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Abstract. A contextual effect system generalizes standard type and ef-
fect systems: where a standard effect system computes the effect of an
expression e, a contextual effect system additionally computes the prior
and future effect of e, which characterize the behavior of computation
prior to and following, respectively, the evaluation of e. This paper de-
scribes the formalization and proof of soundness of contextual effects,
which we mechanized using the Coq proof assistant. Contextual effect
soundness is an unusual property because the prior and future effect of
a term e depends not on e itself (or its evaluation), but rather on the
evaluation of the context in which e appears. Therefore, to state and
prove soundness we must “match up” a subterm in the original typing
derivation with the possibly-many evaluations of that subterm during the
evaluation of the program, in a way that is robust under substitution. We
do this using a novel typed operational semantics. We conjecture that
our approach could prove useful for reasoning about other properties of
derivations that rely on the context in which that derivation appears.

1 Introduction

Type and effect systems are used to reason about a program’s computational
effects [5, 8, 11]. Such systems have various applications in program analysis, e.g.,
to compute the set of memory accesses, I/O calls, function calls or new threads
that occur in any given part of the program. Generally speaking, a type and
effect system proves judgments of the form ε;Γ ` e : τ where ε is the effect
of expression e. Recently, we proposed generalizing such systems to track what
we call contextual effects, which capture the effects of the context in which an
expression occurs [7]. In our contextual effect system, judgments have the form
Φ;Γ ` e : τ , where Φ is a tuple [α; ε;ω] containing ε, the standard effect of e,
and α and ω, the effects of the program evaluation prior to and after computing
e, respectively.

Our prior work explored the utility of contextual effects by studying two
applications, one related to dynamic software updating correctness, and the other
to analysis of multi-threaded programs. This paper presents the formalization
and proof of soundness of contextual effects, which we have mechanized using the
Coq proof assistant [2]. Intuitively, for all subexpressions e of a given program
ep, a contextual effect [α; ε;ω] is sound for e if (1) α contains the actual, run-time
effect of evaluating ep prior to evaluating e, (2) ε contains the run-time effect
of evaluating e itself, and (3) ω contains the run-time effect of evaluating the
remainder of ep after e’s evaluation has finished. (Discussed in Section 2.)



There are two main challenges with formalizing this intuition to prove that
our contextual effect system is sound. First, we must find a way to define what
constitute the actual prior and future effects of e when it is evaluated as part
of ep. Interestingly, these effects cannot be computed compositionally (i.e., by
considering the subterms of e), as they depend on the relative position of the
evaluation of e within the evaluation of ep, and not on the evaluation of e itself.
Moreover, the future effect of e models the evaluation after e has reduced to a
value. In a small-step semantics, specifying the future effect by finding the end
of e’s computation would be possible but awkward. Thus we opt for a big-step
operational semantics, in which we can easily and naturally define the prior,
standard, and future effect of every subterm in a derivation. (Section 3)

The second challenge, and the main novelty of our proof, is specifying how
to match up the contextual effect Φ of e, as determined by the original typing
derivation of Φp;Γ ` ep : τp, with the run-time effects of e recorded in the eval-
uation derivation. The difficulty here is that, due to substitution, e may appear
many times and in different forms in the evaluation of ep. In particular, a value
containing e may be passed to a function λx.e′ such that x occurs several times
in e′, and thus after evaluating the application, e will be duplicated. Moreover,
variables within e itself could be substituted away by other reductions. Thus we
cannot just syntactically match a subterm e of the original program ep with its
corresponding terms in the evaluation derivation.

To solve this problem, we define a typed operational semantics in which each
subderivation is annotated with two typing derivations, one for the term under
consideration and one for its final value. Subterms in the original program ep

are annotated with subderivations of the original typing derivation Φp;Γ ` ep :
τp. As subterms are duplicated and have substitutions applied to them, our
semantics propagates the typing derivations in the natural way to the new terms.
In particular, if Φ is the contextual effect of subterm e of ep, then all of the
terms derived from e will also have contextual effect Φ in the typed operational
semantics. Given this semantics, we can now express soundness formally, namely
that in every subderivation of the typed evaluation of a program, the contextual
effect Φ in its typing contains the run-time prior, standard, and future effects of
its computation. (Section 4)

We mechanized our proof using the Coq proof assistant, starting from the
framework developed by Aydemir et al [1]. We found the mechanization process
worthwhile, because our proof structure, while conceptually clear, required get-
ting a lot of details right. Most notably, typing derivations are nested inside of
evaluation derivations in the typed operational semantics, and thus the proofs
of each case of the lemmas are somewhat messy. Using a proof assistant made
it easy to ensure we had not missed anything. We found that, modulo some
typos, our paper proof was correct, though the mechanization required that we
precisely define the meaning of “subderivation.” (Section 5)

We believe that our approach to proving soundness of contextual effects could
be useful for other systems, in particular ones in which properties of subderiva-
tions depend on their position within the larger derivation in which they appear.



