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Abstract. In this paper, we study the problem of automatically find-
ing program executions that reach a particular target line. This problem
arises in many debugging scenarios, e.g., a developer might learn that
a failure is possible on a particular line but might not know exactly
how to reproduce the failure or even whether it is reproducible. This
can happen particularly often for bug reports from static analysis tools,
which can produce false positives. We propose two new directed symbolic
execution strategies that aim to solve this problem: shortest-distance
symbolic execution (SDSE) uses a distance metric in an interprocedu-
ral control flow graph to guide symbolic execution toward a particular
target; and call-chain-backward symbolic execution (CCBSE) iteratively
runs forward symbolic execution, starting in the function containing the
target line, and then jumping backward up the call chain until it finds
a feasible path from the start of the program. We also propose Mix-
CCBSE, a strategy in which CCBSE is composed with another search
strategy to yield a hybrid that is more powerful than either strategy
alone. We compare SDSE, CCBSE, and Mix-CCBSE with several exist-
ing strategies from the literature. We find that, while SDSE performs
extremely well in many cases, it sometimes fails badly. However, by mix-
ing CCBSE with KLEE’s search strategy, we obtain a strategy that has
the best overall performance across the strategies we studied.

1 Introduction

In this paper, we study the line reachability problem: given a target line in the
program, can we find a realizable path to that line? Since program lines can
be guarded by conditionals that check arbitrary properties of the current pro-
gram state, this problem is equivalent to the very general problem of finding a
path that causes the program to enter a particular state [16]. The line reacha-
bility problem arises naturally in several scenarios. For example, users of static-
analysis-based bug finding tools need to triage the tools’ bug reports—determine
whether they correspond to actual errors—and this task often involves checking
line reachability. As another example, a developer might receive a report of an
error at some particular line (e.g., an assertion failure that resulted in an error
message at that line) without an accompanying test case. To reproduce the er-
ror, the developer needs to find a realizable path to the appropriate line. Finally,



when trying to understand an unfamiliar code base, it is often useful to discover
under what circumstances particular lines of code are executed.

In this paper, we explore using symbolic execution to solve the line reachabil-
ity problem. Symbolic executors work by running the program, computing over
both concrete values and expressions that include symbolic variables, which are
unknowns that range over various sets of values, e.g., integers, strings, etc. [21,
3,18,32]. When a symbolic executor encounters a conditional whose guard de-
pends on a symbolic variable, it invokes a theorem prover (e.g., an SMT solver
such as Z3 [8], Yices [9], or STP [12]) to determine which branches are feasible.
If both are, the symbolic execution conceptually forks, exploring both branches.

Symbolic execution is an attractive approach to solving line reachability,
because it is complete, meaning any path it finds is realizable, and the symbolic
executor can even construct a concrete test case that takes that path (using the
SMT solver). However, symbolic executors cannot explore all program paths,
and hence must make heuristic choices about which paths to take. There is
a significant body of work exploring such heuristics [15,6,5,26,4,41], but the
focus of most prior work is on increasing symbolic execution’s useful coverage in
general, rather than trying to reach certain lines in particular, as is the goal of
the current work. We are aware of one previously proposed approach, execution
synthesis [42], for using symbolic execution to solve the line reachability problem;
we discuss execution synthesis in conjunction with our experiments in Section 4.

We propose two new directed symbolic execution search strategies for line
reachability. First, we propose shortest-distance symbolic exzecution (SDSE), which
guides symbolic execution using distance computed in an interprocedural control-
flow graph (ICFG). More specifically, when the symbolic executor is deciding
which path to continue executing, it will pick the path that currently has the
shortest distance to the target line in the ICFG. SDSE is inspired by a heuristic
used in the coverage-based search strategy from KLEE [5], but adapted to focus
on a single target line, rather than all uncovered lines.

