : �Ei�, ‘ ½�Ij) Hj : �Ej�, and
‘ ½�Ii) Hi : �Ei� $

lc ½�Ij) Hj : �Ej�.

Since this theorem holds for any two fragments in the
program, we see that all fragments can be linked type safely.
Thus, we have shown that Property 2.2 holds for CMOD.

One limitation of our proof strategy is that no named types
t may appear in interfaces � of MTAL0 object files, only
ground types. This limitation is reflected in our formalization
in the premise N ‘ H of the [COMPILE] rule—the judgment
states that H must be well-formed under interface N , which
will fail ifN mentions any type names t. The full MTAL object
file format supports type names, but its well-formedness
rules are (unnecessarily) too restrictive to support CMOD [22].
Rather than attempt to fix MTAL, which is not our research
focus, we claim that we can always replace type names twith
their concrete definitions � before applying [COMPILE]—by
Rule 2, there is exactly one definition of each type name,
making this replacement well defined. Moreover, the lack of
type names in object files does not impact our information
hiding results since Theorem 3.6 refers to a file’s accumulator,
not its compiled result.

4 IMPLEMENTATION

We have implemented CMOD for the full C language [4].
We begin by describing how we enforce CMOD’s rules and
then argue why we believe our implementation is sound
despite the increased complexity of C relative to our formal
language (Fig. 11).

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

4.1 Enforcing CMOD’s Rules

To use CMOD, programmers simply redirect their path to
use special versions of the standard executables gcc, ld,
and ar. Our versions of these programs determine whether
a file is being compiled or linked and then redirect
execution to wrappers cwrap for compilation and lwrap

for linking.
cwrap records a file f’s macro dependencies observed

during preprocessing (the U and C parts of the accumu-
lator), along with the environment EðfÞ in which the file
was compiled. To gather the dependencies, cwrap pre-
processes the file using a modified cpplib, part of the gcc
version 3 distribution, which invokes callbacks on various
preprocessor events. The preprocessing environment EðfÞ
consists of the initial set of defined macros (-D arguments,
plus -O, which sets some macros), as well as the specified
include paths (-I arguments), needed by lwrap to
repreprocess the files. All of this information, along with
the absolute path and timestamp information of each
included header file, is stored in a dependency (.D) file used
later to check CMOD’s rules. After generating the .D file,
cwrap runs gcc to generate the regular object file. Ideally,
the dependency information would be embedded in the
object file itself, but we leave this step to future work.

lwrap checks CMOD’s rules on the given object files
before passing them on to the linker. From rule [ALL]
(Fig. 9), we can see that, to enforce Rules 1 and 2, all of the
fragments that make up a program must be available so
they can be considered pairwise. Thus, it is natural to
enforce these rules at link time. While Rule 3 could be
checked at compile-time, we find it simpler to check it at
link time along with the other rules.

lwrap begins by attempting to synthesize a single global
environment �, which, according to [ALL], is used to check
each of the rules. This environment is constructed from the
environments �f used to compile each file (as recorded in
the .D files). In particular, for each macro name in the initial

environment, lwrap checks that all files that use the macro
agree on its setting in their initial environments. If so,
lwrap adds the setting to the global environment and,
otherwise, lwrap aborts. If lwrap succeeds at creating this
global environment, then Rule 4 is satisfied.

Given this global environment, lwrap checks Rules 1-3.
For Rule 1, lwrap extracts symbol names directly from ELF
object files and finds pairs of files such that one imports a
symbol the other exports. lwrap then checks that both files
import a common header file (determined by looking in the
.D files) that declares the symbol. We use ctags [8] to
compute the set of symbols declared in a header file and we
use the recorded timestamps for the headers to make sure
they have not been modified since they were initially
imported into the source files.

For Rule 2, lwrap preprocesses the source files
corresponding to the linked object files and then runs
ctags on the output of the preprocessor, producing a list of
(type name, file owner) pairs. lwrap preprocesses each file in
the global environment and with #include lines removed
so that type definitions listed by ctags are owned by the
source file. With these results and the ctags information
already computed for header files, lwrap combines and
sorts the lists of pairs according to the type name. Then,
using a linear pass over this sorted set of pairs, we flag
definitions with multiple distinct owners.