Expressions e ::= v | x | e e | refL e | ! e | e := e
Values v ::= n | λx.e | rL

Effects α, ε, ω ::= ∅ | 1 | {L} | ε ∪ ε
Contextual Effects Φ ::= [α; ε; ω]
Types τ ::= int | ref ε τ | τ −→Φ τ
Environments Γ ::= · | (Γ, x 7→ τ) | (Γ, r 7→ τ)
Labels L

Fig. 1. Syntax

2 Background: Contextual Effects

This section reviews our type and effect system, and largely follows our previous
presentation [7]. Readers familiar with the system can safely skip this section.

2.1 Language

Figure 1 presents our source language, a simple calculus with expressions that
consist of values v (integers, functions or pointers), variables and call-by-value
function application. Our language also includes updateable references, created
with refL e, along with dereference and assignment. We annotate each syntactic
occurrence of ref with a label L, which serves as the abstract name for the
locations allocated at that program point. Evaluating refL e creates a pointer
rL, where r is a fresh name in the heap and L is the declared label. Dereferencing
or assigning to rL during evaluation has effect {L}. Note that pointers rL do
not appear in the syntax of the program, but only during its evaluation. For
simplicity we do not model recursive functions directly, but they can be encoded
using references. Also, due to space constraints we omit let and if. They are
included in the mechanized proof; supporting them is straightforward.

An effect, written α, ε, or ω, is a possibly-empty set of labels, and may be 1,
the set of all labels. A contextual effect, written Φ, is a tuple [α; ε;ω]. If e′ is a
subexpression of e, and e′ has contextual effect [α; ε;ω], then

– The current effect ε is the effect of evaluating e′ itself.
– The prior effect α is the effect of evaluating e until we begin evaluating e′.
– The future effect ω is the effect of the remainder of the evaluation of e after

e′ is fully evaluated.

Thus ε is the effect of e′ itself, α ∪ ω is the effect of the context in which e′

appears, and therefore α ∪ ε ∪ ω is the effect of evaluating e.
To make contextual effects easier to work with, we introduce some shorthand.

We write Φα, Φε, and Φω for the prior, current, and future effect components,
respectively, of Φ. We also write Φ∅ for the empty effect [1; ∅; 1]—by subsumption,
discussed below, an expression with this effect may appear in any context. For
brevity, whenever it is clear we will refer to contextual effects simply as effects.



(TInt)
Φ∅; Γ ` n : int

(TVar)
Γ (x) = τ

Φ∅; Γ ` x : τ

(TLam)
Φ; Γ, x : τ ′ ` e : τ

Φ∅; Γ ` λx.e : τ ′ −→Φ τ
(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2

Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

(TRef)
Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L} τ
(TDeref)

Φ1; Γ ` e : ref ε τ
Φε

2 = ε Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

(TAssign)
Φ1; Γ ` e1 : ref ε τ Φ2; Γ ` e2 : τ Φε

3 = ε Φ1 B Φ2 B Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

(TLoc)
Γ (r) = τ

Φ∅; Γ ` rL : ref {L} τ
(TSub)

Φ′; Γ ` e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

(XFlow-Ctxt)

Φ1 = [α1; ε1; (ε2 ∪ ω2)] Φ2 = [(ε1 ∪ α1); ε2; ω2]
Φ = [α1; (ε1 ∪ ε2); ω2]

Φ1 B Φ2 ↪→ Φ

(SInt)
int ≤ int

(SRef)
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

(SFun)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′1 −→Φ′
τ ′2

(SCtxt)
α2 ⊆ α1 ε1 ⊆ ε2 ω2 ⊆ ω1

[α1; ε1; ω1] ≤ [α2; ε2; ω2]

Fig. 2. Typing

2.2 Typing

Figure 2 presents our contextual type and effect system. The rules prove judg-
ments of the form Φ;Γ ` e : τ , meaning in type environment Γ , expression e has
type τ and contextual effect Φ.

Types τ , listed in Figure 1, include the integer type int ; reference types
ref ε τ , which denote a reference to memory location of type τ where the reference
itself is annotated with a label L ∈ ε; and function types τ −→Φ τ ′, where τ and
τ ′ are the domain and range types, respectively, and the function has contextual
effect Φ. Environments Γ , defined in Figure 1, are maps from variable names or
(unlabeled) pointers to types.

The first two rules, (TInt) and (TVar), assign the expected types and the
empty effect, since values have no effect. Rule (TLam) types the function body e
and annotates the function’s type with the effect of e. The expression as a whole
has no effect, since the function produces no run-time effects until it is actually



called. Rule (TApp) types function application, which combines Φ1, the effect
of e1, with Φ2, the effect of e2, and Φf , the effect of the function. We specify the
sequencing of effects with the combinator Φ1 B Φ2 ↪→ Φ, defined by (XFlow-
Ctxt). Since e1 evaluates before e2, this rule requires that the future effect of e1

be ε2 ∪ ω2, i.e., everything that happens during the evaluation of e2, captured
by ε2, plus everything that happens after, captured by ω2. Similarly, the past
effect of e2 must be ε1 ∪ α1, since e2 is evaluated just after e1. Lastly, the effect
Φ of the entire expression has α1 as its prior effect, since e1 is evaluated first;
ω2 as its future effect, since e2 is evaluated last; and ε1 ∪ ε2 as its current effect,
since both e1 and e2 are evaluated. We write Φ1 B Φ2 B Φ3 ↪→ Φ as shorthand
for (Φ1 B Φ2 ↪→ Φ′) ∧ (Φ′ B Φ3 ↪→ Φ).