Second, we propose call-chain-backward symbolic execution (CCBSE), which
starts at the target line and works backward until it finds a realizable path
from the start of the program, using standard forward symbolic execution as a
subroutine. More specifically, suppose target line [ is inside function f. CCBSE
begins forward symbolic execution from the start of f, looking for paths to [.
Since CCBSE does not know how f is called, it sets all of f’s inputs (parameters
and global variables) to be purely symbolic. This initial execution yields a set
of partial paths p that start at f and lead to [; in a sense, these partial paths
summarize selected behavior of f. Next, CCBSE finds possible callers of f, and
for each such caller g, CCBSE runs forward symbolic execution from its start
(again setting ¢’s inputs symbolic), now searching for paths that call f. For each
such path p, it attempts to continue down paths p’ in p until reaching . For those
extended paths p + p’ that are feasible, it adds them to p. (An extended path
may be infeasible because the precondition needed for p’ may not be satisfied
by p.) This process continues, working backward up the call chain until CCBSE
finds a path from the start of the program to [, or the process times out.



Notice that by using partial paths to summarize function behavior, CCBSE
can reuse the machinery of symbolic execution to concatenate paths together.
This is technically far simpler than working with a constraint language that
explicitly summarizes function behavior in terms of parameters, return value,
global variables, and the heap (including pointers and aliasing).

The key insight motivating CCBSE is that the closer forward symbolic ex-
ecution starts relative to the target line, the better the chances it finds paths
to that line. If we are searching for a line that is only reachable on a few paths
along which many branches are possible, then combinatorially there is a very
small chance that a standard symbolic executor will make the right choices and
find that line. By starting closer to the line we are searching for, CCBSE explores
shorter paths with fewer branches, and so is more likely to reach that line.

CCBSE imposes some additional overhead, and so it does not always perform
as well as a forward execution strategy. Thus, we also introduce mized-strategy
CCBSE (Miz-CCBSE), which combines CCBSE with another forward search.
In Mix-CCBSE, we alternate CCBSE with some forward search strategy S. If S
encounters a path p that was constructed in CCBSE, we try to follow p to see if
we can reach the target line, in addition to continuing S normally. In this way,
Mix-CCBSE can perform better than CCBSE and S run separately—compared
to CCBSE, it can jump over many function calls from the program start to reach
the paths being constructed; and compared to S, it can short-circuit the search
once it encounters a path built up by CCBSE.

We implemented SDSE, CCBSE, and Mix-CCBSE in Otter, a C source code
symbolic executor we previously developed [36]. We also extended Otter with two
popular forward search strategies from KLEE [5] and SAGE [17]; for a baseline,
we also include a random path search that flips a coin at each branch. We eval-
uated the effectiveness of our directed search strategies on the line reachability
problem, comparing against the existing search strategies. We ran each strategy
on 6 different GNU Coreutils programs [7], looking in each program for one line
that contains a previously identified fault. We also compared the strategies on
synthetic examples intended to illustrate the strengths of SDSE and CCBSE.
We found that, while SDSE performs extremely well on many programs, it can
fall short very badly under certain program patterns. By mixing CCBSE with
KLEE, we obtain a strategy that has the best overall performance across all
strategies. Our results suggest that directed symbolic execution is a practical
and effective new approach to solving the line reachability problem.

2 Overview and motivating examples

In this section we present an overview of our ideas—SDSE, CCBSE, and Mix-
CCBSE—for directed symbolic execution. We will refer to Otter, our symbolic
execution framework, to make our explanations concrete (and to save space),
but the basic ideas apply to any symbolic execution tool [21,15,5,19].

Figure 1 diagrams the architecture of Otter and gives pseudocode for its main
scheduling loop. Otter uses CIL [30] to produce a control-flow graph from the



scheduler()
while (worklist nonempty)
so = pick(worklist)
for s € step(sp) do
if (s is incomplete)
put(worklist, s)
manage_targets(s)

program

state state
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Fig. 1. The architecture of the Otter symbolic execution engine.

input C program. Then it calls a state initializer to construct an initial symbolic
execution state, which it stores in worklist, used by the scheduler. A state includes
the stack, heap, program counter, and path taken to reach the current position.
In traditional symbolic execution, which we call forward symbolic execution,
the initial state begins execution at the start of main. The scheduler extracts a
state from the worklist via pick and symbolically executes the next instruction by
calling step. As Otter executes instructions, it may encounter conditionals whose
guards depend on symbolic variables. At these points, Otter queries STP [12], an
SMT solver, to see if legal valuations of the symbolic variables could make either
or both branches possible, and whether an error such as an assertion failure may
occur. The symbolic executor will return these states to the scheduler, and those
that are incomplete (i.e., non-terminal) are added back to the worklist. The call
to manage_targets guides CCBSE’s backward search, and is discussed further in
Section 3.2.

