
Toward On-line Schema Evolution for Non-stop

Systems

Amol Deshpande and Michael Hicks
University of Maryland, College Park

September 7, 2005

1 Introduction

Schemas are a central component of any database system, and have been an
area of intense research from the very beginning of the field. In the past, this
work has mainly focused on using conceptual modeling techniques to generate
schemas from application requirements, schema normalization, schema map-
ping and schema matching in data integration systems. Dynamically changing
schemas, on the other hand, have received much less attention, especially in the
context of relational database systems. We conjecture three reasons for this: (1)
a perception that schemas do not need to evolve; i.e., that they are essentially
static; (2) a belief that if they do need to evolve, it can be done off-line; and
(3) that even if on-line evolution was desirable, it is too hard to implement.
With the increasing number of web services, long running transactions, and
other applications that cannot afford to stay offline for even minutes, and with
increasing DBA-less installations of databases (e.g. “Digital Home”), we believe
the first two of these reasons are no longer valid. This motivates our interest in
the third issue.

Supporting on-line evolution is non-trivial. Almost every aspect of a running
database system is tied to the schema of the database. Most important are
obviously the application programs (many of which are outside the domain
of the database system) that interact with the schemas directly, using queries
over the schemas. Many of these programs may be affected by a change to the
schema. Physical data structures like indexes are tied to the schema as well, and
may have to updated if new tables need to be created. If the schema change
is to be affected while the database system is running, many of the internal
components (e.g., query processor component) may be affected by a schema
change (especially in presence of live ”cursors”). If the changes require creating
or removing tables, then the concurrency/locking components are also affected.

In this paper, we propose an approach to on-line schema evolution that coor-
dinates the updating of the schema with the updating of applications, employ-
ing two mechanisms. First, applications compatible with the new schema are

1



modified on-the-fly using a technique called dynamic software updating (DSU).
These software updates are coordinated, at a time determined in part by an off-
line program analysis, with an update to the database, preventing applications
from querying the old, invalid schema. Second, database contents are migrated
*lazily*, as required by the applications programs, in a fashion analogous to
”page faults” in the virtual memory subsystems. Except for small local changes
(e.g. adding a column), this would be non-trivial in relational database systems.

2 Example

To make the need and process of on-line schema evolution more concrete, we
present an example inspired by http://www.agiledata.org/essays/databaseRefactoring.
html. Suppose our database schema currently defines an Address table:

TABLE Address
AddressID: integer Street: char{40} City: char{20}
StateCode: char{2} ZipCode: integer

Now suppose that we wish to alter this schema to support foreign addresses.
For example, Canadian addresses use an alphanumeric postal code, like R2D
2C3, instead of zip codes like 90210. Because the ZipCode column is numeric,
the definition of the Address TABLE needs to be changed. We decide to add
two fields, PostalCode and Country, and remove the field ZipCode. Existing
records in the table can be converted to the new schema by simply generating
a string from the existing ZipCode and storing it the PostalCode entry, and by
storing the default value of Country as “USA”.

A typical way of effecting this kind of change is to perform it off-line. Fol-
lowing http://www.objectivity.com/WhitePapers/schema.shtml, the pro-
cess would be:

1. Modify the application to use the new schema. For example, if we had
an application that reads orders from the database and prints out address
labels to ship them to, this application would be changed to refer to the
new columns. Moreover, the data entry application would be changed
to add an additional Country field (e.g., in its HTML form), and the
formatting rules for postal codes would be relaxed.

2. Specify a conversion function to convert each record in the old schema in
the new schema (as described above).

3. Shut down the database and applications, halting current processing.

4. Perform monolithic data conversion: read the old data from the database;
(2) convert each record using the conversion function; and (3) write the
resulting database with the new schema.

5. Restart the database and the application.

2



There are three main problems with this approach. First, it terminates exist-
ing transactions, which is inconvenient for users and possibly bad for business.
Second, any soft state in applications, like caches for improving performance, is
lost when applications are shut down. Third, it makes the database unavailable
for the time it takes to evolve the existing database. It may be possible reduce
this pause by doing some of the evolution off-line, on a checkpointed copy, and
then only deal with the records that have changed or been added since that
time, once the on-line database is shut down. However, for large databases, this
could still be a significant period of time.

A possible solution is to use views. In particular, we can relax the need to
update the old applications by allowing them to view the new schema as if it
were the old. In this case, the view would only be defined for those addresses
whose Country was “USA” simply because it is not possible to convert from
a generic postal code back to a numeric zip code. This may be acceptable in
some cases, but clearly some applications will act incorrectly. For example, an
application that wishes to send a mailing out to all past customers will only
send it to those in the US, and an application that wishes to count total past
customers will miss any new international ones. Therefore, while views may be
useful in some cases, we do not believe they are a solution in general.

3 Enabling On-line Schema Evolution

The goal of an on-line schema evolution approach is to relax points 3, 4, and 5
in the scenario above, as follows:

3′. Having modified the application to use the new schema, we now have two
versions of the application. From these two versions, we develop a dynamic
patch that can be used update a running instance of the old application
to an instance of the new one.