This implementation approach requires that source .c

files are needed at link time. This is problematic for
libraries, which are not usually distributed with their
sources. However, this problem can be remedied by
gathering the ctags information when each file is compiled
and storing that in the .D file. Since Rule 4 checks that files
were compiled in a consistent environment, we can be sure
that the compile-time-generated ctags information would
be consistent for all linked files. We leave such a change
(along with the embedding of .D information into the .o

files themselves) to future work.
Rule 3 imposes three requirements on interfaces: vertical

independence, nulled duplicate inclusion, and nonrecursive
inclusion. As mentioned earlier, our implementation heur-
istically assumes that included files ending in .h are
interfaces (included via import in the formalism), while
other included files are not (included via inline in the
formalism). To check vertical independence, lwrap uses
cpplib to preprocess each source file in the global
environment, tracking the macros that are changed and
used. Whenever an interface file h is included, lwrap

records the macros that are changed and used within h.
When lwrap reaches the end of h, it checks that the set of
macros changed (used) before h do not intersect the set of
macros used (changed) in h.

The programmer may relax the vertical independence
requirement for a config.h file specified in an environ-
ment variable. lwrap ensures that config.h is included
first in every linked source file so that it acts as an extension
to the initial macro environment. For similar reasons, files
#included from within config.h are treated as inlined
rather than imported; such files should only include
configuration data, not interfaces that define the program’s
modular structure.

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 13

Fig. 11. CMOD architecture.

Checking that duplicate interface inclusions are nulled is
straightforward. To optimize preprocessing time, cpplib
already identifies the #ifndef pattern and notes the name
of the macro used. CMOD checks that each processed
header file uses this pattern and confirms that the macro is
never #undefined prior to any subsequent reinclusion.
The latter check ensures that all duplicate inclusions of a
header are nulled out. Finally, lwrap emits a warning if it
encounters a recursive inclusion while processing each
header. cpplib maintains a preprocessing stack (modeled
by the end h markers in the formalism), so we simply check
that no file about to be included is present on the stack.

If an object has no .D file, as is (currently) the case with
the system libraries, the object is precluded from CMOD’s
consideration. In particular, the enforcement of Rules 2-4
simply skips objects that have no .D information, while, for
Rule 1, in the case where an object file imports a symbol g
defined in a library o with no .D file, CMOD skips
consideration of that symbol.6

Since all rule checks occur at link time, they can create a
noticeable pause for a large program (as shown in the
performance results in the next section). One way to reduce
this pause would be to judiciously cache relevant informa-
tion from when the rules were last checked. For example, if
an object file o has not changed and there is no reason to
have recompiled it, e.g., due to a changed header or source
file, then Rule 3 need not be rechecked. Moreover, if none of
the object files from which o last imported its symbols have
changed and these files are still linked with o, then,
assuming that the files are up-to-date, CMOD need not
recheck Rules 1 and 2 involving o.

Another possibility is to add compile-time well-formed-
ness checks on files to reduce the cost of link-time checks. For
example, we could 1) forbid declarations of nonlocal symbols
in .c files, 2) forbid declarations of the same symbol in
different .h files, and 3) require that each source file include
exactly one header that declares the type of each symbol it
exports. These checks should be sufficient to ensure that
Rule 1 holds and, of them, only 2) needs to be checked at link
time. The cost is that the checks are more restrictive than Rule
1 on its own. We are in the process of modifying our
implementation to explore some of these ideas.

4.2 Soundness for Full C

The full C language contains many features not included in
our formalism and, in this section, we argue that our
implementation remains sound even in their presence.

The most significant difference between our formalism
and C is that the full C preprocessor includes several
additional directives, such as conditionals #if and
#ifndef, token concatenation ##, and macro substitution
(e.g., #define FOO(x) (x + 1)). Moreover, preprocessor
commands in C may occur at arbitrary syntactic positions.
Put together, these features would be extremely hard to add
to our formal system. Nevertheless, we do not believe they
affect the soundness of our implementation.

We can think of each header as a function whose input is
a list of macro definitions and whose output is the
preprocessed program text and a list of new macro
definitions. Thus, a header file’s output is only affected by
the definitions of macros it uses. In our formalism, a macro
is used when it is changed or tested ([DEF], [UNDEF],
[IFDEFþ], and [IFDEF�]). Our implementation extends this
idea by also counting macro references in other conditionals
and macro substitutions as uses and by counting non-
boolean macro definitions as both changes and uses.

Thus, despite the complexity of the full C preprocessor,
we can still track the “input” and “output” macros of a
header. Moreover, it is also easy to extract the necessary
type and declaration information to check the rules because
the rules, and our implementation, operate on the pre-
processed files (for example, [RULE 1] preprocesses each
fragment and the header file that contains the declaration).
Thus, in both cases, [RULE 3] and [RULE 4] ensure
consistent interpretation of header files and, therefore,
[RULE 1] and [RULE 2] correctly enforce information hiding
and type-safe linking.