2.1 Forward symbolic execution

Different forward symbolic execution strategies are distinguished by their imple-
mentation of the pick function. In Otter we have implemented, among others,
three search strategies proposed in the literature:

Random Path (RP) [5] is a probabilistic version of breadth-first search. RP
randomly chooses from the worklist states, weighing a state with a path of length
n by 27™. Thus, this approach favors shorter paths, but treats all paths of the
same length equally.

KLEE [5] uses a round-robin of RP and what we call closest-to-uncovered,
which computes the distance between the end of each state’s path and the closest
uncovered node in the interprocedural control-flow graph and then randomly
chooses from the set of states weighed inversely by distance. To our knowledge,
KLEE’s algorithm has not been described in detail in the literature; we studied
it by examining KLEE’s source code [22].

SAGE [17] uses a coverage-guided generational search to explore states in
the execution tree. At first, SAGE runs the initial state until the program termi-
nates by randomly choosing a state to run whenever the symbolic execution core
returns multiple states. It stores the remaining states into the worklist as the
first generation children. Next, SAGE runs each of the first generation children
to completion, in the same manner as the initial state, but separately grouping
the grandchildren by their first generation parent. After exploring the first gen-
eration, SAGE explores subsequent generations (children of the first generation,



1 int main(void) {

2 int argc; char argv[MAX_ARGC][1];
3 symbolic(&argc); symbolic(&argv);
4 inti,n=0,b[4={0,00,0};

entry

argc=0 argv[i)]:'b' argv[0]='b'

5 for (i=0;i< arge; i++) {

6 if (xargv[i] == 'b") {

7 assert(n < 4);

8 b[n+-+] = 1; /* potential buf. overflow x/ arge=1 argv[l1]='b' agv[ﬂ;c'b'
9 } else b~ -

10 foo(); /* some expensive function x/

12 while (1) { argc=4 argv[4]="b' argv[4]£b'

13 if (getchar()) /* get symbolic input */ '
14 /* ...do something... %/, buffer overflow!
15}

16 return O;
17 }

Fig. 2. Example illustrating SDSE’s potential benefit.

grandchildren of the first generation, etc) in a more intermixed fashion, using a
block coverage heuristic to determine which generations to explore first.

2.2 Shortest-distance symbolic execution

To see how SDSE works, consider the code in Figure 2, which performs command-
line argument processing followed by some program logic, a pattern common
to many programs. This program first enters a loop that iterates up to argc
times, processing the i*! command-line argument in argv during iteration i. If the
argument is 'b’, the program sets b[n] to 1 and increments n (line 8); otherwise,
the program calls foo. A potential buffer overflow could occur at line 8 when
more than four arguments are 'b’; we add an assertion on line 7 to ensure this
overflow does not occur. After the arguments are processed, the program enters
a loop that reads and processes character inputs (lines 12 and below).

Suppose we would like to reason about a possible failure of the assertion.
Then we can run this program with symbolic inputs, which we achieve with
the calls on line 3 to the special built-in function symbolic. The right half of the
figure illustrates the possible program paths the symbolic executor can explore
on the first five iterations of the argument-processing loop. Notice that for five
loop iterations there is only 1 path that reaches the failing assertion out of
Zi:o 3 x 2™ = 93 total paths. Moreover, the assertion is no longer reachable
once exploration has advanced past the argument-processing loop.

In this example, RP would have only a small chance of finding the overflow,
since it will be biased towards exploring edges before the buffer overflow. A
symbolic executor using KLEE or SAGE would focus on increasing coverage to
all lines, wasting significant time exploring paths through the loop at the end of
the program, which does not influence this buffer overflow.