(TRef) types memory allocation, which has no effect but places the annota-
tion L into a singleton effect {L} on the output type. This singleton effect can be
increased as necessary by using subsumption. (TDeref) types the dereference
of a memory location of type ref ε τ . In a standard effect system, the effect of
! e is the effect of e plus the effect ε of accessing the pointed-to memory. Here,
the effect of e is captured by Φ1, and because the dereference occurs after e is
evaluated, (TDeref) puts Φ1 in sequence just before some Φ2 such that Φ2’s
current effect is ε. Therefore by (XFlow-Ctxt), Φε is Φε

1 ∪ ε, and e’s future
effect Φω

1 must include ε and the future effect of Φ2. On the other hand, Φω
2 is

unconstrained by this rule, but it will be constrained by the context, assum-
ing the dereference is followed by another expression. (TAssign) is similar to
(TDeref), combining the effects Φ1 and Φ2 of its subexpressions with a Φ3

whose current effect is ε. (TLoc) gives a pointer rL the type of a reference to
the type of r in Γ .

Finally, (TSub) introduces subsumption on types and effects. The judgments
τ ′ ≤ τ and Φ′ ≤ Φ are defined at the bottom of Figure 2. (SInt), (SRef), and
(SFun) are standard, with the usual co- and contravariance where appropriate.
(SCtxt) defines subsumption on effects, which is covariant in the current effect,
as expected, and contravariant in both the prior and future effects. To understand
the contravariance, first consider an expression e with future effect ω1. Since ω1

should contain (i.e., be a superset of) the locations that may be accessed in
the future, we can use e in any context that accesses at most locations in ω1.
Similarly, since past effects should contain the locations that were accessed in
the past, we can use e in any context that accessed at most locations in α1.

3 Operational Semantics

As discussed in the introduction, to establish the soundness of the static seman-
tics we must address two concerns. First, we must give an operational semantics
that specifies the run-time contextual effects of each subterm e appearing in the
evaluation of a term ep. Second, we must find a way to match up subterms e that
arise in the evaluation of ep with the corresponding terms e′ in the unevaluated
ep, to see whether the effects ascribed to the original terms e′ by the type system
approximate the actual effects of the subterms e. This section defines an opera-



tional semantics that addresses the first concern, and the next section augments
it to address the second concern, allowing us to prove our system sound.

3.1 The Problem of Future Effects

Consider an expression e appearing in program ep. We write ep = C[e] for a
context C, to make this relationship more clear. Using a small-step operational
semantics, we can intuitively view the contextual effects of e as follows:

C[e] → · · · →︸ ︷︷ ︸
prior effect α

C ′[e]

evaluation of e︷ ︸︸ ︷
→ C ′[e′] → · · · →︸ ︷︷ ︸

standard effect ε

C ′[v]→ · · · → vp︸ ︷︷ ︸
future effect ω

(The evaluation of ep could contain several evaluations of e, each of which could
differ from e according to previous substitutions of e’s free variables, but we
ignore these difficulties for now and consider them in the next section.)

For this evaluation, the actual, run-time prior effect α of e is the effect of the
evaluation that occurs before e starts evaluating, the actual standard effect ε of
e is the effect of the evaluation of e to a value v, and the actual future effect ω of
e is the effect of the remainder of the computation. For every expression in the
program, there exist similar partitions of the evaluation to define the appropriate
contextual effects.

However, while this picture is conceptually clear, formalizing contextual ef-
fects, particularly future effects, is awkward in small-step semantics. Suppose
we have some contextual effect Φ associated with subterm e in the context C ′[e]
above. Then Φω, the future effect of subterm e, models everything that happens
after we evaluate to C ′[v]—but that happens some arbitrary number of steps
after we begin evaluating C ′[e], making it difficult to associate with the subterm
e. We could solve this problem by inserting “brackets” into the semantics to
identify the end of a subterm’s evaluation, but that adds complication, espe-
cially since there are many different subterms whose contextual effects we wish
to track and prove sound.

Our solution to this problem is to use big-step semantics, since in big-step
semantics, each subderivation is a full evaluation. This lets us easily identify
both the beginning and the end of each sub-evaluation in the derivation tree,
and gives us a natural specification of contextual effects.