Another difference between our formalism and C is that
our core language is lambda calculus. Since our focus is on
linking and modularity, using lambda calculus is sufficient
to model declarations, definitions, and variable references.
Lambda calculus is also strongly typed, while C is not, e.g.,
type safety in C can be circumvented by unsafe casts. Thus,
our type-safe linking guarantee can be viewed as extending
whatever type safety might be expected for a single C
module to that of the entire program (as indicated in the
definition of Property 2.2).

Finally, our formalism differs from C in its use of import
and inline in place of C’s #include. Our implementation
checks that uses of #include match the semantics of one of
these two directives. In particular, whenever a .h file is
#included, we ensure it uses the #ifndef pattern and
that it never recursively includes itself, matching the
semantics of import.

5 EXPERIMENTAL RESULTS

We applied CMOD to a variety of open source projects with
the goal of measuring how well they conform to CMOD’s rules
and to determine whether rule violations are indeed proble-
matic. We chose 30 open source projects of varying sizes (1.3k-
165.1k lines of code), varying usage and stages of develop-
ment (e.g., xinetd, flex, gawk, bison, sendmail, and
others are mature and widely used, while zebra, mtdaapd,
and retawq are newer and less used), and varying reuse of
modules among targets (rcs, bc, gawk, and m4 have low
reuse, while mt-daapd, bison, and vsftpd have higher
reuse). We believe the range of projects we looked at captures
a representative set of common coding practices. We ran
CMOD on a dual-processor 2.80 GHz Xeon machine with
3 Gbyte RAM running the Linux 2.4.21-40.ELsmp kernel. We
used gcc 3.2.3, GNU ld/ar 2.14.90.0.4, and ctags 5.4.

To separate preprocessor from source-language issues, we
ran CMOD on each benchmark twice, using the following
procedure. From the first run, we tabulated the Rule 3 and
Rule 4 violations. We also examined warnings about header
files not using the#ifndefpattern and, for any such header,

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

6. Assuming we know which headers belong to which libraries, we could
do slightly better by checking that the importing source file #included

some library header that declares g.

we manually added the pattern and verified that compilation
was not affected. There were no warnings of recursive header
inclusion, except for limits.h from the standard library,
which, as mentioned earlier, is safe. We then fixed the Rule 3
and Rule 4 violations and reran CMOD to gather the Rule 1
and 2 violations.

5.1 Rule Violations

Table 1 summarizes the rule violations reported by CMOD.
The first group of columns describes the benchmarks. For
each program, we indicate whether it has a config.h file
and list the number of build targets (executables or libraries),
noncomment, nonblank lines of code, and .c and .h files.
In the numerical totals, we count each file once, even if it
occurs in multiple targets. The next two groups of columns
indicate the number of rule violations, both in total and split
across several categories, which we discuss next.

In the table, a Rule 1 violation corresponds to a symbol
name and pair of files such that the files import and export
the symbol without a mediating header. A Rule 2 violation
occurs for each type name that has multiple definitions. A
Rule 3 violation corresponds to a pair of files such that a

change and use of a macro causes a vertical dependence

between the files. Last, a Rule 4 violation corresponds to an

object file compiled in an environment that is incompatible

with the rest of the project. In the rule violation counts, we

have not pruned duplicate violations for the same source in

different targets. Any false positives due to inaccuracies in

our implementation are listed in parentheses.
We believe most of the genuine rule violations consti-

tute bad practice. In particular, they can complicate

reasoning about the code, make future maintenance more

difficult, and lead to bugs. We discuss each category of

rule violation below.
Rule 1. We found a total of 1,970 Rule 1 violations, which

we break down further into three categories. The first

category (C1, 1,161 times) corresponds to cases where

neither the client nor the provider include a header that

declares a given symbol (i.e., the client “imports” a symbol

using a local extern). As discussed in Section 5.2, all

violations in this category arguably violate information

hiding.

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 15

TABLE 1
Experimental Results: Rule and Property Violations

The next two categories correspond to cases in which
there does exist a header with a declaration of the symbol,
but only the client (C2, 292 times) or only the provider (C3,
517 times) includes the header. We consider these Rule 1
violations to be dangerous because they permit a provider
and client to disagree on the type of a symbol without
generating a compile-time error (as discussed in Section 2.2).
However, they are not information hiding violations
because the symbol appeared in a header file and, thus,
was clearly meant to be exported.

Rule 2. Rule 2 violations are due to multiple definitions
of the same type name, which can lead to type mismatches
and information hiding violations. Most violations (C4,
28 times) occurred because the same type definition is
duplicated in several files. As with most code duplication,
this is dangerous because the programmer must remember
to update all definitions when changing the type.