In contrast, SDSE works very well in this example, with line 7 set as the tar-
get. Consider the first iteration of the loop. The symbolic executor will branch



entry

1 void main() { 10 void f(int m, int n) {
2 intm,n, i 11 inti, a, sum=0;
3 symbolic(&m, sizeof(m), "m"); 12  for (i=0;i<6;i++) { m==0—m==1-» m==999
4 symbolic(&n, sizeof(n), "n"); 13 a = n%2; \ * A/
5 14 if (a) sum += a+1; f(m, n)
6 f0|: (|:O;|<1F)00;|++) 15 n/=2; ao/ Ay »a,
7 if (m ==1i) f(m, n); 16} v
s } 17 while(1) { * /* *
18 if (sum==0 && m::7) sum+=ap+1 sum+=a,+1 sum+=as+1
9 assert(0); SUM==0 8& M=
20 }
21 }

assert(0)

Fig. 3. Example illustrating CCBSE’s potential benefit.

upon reaching the loop guard, and will choose to execute the first instruction of
the loop, which is two lines away from the assertion, rather than the first instruc-
tion after the loop, which can no longer reach the assertion. Next, on line 6, the
symbolic executor takes the true branch, since that reaches the assertion itself
immediately. Then, determining that the assertion is true, it will run the next
line, since it is only three lines away from the assertion and hence closer than
paths that go through foo (which were deferred by the choice to go to the asser-
tion). Then the symbolic executor will return to the loop entry, repeating the
same process for subsequent iterations. As a result, SDSE explores the central
path shown in bold in the figure, and thereby quickly find the assertion failure.

2.3 Call-chain-backward symbolic execution

SDSE is often very effective, but there are cases on which it does not do well—in
particular, SDSE is less effective when there are many potential paths to the
target line, but there are only a few, long paths that are realizable. In these
situations, CCBSE can sometimes work dramatically better.

Consider the code in Figure 3. This program initializes m and n to be sym-
bolic and then loops, calling f(m, n) when m == i for i € [0,1000). The loop in
lines 12-16 iterates through n’s least significant bits (stored in a during itera-
tion), incrementing sum by a+1 for each non-zero a. Finally, if sum == 0 and
m == 7, the failing assertion on line 19 is reached. Otherwise, the program falls
into an infinite loop, as sum and m are never updated in the loop.

RP, KLEE, SAGE, and SDSE all perform poorly on this example. SDSE gets
stuck at the very beginning: in main’s for-loop, it immediately steps into f when
m == 0, as this is the “fastest” way to reach the assertion inside f according to
the ICFG. Unfortunately, the guard of the assertion is never satisfied when m is
0, and therefore SDSE gets stuck in the infinite loop. SAGE is very likely to get
stuck, because the chance of SAGE’s first generation entering f with the right
argument (m == 7) is extremely low, and SAGE always runs its first generation
to completion, and hence will execute the infinite loop forever. RP and KLEE
will also reach the assertion very slowly, since they waste time executing f where
m=£ 7; none of these paths lead to the assertion failure.



entry

1 void main() { 15 void f(int m, int n) {

2 intm, n; 16 inti, a, sum=0; m>=30— exit

3 symbolic(&m, sizeof(m), "m"); 17  for (i=0;i<6;i++) {

4 symbolic(&n, sizeof(n), "n"); 18 a =n%2; m==0--m==1-» m==30 --» m==999
5 // Some work 19 if (a) sum += a+1; . )

6 if (m >= 30) g(m, n); 20 n/=2; ’

7} 21} ISR - »a

s void g(int m, int n) { 22 while (1) { v /* '*

9 inti; 28 if (sum==0 && m==37) sum+=agti sums=ai+  sums=ag
10 for (i=0;i<1000;i++) { 24 assert(0); sum==0 && m==37

11 // Some work 25}

12 if (m ==1i) f(m, n); 26 } assert(0)

13}

Fig. 4. Example illustrating Mix-CCBSE’s potential benefit.