3.2 Big-Step Semantics

Figure 3 shows key rules in a big-step operational semantics for our language.
Reductions operate on configurations 〈α, ω,H, e〉, where α and ω are the sets
of locations accessed before and after that point in the evaluation, respectively;
H is the heap (a map from locations r to values); and e is the expression to be
evaluated. Evaluations have the form

〈α, ω, H, e〉 −→ε 〈α′, ω′,H ′, R〉



[Id]
〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉

Heaps H ::= ∅ | H, r 7→ v

[Ref]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉 r /∈ dom(H ′)

〈α, ω, H, refL e〉 −→ε 〈α′, ω′, (H ′, r 7→ v), rL〉

[Deref]
〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉

[Assign]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[Call]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′, H ′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H ′, v〉

[Call-W]
〈α, ω, H, e1〉 −→ε1 〈α′, ω′, H ′, v〉 v 6= λx.e

〈α, ω, H, e1 e2〉 −→∅ 〈α, ω, H, err〉

[Deref-H-W]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉 r /∈ dom(H ′)

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H, err〉

[Deref-L-W]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉 r ∈ dom(H ′) L /∈ ω′

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H, err〉

Fig. 3. Operational Semantics

where ε is the effect of evaluating e and R is the result of reduction, either a
value v or err, indicating evaluation failed. Intuitively, as evaluation proceeds,
labels move from the future effect ω to the past effect α.

With respect to the definitions of Section 3.1, the prior effect α in Section 3.1
corresponds to α here, and the future effect ω in Section 3.1 corresponds to ω′

here. The future effect ω before the evaluation of e contains both the future and
the standard effect of e, i.e., ω = ω ∪ ε. Similarly, the past effect α′ after the
evaluation of e contains the past effect α and the effect of e, i.e., α′ = α∪ ε. We
prove below that our semantics preserves this property.

The reduction rules are straightforward. [Id] reduces a value to itself without
changing the state or the effects. [Ref] generates a fresh location r, which is
bound in the heap to v and evaluates to rL. [Deref] reads the location r in
the heap and adds L to the standard evaluation effect. This rule requires that
the future effect after evaluating e have the form ω′ ∪ {L}, i.e., L must be
in the future effect after evaluating e, but prior to dereferencing the result.
Then L is added to α′ in the output configuration of the rule. Notice that
ω′ ∪ {L} is a standard union, hence L may also be in ω′, which allows the same



location to be accessed multiple times. Also note that we require L to be in the
future effect just after the evaluation of e, but do not require that it be in ω.
However, this will actually hold—below we prove that ω = ω′ ∪ {L} ∪ ε, and in
general when the semantics takes a step, effects move from the future to the past.
[Assign] behaves similarly to [Deref]. [Call] evaluates the first expression to a
function, the second expression to a value, and then the function body with the
formal argument replaced by the actual argument. Our semantics also includes
rules [Call-W], [Deref-H-W] and [Deref-L-W] that produce err when the
program tries to access a location that is not in the future effect of the input, or
when values are used at the wrong type. Our system includes similar error rules
for assignment (not shown).

3.3 Standard Effect Soundness

We can now prove standard effect soundness. First, we prove an adequacy prop-
erty of our semantics that helps ensure they make sense:

Lemma 1 (Adequacy of Semantics). If 〈α, ω, H, e〉 −→ε 〈α′, ω′,H ′, v〉, then
α′ = α ∪ ε and ω = ω′ ∪ ε.

This lemma formalizes our intuition that labels move from the future to prior
effect during evaluation.

We can then prove that the static Φε associated to a term by our type and
effect system soundly approximates the actual effect ε of an expression. We
ignore actual effects α and ω by setting them to 1. We say heap H is well-typed
under Γ , written Γ ` H, if dom(Γ ) = dom(H) and for every r ∈ dom(H), we
have Φ∅;Γ ` H(r) : Γ (r). The standard effect soundness lemma is:

Theorem 1 (Standard Effect Soundness). If

1. Φ;Γ ` e : τ ,
2. Γ ` H and
3. 〈1, 1,H, e〉 −→ε 〈1, 1,H ′, R〉

then there is a Γ ′ such that:

1. R is a value v for which Φ∅; (Γ ′, Γ ) ` v : τ ,
2. (Γ ′, Γ ) ` H ′ and
3. ε ⊆ Φε.

Here (Γ ′, Γ ) is the concatenation of environments Γ ′ and Γ . The proof of this
theorem is by induction on the evaluation derivation, and follows traditional
type-and-effect system proofs, adapted for our semantics.

Next, we prove that if the program evaluates to a value, then there is a canon-
ical evaluation in which the program evaluates to the same value, but starting
with an empty α and ending with an empty ω. This will produce an evaluation
derivation with the most precise α and ω values for every configuration, which
we can then prove we soundly approximate using our type and effect system.

Lemma 2 (Canonical Evaluation). If 〈1, 1,H, e〉 −→ε 〈1, 1,H ′, v〉 then there
exists a derivation 〈∅, ε,H, e〉 −→ε 〈ε, ∅,H ′, v〉.