We also found some violations that may be considered
safe. In several cases (C5, eight times), the same type name is
reused in different files. In these cases, each definition is
local to a single file, so the code is safe. Allowing a static
notion for types would eliminate these violations. In the
remaining cases (C6, 18 times), type definitions were
replicated by automatic code generation, which essentially
eliminates the danger of using incompatible definitions.
This is a pattern that CMOD does not recognize.

Rule 3. Rule 3 violations make it harder to reason about
headers in isolation. There are a total of 428 Rule 3
violations that we think are bad practice. Four hundred
thirteen (C7) are due to vertical dependencies between
headers, which we have already argued are undesirable,
and 15 (C8) occur because the same macro is #defined in
two different header files. In these cases, the macros are
actually defined to be the same—the code appeared to have
been duplicated between the files, which makes main-
tenance harder.

The remaining Rule 3 violations (C9, 499 times) are safe
practices that CMOD does not recognize as such. All such
violations for bind occur because it uses a .h file that
contains only source code and that code is parameterized by
macros defined earlier. This file is clearly not intended to be
an interface file and these warnings are easy to eliminate by
renaming the file to end in .c so that CMOD treats it as
inlined rather than imported. The last two violations in this
category are from apache, which autogenerates headers
that are vertically dependent on the source files in which
they appear. Because of the autogeneration, this is safe.

We did not discover any cases of interface files not
properly using the #ifndef pattern.

One program, gnuplot, has a very large number of
vertical dependencies. gnuplot uses special .trm files as
both headers and sources, depending on CPP directives.
Effective compilation is structured to have preprocessing
evaluate files to sources or headers depending on the context,
something that runs contrary to CMOD’s assumption that .c
files are modules and .h files are interfaces. Because of this
mismatch, we did not attempt to fix the violations and, thus,
we do not measure Rule 1 or 2 violations for gnuplot nor do
we include them in the totals.

Rule 4. All of the Rule 4 violations (60 times) are due to
project libraries that are linked with files compiled in
incompatible macro environments. In these cases, there
were string-valued macros that were passed in as com-
mand-line arguments and were different for different
targets. This is a harmless practice and could be addressed
by relaxing Rule 4 to only hold for macros used in header
files since only headers need be consistently interpreted.

False positives. CMOD reported a total of 39 false
positives, meaning that CMOD issued a warning but the
code does not actually violate the rule. All false positives
were due to ctags. The 38 cases for Rule 1 occurred
because ctags could not parse some complex code in the
openssl/evp.h system header. The one case for Rule 2
occurred because bc contains some code that ctags also
cannot parse.

5.2 Property Violations

Of those rule violations we consider bad practice, some
directly compromise Properties 2.1 (information hiding)
and 2.2 (type-safe linking). The last two columns in Table 1
measure how often this occurs in our benchmarks.

Information hiding violations degrade a program’s
modular structure, complicating maintenance and poten-
tially leading to defects. To determine what constitutes an
information hiding violation, we need to know the
programmer’s intended policy. Since this is not explicitly
documented in the program, here we assume that header
files define the policy. In particular, following Property 2.1,
we consider as public any symbol mentioned in a header
file and any type defined in a header file. Likewise, we
consider as private any symbol never mentioned in a
header and any type mentioned in a header file but defined
in a source file.

By this measure, some Rule 1 and 2 violations are not
information hiding errors, e.g., when a .c file fails to
include its own header(s), or when an identical type
definition appears in several headers. Information hiding
violations by our metric constitute roughly 59 percent of the
Rule 1 violations. There were no Rule 2 violations that
showed information hiding problems.

There were a total of 30 link-time type errors in our
benchmarks. All of the errors were due to Rule 1 violations
in which a client locally declared a prototype and got its
type wrong. The most striking type errors were found in
zebra. Clients incorrectly defined prototypes for four
functions: in two cases, using the wrong return type and,
in two cases, listing too few arguments. No header is
defined to include prototypes for these four functions and,
hence, these were also information hiding violations.
Ironically, in the cases where the return type was wrong,
the client code even included a comment describing where
the original definition is from—yet the types in the local
declaration were still incorrect.