4′. We upload the dynamic patches to the applications using the DB, and
the database patch to the database. When the applications reach a suit-
able safe point, the database patch is triggered, and the applications are
patched. Updating at a safe point ensures that the newly-updated appli-
cations will always refer only to the new schema in their queries, never
the old.

5′. With each access to the database, the DBMS will modify the on-line con-
tents as necessary, depending on the query. For example, if an application
in our scenario only performs a query on the street address of each element
in the Address table, the fact that we have removed the ZipCode field will
be of no consequence. Indeed, the DBMS could start converting the con-
tents of the database concurrently with the program, if desired. However,
when a query is submitted that wishes to group together those addresses
in a particular postal code, then the table will need to be converted as
defined in the database patch.

3



To realize this approach, there are some challenging problems to solve. First,
we need a way to dynamically update applications, which requires sophisti-
cated run-time support, and we have to ensure that following an update, the
application will always use the new schema, which requires program analysis
or run-time checking. Second, we need a way to actually change the on-line
contents of the database, and to do it as lazily as possible, to reduce pauses.
We consider each of these elements in turn.

3.1 Dynamic Software Updating

Run-time support for dynamic software updating is reasonably well-understood.
In particular, a special compiler can be used to insert indirections to permit
functions and typed data values to change over time. In our past work, we have
developed DSU systems that are extremely flexible: nearly any change one can
express to the source code can be realized on-line through a dynamic patch.
Experiments with various servers show only a 1-3% slowdown due to compiler
support for updateability.

An important aspect of software updating is timing. For on-line schema
evolution, our goal is to ensure that following an application update, it will
never access the DB at the old schema. To ensure this, we can analyze a
program that uses the database-to-be-changed, and its dependencies on the
current schema will be discovered, for each program point. For example, say
function f() performs an SQL query on the Street column of the Address table.
This query places a constraint on the way Table may be updated: Address may
not be changed to remove Street or change its type while f() is executing up
through the the query. To do so would cause the query to fail, or worse, to
succeed but result in incorrect program behavior. Conversely, an update to the
schema that is consistent with the discovered dependencies is safe. We have
used an analysis like this to ensure that software updates do not cause type
errors due to poor timing, and we have found it to be flexible and efficient.
Extending to the database will also require considering cursors and other forms
of dependence.

Because the DBMS and its programs run concurrently, we need to find a
time at which the changes to the programs and the schema are sure to be
consistent. The simplest approach is to force each program to synchronize at
a safe update point. When all programs have reached such a point, then they
can be updated and the schema change process can be started. The challenge
is making this simple idea scale. In particular, a serious concern is deadlock: if
one program is waiting on an update point, it may fail to release locks needed by
another program (e.g., locks held because of a currently-running transaction).
Static analysis and dynamic detection techniques exist to prevent or mitigate
deadlocks, and we would apply them to this situation.

4



3.2 Lazy Data Migration

To avoid the long pause that could result if the database contents are converted
at update-time, we propose to apply the conversion function lazily, as driven by
the application:

1. The DB patch creates a skeleton relation over the new schema in the
database. Any new tuples are inserted directly into the new relation.

2. When a query is posed over the new schema, the DBMS checks if the
table is up-to-date. If not, it converts those tuples required to answer the
query and stores them in the new schema. Then it answers the query. For
example, if a query asking for only addresses from zip code 10001 arrives,
the DBMS can fetch those tuples from the old relation, convert them to
the new format, and insert the tuples into the new relation. After this is
done, we can answer the query itself. The steps of converting the data into
new format, and answering the query, can be merged in many cases thus
saving us redundant disk accesses. On the other hand, if a query asking
for only addresses from PostalCode “R2D 2C3” arrives, only the newly-
inserted data will satisfy such a predicate, so this query can be answered
without converting any data from the old relation.

3. Will we need to use semantic caching-like techniques to reason about the
data that has already been converted. For example, after the above query
has been answered, we can tag the new relation with predicate ”ZipCode
= 10001” thus specifying exactly which data has already been converted.
Doing this correctly and efficiently is one of the biggest challenges in this
work.

If the techniques outlined in the above step fail to provide enough informa-
tion to reason about the data, we always have the (drastic) option of converting
the entire relation. Though this still provides some level of “laziness” (not all
the relations need to be converted at once), this is clearly not acceptable in
general, and we hope to avoid having to fall back to this option in most cases.

4 Toward On-line Schema Changes

There is beginning to be some interest in supporting on-line schema changes, but
none of it is as complete or as ambitious as what we have proposed for relational
databases. For example, SQL:1999 supports a series of ALTER directives, but
these only permit fairly simple changes to the schema. DB2 V8 supports some
schema changes, and could support the simple change we have described above,
but does not consider the impact of the change on applications. Indeed, the
combination of our DSU techniques with DB2 could be a reasonable starting
place for this work. Finally, OODBs often do provide some support for on-line
evolution, but this is made simpler by the fact that data and code are stored

5



and accessed together in the database. Our approach is able to bridge code and
data changes when these elements are stored and accessed separately.

We are excited about the benefit of on-line schema evolution: because data
and applications can be changed on the fly, services become both more available
and more agile. To focus this research agenda, we wish to better understand
how schema changes are done in practice, and what the commonly occurring
schema changes are. We plan to talk with industry customers to identify these
issues.

6