4 Contextual Effect Soundness

Now we turn to proving contextual effect soundness. We aim to show that the
prior and future effect of some subterm e of a program ep approximate the
evaluation of ep before and after, respectively, the evaluation of e. Suppose for
the moment that ep contains no function applications. As a result, an evaluation
derivation Dp of ep according to the operational semantics in Figure 3 will be
isomorphic to a typing derivation Tp of ep according to the rules in Figure 2. In
this situation, soundness for contextual effects is easy to define. For any subterm
e of ep, we have an evaluation derivation D and a typing derivation T :

D :: 〈α, ω,H, e〉 −→ε 〈α′, ω′,H ′, v〉 T :: Φ;Γ ` e : τ

where D is a subderivation of Dp and T is a subderivation of Tp. Then the prior
and future effects computed by our contextual effect system are sound if α ⊆ Φα

(the effect of the evaluation before e is contained in Φα) and ω′ ⊆ Φω (the effect
of the evaluation after v is contained in Φω).

For example, consider the evaluation of ! (refL n).

(Deref)

(Ref)

(Id)
〈∅, ∅ ∪ {L},H, n〉 −→ 〈∅, ∅ ∪ {L},H, n〉

〈∅, ∅ ∪ {L},H, refL n〉 −→ 〈∅, ∅ ∪ {L}, (H, rL 7→ n), rL〉
〈∅, ∅ ∪ {L},H, ! (refL n)〉 −→{L} 〈∅ ∪ {L}, ∅, (H, rL 7→ n), n〉

Here is the typing derivation (where we have rolled a use of (TSub) into (Tint)):

(TDeref)

(TRef)

(TInt’)
[∅; ∅; {L}]; · ` n : int

[∅; ∅; {L}]; · ` refL n : ref L int
[∅; {L}; ∅]ε = {L} [∅; ∅; {L}] B [∅; {L}; ∅] ↪→ [∅; {L}; ∅]

[∅; {L}; ∅]; · ` ! (refL n) : int

We can see that these derivations are isomorphic, and thus it is easy to read the
contextual effect from the typing derivation for refL n and to match it up with
the actual effect of the corresponding subderivation of the evaluation derivation.

Unfortunately, function applications add significant complication because Dp

and Tp are no longer isomorphic. Indeed, a subterm e of the original program
ep may appear multiple times in Dp, possibly with substitutions applied to it.
For example, consider the term (λx. !x; ! x) refL n (where we introduce the
sequencing operator ; with the obvious semantics, for brevity), typed as:

(TApp)

(TLam)
Φf ;Γ, x : ref {L} int ` !x; ! x : int

Φ∅;Γ ` λx. !x; ! x : ref {L} int −→Φf int (T1 )
Φ2;Γ ` refL n : ref {L} int (T2 )

Φ∅ B Φ2 B Φf ↪→ Φ

Φ;Γ ` (λx. !x; ! x) refL n : int



The evaluation derivation has the following structure:

(Call)

〈∅, ∅ ∪ {L},H, (λx. !x; ! x)〉 −→ 〈∅, ∅ ∪ {L},H, (λx. !x; ! x)〉 (1 )
〈∅, ∅ ∪ {L},H, refL n〉 −→ 〈∅, ∅ ∪ {L},H ′, rL〉 (2 )

〈∅, ∅ ∪ {L},H ′, (!x; ! x)[x 7→ rL]〉 −→{L} 〈∅ ∪ {L}, ∅,H ′, n〉 (3 )

〈∅, ∅ ∪ {L},H, (λx. !x; ! x) refL n〉 −→{L} 〈∅ ∪ {L}, ∅,H ′, n〉

where H ′ = (H, rL 7→ n). Subderivations (1) and (2) correspond to the two sub-
derivations (T1) and (T2) of (TApp), but there is no analogue for subderivation
(3), which captures the actual evaluation of the function. Clearly this relates to
the function’s effect Φf , but how exactly is not structurally apparent from the
derivation. Returning to our example, we must match up the effect in the typing
derivation for ! x, which is part of the typing of the function (λx. !x; ! x), with
evaluation of ! rL that occurs when the function evaluates in subderivation (3).

To do this, we instrument the big-step semantics from Figure 3 with typing
derivations, and define exactly how to associate a typing derivation with each
derived subterm in an evaluation derivation. The key property of the resulting
typed operational semantics is that the contextual effect Φ associated with a
subterm e in the original typing derivation Tp is also associated with all terms
derived from e via copying or substitution. In the example, the relevant typ-
ing subderivation for ! x in Tp will be copied and substituted according to the
evaluation so that it can be matched with ! rL in subderivation (3).

4.1 Typed Operational Semantics

In our typed operational semantics, evaluations have the form:

〈T, α, ω, H, e〉 −→ε 〈T ′, α′, ω′,H ′, v〉

where T is a typing derivation for the expression e, and T ′ is a typing derivation
for v:

T :: Φ;Γ ` e : τ T ′ :: Φ∅; (Γ ′, Γ ) ` v : τ

Note that we include T ′ in our rules mostly to emphasize that v is well-typed
with the same type as e. The only information from T ′ we need that is not present
in T is the new environment (Γ ′, Γ ), which may contain the types of pointers
newly allocated in the heap during the evaluation of e. Also, the environments
Γ and Γ ′ only refer to heap locations, since e and v have no free variables and
could always be typed under the empty environment.