5.3 Required Changes

We designed CMOD to enforce modular properties while
remaining backward compatible. To evaluate the latter, we
measured the effort required to make a program CMOD

compliant. Table 2 lists the changes required to fix rule
violations and presents performance numbers. For each

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

project, the first set of columns lists the number of additions

ðþÞ and deletions ð�Þ of files (f) and lines of code (no unit)

required to eliminate the CMOD warnings. One file change

corresponds to manually inlining or deleting a whole file,

usually because code was split across files to no apparent

advantage. The last set of columns lists the build times

without and with CMOD and the total slowdown, computed

as the ratio of CMOD’s time over the regular build time.
We found it was generally easy to make a program

comply with CMOD’s rules and fixing most violations

required only straightforward changes. Although some of

the numbers in Table 2 suggest we needed to change many

source lines, high change counts are mostly do to search-

and-replace operations applied to large code bases. Using

the warnings reported by CMOD and general knowledge

about C programming, we were able to fix most violations

almost mechanically, with little time or effort.

Rule 1 violations could be fixed in a variety of ways

depending on the category they fell in. We fixed C1 violations,

in which symbols are imported but not declared in a shared

header, by inserting a declaration in an appropriate header

file. Two of these violations could not be fixed because they

are due to assembler sources that define exported symbols;

these files cannot #include a header that declares them

since the code is not written in C. We fixed the remaining

violations, in which a header containing a symbol declaration

is not included by the provider (C2) or client (C3), by simply

adding the missing #include.
We fixed Rule 2 violations due to duplicate definitions

(C4 and C6) by consolidating the definitions into an

appropriate file. For two programs, bc and mt-daapd,

we did not attempt to fix the violations because they were in

autogenerated code. Since C does not provide a notion of a

static type, we fixed instances of locally scoped type

name reuse (C5) by renaming.

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 17

TABLE 2
Experimental Results: Changes Required and Running Times

For Rule 3, vertical independence violations (C7)
required various techniques to fix. In general, since CMOD’s
Rule 3 warnings report the macro that caused the
dependency, the offending files, and the locations where
they were included, we found it easy to come up with fixes
without looking at much code. Files that do not act as
interfaces but that CMOD thinks are imported can be
renamed or manually inlined. When a source file defines a
macro that parameterizes a following header, we found it
easiest to duplicate the header once for each time it was
used. For a header parameterized by a boolean-valued
macro, in the worst case, we duplicated the header once for
each setting of the macro. For macros that expand to strings,
we replace the macro with its expansion inside the header.
In cases where the dependency involved a macro that was
used throughout the project, we moved the definition or file
into config.h. As mentioned earlier, gnuplot relies on
vertical dependencies that cannot be removed without
fundamentally changing the design of the program and, so,
we did not fix those.

Duplicate macro definitions (C8) were eliminated by
consolidating them into an appropriate header. Recall that
the remaining violations (C9) correspond to safe practices.
We fixed the warnings for bind by renaming a .h file to a
.c file to cause it to be inlined. We did not attempt to fix the
last two warnings, in apache, which are caused by
autogenerated code.

Rule 4 violations involved conflicting compilation en-
vironments (-D flags) in bind and bison. To fix these, we
examined the source code of these projects to determine
whether the difference in macro environments was inten-
tional. In both cases, the macros were defining string
constants and, so, we could fix the violations by moving
these definitions into the source files.

5.4 Performance

Finally, the last three columns in Table 2 measure the time
taken to build the program without and with CMOD for the
fixed versions of the projects. The times reported are the
median of five trials. The current prototype of CMOD adds
noticeable overhead to the compilation procedure: The
average slowdown is 4.1 times, while the median slowdown
is 3.1 times (with mc and fileutils being the major
outliers).

There are three main performance issues in our current
implementation, all of which should be addressable with
more engineering effort. First, large projects tend to be built
around libraries. CMOD performs rule checking at link time
on all linked objects, including libraries—and, thus, if the
same libraries are reused in many different targets, their
internal files are repeatedly checked. The repeated checking
of libraries is the main source of overhead for fileutils
and mc. Second, programs tend to include many headers
that they do not actually need. This significantly increases
the sizes of the accumulators (Section 3.3) that CMOD

computes, which makes operations involving those accu-
mulators slower. Finally, much of the overhead derives
from the prototype nature of the implementation, which
combines scripts with native code programs, and is at times
indiscriminate with disk usage and recomputations to make
things simpler. We leave as future work the task of

optimizing the implementation, e.g., by using memoization
and caching (as discussed in the prior section), reducing
disk accesses, and having fewer native calls to reduce
interprocess communication.

6 RELATED WORK

As stated in Section 1, although many experts recommend
using .h files as module interfaces and .c files as module
implementations [2], [16], [17], [18], [20], the details vary
somewhat and are not sufficient to enforce soundness. King
presents the core idea that header files should include
declarations, and that both clients and implementations
should #include the header [18]. McConnell recommends
always having public and private headers for modules [20]
and mentions using a single public header for a group of
implementations; neither idea is discussed in most sources.
The Indian Hill style guide rather confusingly recommends
both that “header files should not be nested” (i.e.,
recommends vertical dependencies, something we think is
bad practice) and recommends using #ifndef to prevent
multiple inclusions, which should never happen if there are
no nested headers. None of these publications, nor any
other publication we could find, discussed sufficient
requirements to ensure information hiding and type-safe
linking, leading us to believe that the subtleties are not
widely known.

There is a large design space of module systems [26]
which are part of many modern languages such as ML,
Haskell, Ada, and Modula-3. In common with CMOD, these
languages support information hiding via transparent and
abstract types and multiple interfaces per implementation.
They ensure type-safe linking, and most (but not all)
support separate compilation. They also provide several
useful mechanisms not supported by CMOD due to its focus
on backward compatibility.

First, ML-like languages support functors, which can be
instantiated several times in the same program. As
discussed in Section 2.3, CMOD supports program-wide
parameterization (e.g., via the initial environment and
optionally config.h) and a form of per-module para-
meterization by textually including code (modeled by the
inline directive in our formal account).

Second, most module systems also support hierarchical
namespace management. Since CMOD builds on existing C
programming practice, it inherits C’s global namespace,
with limited support for symbol hiding via static and no
support for hiding type names. C++ namespaces address
this limitation to some extent and we believe they could
safely coexist with CMOD.

Last, in CMOD and many module systems, linking occurs
implicitly by matching the names of imports and exports.
Some systems, however, express linking explicitly for a
greater degree of abstraction and reuse. Some examples are
the Configuration Manager (CM) [1] for Standard ML and
Units [11] for Scheme. There are also explicit linking
systems for C and/or C++, including Knit [28] (which is
based on Units), Koala [33], and Click [21]. Microsoft’s
Component Object Technologies (COM) model [5] provides
similar facilities to construct dynamically linked libraries
(DLLs). The C-based systems assume that the basic

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

C module convention is used correctly and build on top of it
and, so, CMOD may be viewed as complementary.

Vandevoorde [34] proposes a module system for C++.
The proposed module system adds module import and
export syntax to the language, rather than using the
preprocessor. Thus, macro interference (i.e., vertical depen-
dencies) between modules is eliminated. Vandevoorde’s
system also addresses some other issues, such as providing
stronger information hiding than even private class
members support and improving compiler performance.
However, using this new module system requires modify-
ing source code, whereas CMOD works with existing C
programs and is provably sound.

Some systems for C and C++ aim at supporting type-safe
linking but not information hiding. C++ compilers embed
type information in symbol names during compilation, a
practice called “name mangling.” Although designed to
support overloading, name mangling can also enforce link-
time type safety. Since names include type information,
when a client and provider agree on a name, they also agree
on types. This is not always reliable, however, since
mangled struct types do not include field information,
which could therefore disagree. CIL [24] is a parsing toolkit
for C that can combine several C sources into a single file. In
so doing, it complains if it finds that two files disagree on
the definition of a type or symbol. It would find all of the
type errors that we discovered in our experiments, but none
of the information hiding violations.

Finally, a number of researchers have studied the
C preprocessor, though not as a means to enforce
modularity. Favre [10] proposes a denotational semantics
for CPP. Several researchers recommend curtailing or even
eliminating the C preprocessor due to its complexity [9],
[19]. Last, a number of tools check for erroneous or
questionable uses of cpp directives, including lint [15],
PC-lint [25], and Check [29]. The detected bug patterns are
fairly localized and generally concern problematic macro
expansions.

7 CONCLUSIONS

We have described CMOD, a module system for C that
ensures type-safe linking and information hiding while
maintaining compatibility with existing practice. CMOD

enforces a set of four rules. At a high level, Rule 1 makes
header files equivalent to regular modular interfaces, Rule 2
checks for consistent use of type names and type abstrac-
tion, and Rules 3 and 4 control preprocessor interactions.
We showed formally that these rules in combination with
the C compiler form a sound module system that supports
information hiding and ensures type-safe linking. Our
experiments show that, in practice, violations of our rules
reveal dangerous coding idioms, violations of information
hiding, and type errors. Fortunately, we found that, for
most programs, rule violations are rare and can be fixed
fairly easily. Thus, CMOD brings the benefits of modular
programming to C while still being practical for legacy
systems.