Figure 4 presents the typed evaluation rules. New hypotheses are highlighted
with a gray background. While these rules look complicated, they are actually
quite easy to construct. We begin with the original rules in Figure 3, add a typing
derivation to each configuration, and then specify appropriate hypotheses about
each typing derivation to connect up the derivation of the whole term with the
derivation of each of the subterms. We discuss this process for each of the rules.

[Id-A] is the same as [Id], except we introduce typing derivations Tv and
T ′

v for the left- and right-hand sides of the evaluation, respectively. Tv may be



[Id-A]
Tv :: Φ; Γ ` v : τ T ′

v :: Φ∅; Γ ` v : τ

〈Tv, α, ω, H, v〉 −→∅ 〈T ′
v, α, ω, H, v〉

[Ref-A]

〈T ′, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉 r /∈ dom(H)

T :: Φ; Γ ` refL e : ref ε τ T ′ :: Φ′; Γ ` e : τ

Tv :: Φ∅; Γ
′ ` v : τ Tr :: Φ∅; (Γ

′, r 7→ τ) ` rL : ref ε τ Φ′ ≤ Φ

〈T, α, ω, H, refL e〉 −→ε 〈Tr, α
′, ω′, (H ′, r 7→ v), rL〉

[Deref-A]

〈T ′, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

T :: Φ; Γ ` ! e : τ T ′ :: Φ1; Γ ` e : ref ε′
τ ′

Tr :: Φ∅; Γ
′ ` rL : ref ε′

τ ′ Tv :: Φ∅; Γ
′ ` H ′(r) : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 B [α1; ε
′; ω1] ↪→ Φ′

〈T, α, ω, H, ! e〉 −→ε∪{L} 〈Tv, α′ ∪ {L}, ω′, H ′, H ′(r)〉

[Assign-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tr, α1, ω1, H1, rL〉
〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv, α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

T :: Φ; Γ ` e1 := e2 : τ T1 :: Φ1; Γ ` e1 : ref ε τ ′

Tr :: Φ∅; Γ1 ` rL : ref ε τ ′ T2 :: Φ2; Γ1 ` e2 : τ ′

Tv :: Φ∅; Γ2 ` v : τ ′ T ′
v :: Φ∅; Γ2 ` v : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 B Φ2 B [α3; ε; ω3] ↪→ Φ′

〈T, α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈T ′
v, α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[Call-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tf , α1, ω1, H1, λx.e〉
〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv2 , α2, ω2, H2, v2〉

〈T3, α2, ω2, H2, e[v2 7→ x]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉
T :: Φ; Γ ` e1 e2 : τ T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

Tf :: Φ∅; Γ1 ` λx.e : τ1 −→Φf τ2 T2 :: Φ2; Γ1 ` e2 : τ1

Tv2 :: Φ∅; Γ2 ` v2 : τ1 T3 :: Φf ; Γ2 ` e[x 7→ v2] : τ

Tv :: Φ∅; Γ3 ` v : τ Φ1 B Φ2 B Φf ↪→ Φ′ Φ′ ≤ Φ

〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H, v〉

Fig. 4. Typed operational semantics

any typing derivation that assigns a type to v. Here, and in the other rules in
the typed operational semantics, we allow subsumption in the typing derivations
on the left-hand side of a reduction. Thus Tv may type the value v under some
effect Φ that is not Φ∅. The output typing derivation T ′

v is the same as Tv,
except it uses the effect Φ∅ (recall the only information we use from T ′

v is the
new environment, which is this case is unchanged from Tv).



[Ref-A] is a more complicated case. Here the typing derivation T must (by
observation of the rules in Figure 2) assign refL e a type ref ε τ and some effect
Φ. By inversion, then, we know that T must in fact assign the subterm e the
type τ as witnessed by some typing derivation T ′, which we use in the typed
evaluation of e. We allow Φ′ ≤ Φ to account for subsumption applied to the
term refL e. Note that this rule does not specify how to construct T ′ from T .
Later on, we will prove that if there is a valid standard reduction of a well-typed
term, then there is a valid typed reduction of the same term. Continuing with
the rule, our semantics assigns some typing derivation Tv to v. Then the output
typing derivation Tr should assign a type to rL. Hence we take the environment
Γ ′ from Tv, which contains types for locations in the heap allocated thus far,
and extend it with a new binding for r of the correct type.

[Deref-A] follows the same pattern as above. Given the initial typing deriva-
tion T of the term ! e, we assume there exists a typing derivation T ′ of the appro-
priate shape for subterm e. Reducing e yields a new typing derivation Tr, and
the final typing derivation Tv assigns the type τ to the value H ′(r) returned by
the dereference. As above, we add subtyping constraints Φ′ ≤ Φ and τ ′ ≤ τ to
account for subsumption of the term ! e. The most interesting feature of this rule
is the last constraint, Φ1 B [α1; ε′;ω1] ↪→ Φ′, which states that the effect Φ ≥ Φ′

of the whole expression ! e (from typing derivation T ) must contain the effect
Φ1 of e followed by some contextual effect containing standard effect ε′. Again,
we will prove below that it is always possible to construct a typed derivation
that satisfies this constraint, intuitively because [Deref] from Figure 2 enforces
exactly the same constraint. [Assign-A] is similar to [Deref].