APPENDIX

Recall that, in Section 3, the last hypothesis of rule [TRACE-
INDEP] in Fig. 9 was somewhat surprising. To understand

the need for this restriction, consider the code in Fig. 12. In
this example, header h1.h defines B if A is already defined.
Header h2.h defines A and then includes h1.h—thus, if
h2.h is preprocessed in isolation, then, after line 11, both A

and B are defined. Therefore, the test on line 12 is true and
line 13 declares x to be an int.

However, consider what happens during preprocessing
of a.c, on the right side of the figure. Here, h1.h is
included first and, since A is not defined, it has no effect; in
particular, it does not define B. Then, on line 16, we include
h2.h and, in preprocessing that file, the inclusion on line 11
is skipped because it is a duplicate (assume the ifndef

pattern is present, though we have omitted it for clarity).
Thus, since B is undefined, the declaration on line 13 does
not occur. Therefore, the declaration on line 17 succeeds at
compile time and, in a.c, the variable x is a float. A
similar thing happens in b.c, which compiles with no
warnings and produces a file that assumes x is an int.

Thus, we have a link-time type inconsistency. However,
notice that [RULE 1] accepts this code because a.c and b.c

include a common header h2.h and, in isolation, h2.h
declares the type of x. The problem here is that, when
included in a.c and b.c, h2.h does not actually produce
any declarations and, so, while it is consistently interpreted
with respect to the inclusions that actually occur in the code,
[RULE 1] additionally requires that a header also be
consistently interpreted when preprocessed in isolation.

CMOD solves this problem with the last hypothesis of
[TRACE-INDEP], which says that, for two traces ~f1 and ~f2 to
be independent, not only must changed macros in ~f1 not be
used in ~f2, but used macros in ~f1 must not be changed in ~f2.
It may be possible to eliminate this restriction by changing
[SYM-DECL] to use the traces generated while preproces-
sing fragments, rather than preprocessing a header in
isolation. However, as we stated earlier, it seems better to
ensure header files are consistently interpreted everywhere
as they are in the initial environment to forbid confusing
examples like Fig. 12.

ACKNOWLEDGMENTS

The authors would like to thank Bhargav Kanagal (for
contributions to the proof), Matthew Fluet, Nikhil Swamy,
Greg Morrisett, Trevor Jim, Neal Glew, Iulian Neamtiu,
Stephen Tse, Emery Berger, Mike Furr, and the anonymous
reviewers for their suggestions on earlier drafts of this
paper. This research was supported in part by US National
Science Foundation Grants CCF-0430118 and CCF-0346989.

SRIVASTAVA ET AL.: MODULAR INFORMATION HIDING AND TYPE-SAFE LINKING FOR C 19

Fig. 12. Example showing need to forbid use-before-change (ifndef
omitted for clarity).

REFERENCES

[1] M. Blume and A.W. Appel, “Hierarchical Modularity,” ACM
Trans. Programming Languages and Systems, vol. 21, no. 4, pp. 813-
847, 1999.

[2] L. Cannon, R. Elliott, L. Kirchoff, J. Miller, R. Mitze, E. Schan, N.
Whittington, H. Spencer, D. Keppel, and M. Brader, Recommended
C Style and Coding Standards, sixth ed., 1990.

[3] L. Cardelli, “Program Fragments, Linking, and Modularization,”
Proc. 24th ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages, pp. 266-277, 1997.

[4] http://www.cs.umd.edu/projects/PL/CMod/, 2008.
[5] “COM: Component Object Model Technologies,” http://

www.microsoft.com/com/default.mspx, 2008.
[6] J. Condit, M. Harren, Z. Anderson, D. Gay, and G.C. Necula,

“Dependent Types for Low-Level Programming,” Proc. European
Symp. Programming, 2007.

[7] B. Cox and A. Novobilski, Object Oriented Programming: An
Evolutionary Approach. Addison-Wesley, 1991.

[8] “Exhuberant Ctags,” http://ctags.sourceforge.net/, 2008.
[9] M.D. Ernst, G.J. Badros, and D. Notkin, “An Empirical Analysis of

C Preprocessor Use,” IEEE Trans. Software Eng., vol. 28, no. 12,
Dec. 2002.

[10] J.-M. Favre, “CPP Denotational Semantics,” Proc. Third IEEE Int’l
Workshop Source Code Analysis and Manipulation, 2003.

[11] M. Flatt and M. Felleisen, “Units: Cool Modules for HOT
Languages,” Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation, pp. 236-248, June 1998.

[12] N. Glew and G. Morrisett, “Type-Safe Linking and Modular
Assembly Language,” Proc. 26th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages, 1999.

[13] “Once-Only Headers—the C Preprocessor,” http://gcc.gnu.org/
onlinedocs/cpp/Once_002dOnly-Headers.html#Once_002dOnly-
Headers, 2008.

[14] T. Jim, J.G. Morrisett, D. Grossman, M.W. Hicks, J. Cheney, and Y.
Wang, “Cyclone: A Safe Dialect of C,” Proc. USENIX Ann.
Technical Conf., 2002.

[15] S. Johnson, “Lint, a C Program Checker,” Technical Report 65, Bell
Labs, Sept. 1977.

[16] B.W. Kernighan and R. Pike, The Practice of Programming. Addison-
Wesley Professional, 1999.

[17] B.W. Kernighan and D.M. Ritchie, The C Programming Language,
second ed. Prentice Hall, 1988.

[18] K.N. King, C Programming: A Modern Approach. W.W. Norton,
1996.

[19] B. McCloskey and E. Brewer, “ASTEC: A New Approach to
Refactoring C,” Proc. 12th Fast Software Encryption, 2005.

[20] S. McConnell, Code Complete. Microsoft Press, 1993.
[21] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, “The Click

Modular Router,” Proc. 17th ACM Symp. Operating Systems
Principles, 1999.

[22] G. Morrisett, personal communication, July 2006.
[23] G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,

“CCured: Type-Safe Retrofitting of Legacy Software,” ACM Trans.
Programming Languages and Systems, vol. 27, no. 3, May 2005.

[24] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “CIL:
Intermediate Language and Tools for Analysis and Transforma-
tion of C Programs,” Proc. 11th Int’l Conf. Compiler Construction,
pp. 213-228, 2002.

[25] PC-lint/FlexeLint, http://www.gimpel.com/lintinfo.htm, Pro-
duct of Gimpel Software, 1999.

[26] Advanced Topics in Types and Programming Languages, B.C. Pierce,
ed. MIT Press, 2005.

[27] “Precompiled Headers—Using the GNU Compiler Collection
(GCC),” http://gcc.gnu.org/onlinedocs/gcc/Precompiled-
Headers.html, 2008.

[28] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide, “Knit:
Component Composition for Systems Software,” Proc. Fourth
Symp. Operating Systems Design and Implementation, 2000.

[29] D. Spuler and A. Sajeev, “Static Detection of Preprocessor Macro
Errors in C,” Technical Report 92/7, James Cook Univ., 1992.

[30] S. Srivastava, M. Hicks, and J.S. Foster, “Appendix to CMod:
Modular Information Hiding and Type-Safe Linking for C,”
Technical Report CS-TR-4874, Univ. of Maryland, 2007.

[31] S. Srivastava, M. Hicks, and J.S. Foster, “Modular Information
Hiding and Type-Safe Linking for C,” Proc. ACM SIGPLAN Int’l
Workshop Types in Language Design and Implementation, pp. 3-13,
Jan. 2007.

[32] W.P. Stevens, G.J. Myers, and L.L. Constantine, “Structured
Design,” IBM Systems J., vol. 13, no. 2, pp. 115-139, 1974.

[33] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
“The Koala Component Model for Consumer Electronics Soft-
ware,” IEEE Software, 2000.

[34] D. Vandevoorde, “Modules in C++,” Technical Report N2073=06-
0143, JTC1/SC22/WG21—The C++ Standards Committee, http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/
n2073.pdf, Sept. 2006.

Saurabh Srivastava is a doctoral candidate in
the Department of Computer Science at the
University of Maryland, College Park. His
research interests include program analysis,
specifically formal verification and specification
inference. He is interested in tools and techni-
ques for proving program correctness and
finding faults. In the context of the CMOD

project, he has explored techniques that retrofit
a module system over C. He is a student

member of the IEEE.

Michael Hicks is an associate professor in the
Department of Computer Science and the
University of Maryland Institute for Advanced
Computer Studies (UMIACS) at the University of
Maryland, College Park. His research interests
include developing programming language tech-
nology—ranging from static and dynamic analy-
sis tools applied existing programming
languages, to new domain-specific langua-
ges—to help programmers build software that

is reliable, available, and secure. He is a member of the IEEE.

Jeffrey S. Foster is an assistant professor in the
Department of Computer Science and the
University of Maryland Institute for Advanced
Computer Studies (UMIACS) at the University of
Maryland, College Park. His research aims to
give programmers practical new tools to help
improve the quality and security of their pro-
grams. His research interests include program-
ming languages, program analysis, constraint-
based analysis, and type systems.

Patrick Jenkins received the degrees in com-
puter science and mathematics from the Uni-
versity of Maryland, College Park, in 2006. He
currently works for a technology startup that
secures funding for nonprofits and charities.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