[Call-A] is the most complex of the four rules, but the approach is exactly
the same as above. Starting with typing derivation T for the function application,
we require that there exist typing derivations T1 and T2 for e1 and e2, where the
type of e2 is the domain type of e1. Furthermore, Tf and Tv2 assign the same
types as T1 and T2, respectively. Then by the substitution lemma, we know there
exists a typing derivation T3 that assigns type τ to the function body e in which
the formal x is mapped to the actual v2. The output typing derivation Tv assigns
v the same type τ as T3 assigns to the function body. We finish the rule with
the usual effect sequencing and subtyping constraints.

4.2 Soundness

The semantics in Figure 4 precisely associate a typing derivation—and most
importantly, a contextual effect—with each subterm in an evaluation derivation.
We prove soundness in two steps. First, we argue that given a typing derivation
of a program and an evaluation derivation according to the rules in Figure 3, we
can always construct a typed evaluation derivation.

Lemma 3 (Typed evaluation derivations exist). If T :: Φ;Γ ` e : τ and
D :: 〈α, ω, H, e〉 −→ε 〈α′ω′,H ′, v〉 where Γ ` H, then there exists Tv such that

〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′,H ′, v〉



The proof is by induction on the evaluation derivation D. For each case, we show
we can always construct a typed evaluation by performing inversion on the typing
derivation T , using T ’s premises to apply the corresponding typed operational
semantics rule. Due to subsumption, we cannot perform direct inversion on T .
Instead, we used a number of inversion lemmas (not shown) that generalize the
premises of the syntax-driven typing rule that applies to e, for any number of
following [TSub] applications.

Next, we prove that if we have a typed evaluation derivation, then the contex-
tual effects assigned in the derivation soundly model the actual run-time effects.
Since contextual effects are non-compositional, we reason about the soundness of
contextual effects in a derivation in relation to its context inside a larger deriva-
tion. To do that, we use E1 ∈ E2 to denote that E1 is a subderivation of E2.
We define the subderivation relation inductively on evaluation derivations in the
typed operational semantics, with base cases corresponding to each evaluation
rule, and one inductive case for transitivity. For example, given an application
of [Call-A] (uninteresting premises omitted):

. . .
E1 :: 〈T1, α, ω,H, e1〉 −→ε1 〈Tf , α1, ω1,H1, λx.e〉
E2 :: 〈T2, α1, ω1,H1, e2〉 −→ε2 〈Tv2 , α2, ω2,H2, v2〉

E3 :: 〈T3, α2, ω2,H2, e[v2 7→ x]〉 −→ε3 〈Tv, α′, ω′,H ′, v〉
E :: 〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈T ′, α′, ω′,H, v〉

we have E1 ∈ E, E2 ∈ E and E3 ∈ E. The subderivation relationship is also
transitive, i.e., if E1 ∈ E2 and E2 ∈ E3 then E1 ∈ E3.

The following lemma states that if E2 is an evaluation derivation whose
contextual effects are sound (premises 2, 5, and 6) and E1 is a subderivation of
E2 (premise 3), then the effects of E1 are sound (conclusions 2 and 3).

Lemma 4 (Soundness of sub-derivation contextual effects). If

1. E1 :: 〈T1, α1, ω1,H1, e1〉 −→ε1 〈Tv1 , α
′
1, ω

′
1,H

′
1, v1〉 with T1 :: Φ1;Γ1 ` e1 : τ1,

2. E2 :: 〈T2, α2, ω2,H2, e2〉 −→ε2 〈Tv2 , α
′
2, ω

′
2,H

′
2, v2〉 with T2 :: Φ2;Γ2 ` e2 : τ2,

3. E1 ∈ E2

4. Γ2 ` H2

5. α2 ⊆ Φα
2

6. ω2 ⊆ Φω
2

then

1. Γ1 ` H1

2. α1 ⊆ Φα
1

3. ω1 ⊆ Φω
1

The proof is by induction on E1 ∈ E2. The work occurs in the base cases of the
∈ relation, and the transitivity case trivially applies induction.

The statement of Lemma 4 may seem odd: we assume a derivation’s effects
are sound and then prove the soundness of the effects of its subderivation(s).



Nevertheless, this technique is efficacious. If E2 is the topmost derivation (for
the whole program) then the lemma can be trivially applied for E2 and any
of its subderivations, as α2 and ω′

2 will be ∅, and thus trivially approximated
by the effects defined in Φ2. Given this, and the fact (from Lemma 3) that
typed derivations always exist, we can easily state and prove contextual effect
soundness.

Theorem 2 (Contextual Effect Soundness). Given a program ep with no
free variables, a typing derivation T and a (standard) evaluation D according to
the rules in Figure 3, we can construct a typed evaluation derivation

E :: 〈T, ∅, εp, ∅, ep〉 −→εp
〈Tv, εp, ∅,H, v〉

such that for every subderivation E′ of E:

E′ :: 〈T ′, α, ω,H, e〉 −→ε 〈Tv, α′, ω′,H ′, v〉

with T ′ :: Φ;Γ ` e : τ , it is always the case that α ⊆ Φα, ε ⊆ Φε, and ω′ ⊆ Φω.

This theorem follows as a corollary of Lemma 2, Lemma 3 and Lemma 4, since
the initial heap and Γ are empty, and the whole program is typed under [∅; ε; ∅],
where ε soundly approximates the effect of the whole program by Theorem 1.

The full (paper) proof can be found in a technical report [6].

5 Mechanization

We encoded the above formalization and soundness proof using the Coq proof as-
sistant. The source code for the formalization and the proof scripts can be found
at http://www.cs.umd.edu/projects/PL/contextual/contextual-coq.tgz.
We were pleased that the mechanization of the system largely followed the pa-
per proof, with only a few minor differences.

First, we used the framework developed by Aydemir et al. [1] for modeling
bound and named variables, whereas the paper proof assumes alpha equivalence
of all terms and does not reason about capturing and renaming.

Second, Lemma 4 states a property of all subderivations of a derivation. On
paper, we had left the definition of subderivation informal, whereas we had to
formally define it in Coq. This was straightforward if tedious. In Coq we defined
E ∈ E′, described earlier, as an inductive relation, with one case for each premise
of each evaluation rule.

While our mechanized proof is similar to our paper proof, it does have some
awkwardness. Our encoding of typed operational semantics is dependent on typ-
ing derivations, and the encoding of the subderivation relation is dependent on
typed evaluations. This causes the definitions of typed evaluations and subderiva-
tions to be dependent on large sets of variables, which decreases readability. We
were unable to use Coq’s system for implicit variables to address this issue, due
to its current limitations.



In total, the formalization and proof scripts for the contextual effect system
takes 5,503 lines of Coq, of which we wrote 2,692 lines and the remaining 2,811
lines came from Aydemir et al [1]. It took the first author approximately ten days
to encode the definitions and lemmas and do the proofs, starting from minimal
Coq experience, limited to attending a tutorial at POPL 2008. It took roughly
equal time and effort to construct the encodings as to do the actual proofs. In
the process of performing the proofs, we discovered some typographical errors
in the paper proof, and we found some cases where we had failed to account
for possible subsumption in the type and effect system. Perhaps the biggest
insight we gained was that to prove Lemma 4, we needed to do induction on the
subderivation relation, rather than on the derivation itself.

6 Related Work

Our original paper on contextual effects [7] presented the same type system and
operational semantics shown in Sections 2 and 3, but placed scant emphasis on
the details of the proof of soundness in favor of describing novel applications.
Indeed, we felt that the proof technique described in the published paper was
unnecessarily unintuitive and complicated, and that led us to ultimately discover
the technique presented in this paper. To our knowledge, ours is the first mech-
anized proof of a property of typing and evaluation derivations that depends on
the positions of subderivations in the super-derivation tree.

Type and effect systems [5, 8, 11] are widely used to statically enforce re-
strictions, check properties, or in static analysis to infer the behavior of compu-
tations [4, 9, 3, 10, 12]. Some more detailed comparisons with these systems can
be found in our previous publication [7]. Talpin and Jouvelot [11] use a big-step
operational semantics to prove standard effect soundness. In their system, opera-
tional semantics are not annotated with effects. Instead, the soundness property
is that the static effect, unioned with a static description of the starting heap,
describes the heap at the end of the computation. In addition to addressing
contextual effects, our operational semantics can also be used as a definition
of the actual effect (prior, standard, or future) of the computation, regardless
of the static system used to infer or check effects. The soundness property for
standard effects by Talpin and Jouvelot immediately follows for our system from
Theorem 1.

7 Conclusions

This paper presents the proof of soundness for contextual effects [7]. We have
mechanized and verified the proof using the Coq proof assistant.

Contextual effect soundness is interesting because the soundness of the effect
of e depends on the position of e’s evaluation within the evaluation derivation of
the whole program ep. That is, the prior and future effects of e depend not on
the evaluation of e itself, but rather on the evaluation of ep prior to, and after,
evaluating e, respectively. Adding further complication, a subterm e within the



original program, for which the contextual effect is computed by the type and
effect system, may change during the evaluation of ep. In particular, it may be
duplicated or modified due to substitutions. To match up these modified terms
with the term in the original typing derivation, we employ a novel typed oper-
ational semantics that correlates the relevant portion of the typing derivation
with the evaluation of every subexpression in the program. In mechanizing our
proof, we discovered a missing definition (subderivations) in our formal system,
and we gained much more assurance that our proof, which had to carefully co-
ordinate the many parts of typed evaluation derivations, was correct.

We conjecture that our proof technique can be used to reason about other
non-compositional properties that span a derivation, such as the freshness of a
name, or computations that depend on context.
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