In contrast, CCBSE begins by running f with both parameters m and n set
to symbolic, as CCBSE does not know what values might be passed to f. Hence,
CCBSE will explore all 26 paths induced by the for loop, and one of them, say p,
will reach the assertion. Since m is purely symbolic, m == 7 is satisfiable. Then
inside main, CCBSE explores various paths that reach the call to f and then
try to follow p; hence CCBSE is able to short-circuit evaluation inside of f (in
particular, the 2° branching induced by the for-loop), and thus quickly find a
realizable path to the failure.

2.4 Mixing CCBSE with forward search

While CCBSE may find a path more quickly, it comes with a cost: its queries
tend to be more complex than in forward search, and it can spend significant
time trying paths that start in the middle of the program but are ultimately
infeasible. Consider Figure 4, a modified version of the code in Figure 3. Here,
main calls function g, which acts as main did in Figure 3, with some m >= 30
(line 6), and the assertion in f is reachable only when m == 37 (line 23). All
other strategies fail in the same manner as they do in Figure 3.

However, CCBSE also fails to perform well here, as it does not realize that m
is at least 30, and therefore considers ultimately infeasible conditions 0 < m < 36
in f. With Mix-CCBSE, however, we conceptually start forward symbolic execu-
tion from main at the same time that CCBSE (“backward search”) is run. The
backward search, just like CCBSE, finds a path from f’s entry to the assertion,
but then gets stuck in finding a path from g’s entry to the same assertion. How-
ever, in the forward search, g is called with m > 30, and therefore f is always
called with m > 30, making it hit the right condition m == 37 very soon there-
after. Notice that, in this example, the backward search must find the path from
f’s entry to the assertion before f is called with m == 37 in the forward search in
order for the two searches to match up (e.g., there are enough instructions to run
in line 5). Should this not happen, Mix-CCBSE degenerates to its constituents
running independently in parallel, which is the worst case.
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Fig. 5. SDSE distance computation.

3 Directed symbolic execution

In this section we present the details of our implementations of SDSE, CCBSE,
and Mix-CCBSE in Otter.

3.1 Shortest-distance symbolic execution

SDSE is implemented as a pick function from Figure 1. As previously described,
SDSE chooses the state on the worklist with the shortest distance to target. We
compute distances over an interprocedural control-flow graph (ICFG) [24], in
which function call sites are split into call nodes and return nodes, with call edges
connecting call nodes to function entries and return edges connecting function
exits to return nodes. For each call site 7, we label call and return edges by
(; and );, respectively. Figure 5(a) shows an example ICFG for a program in
which main calls foo twice; here call i to foo is labeled foo’.

We define the distance-to-target metric to be the length of the shortest path
in the ICFG from an instruction to the target, such that the path contains no
mismatched calls and returns. Formally, we can define such paths as those whose
sequence of edge labels form a string produced from the PN grammar shown
in Figure 5(b). In this grammar, developed by Fahndrich et al [11,35], S-paths
correspond to those that exactly match calls and returns; N-paths correspond to
entering functions only; and P-paths correspond to exiting functions only. For
example, the dotted path in Figure 5(a) is a PN-path: it traverses the matching
(foo0 and ) ro00 edges, and then traverses (o0 to the target. Notice that we avoid
conflating edges of different call sites by matching (; and ); edges, and thus we
can statically compute a context-sensitive distance-to-target metric.

PN-reachability was previously used for conservative static analysis [11, 35,
23]. However, in SDSE, we are always asking about PN-reachability from the
current instruction. Hence, rather than solve reachability for an arbitrary initial
P-path segment (which would correspond to asking about distances from the
current instruction in all calling contexts of that instruction), we restrict the ini-
tial P-path segment to the functions on the current call stack. For performance,
we statically pre-compute N-path and S-path distances for all instructions to
the target and combine them with P-path distances on demand.



3.2 Call-chain-backward symbolic execution

CCBSE is implemented in the manage_targets and pick functions from Figure 1.
Otter classifies states s according to the function f in which symbolic execution
starts, which we call the origin function. Thus, traditional symbolic execution
states always have main as their origin function, while CCBSE requires additional
origin functions. In particular, CCBSE begins by initializing states for functions
containing target lines.

The pick function works in two steps. First, it selects the origin function to
execute, and then it selects a state with that origin. For the former, it picks
the function f with the shortest-length call chain from main. At the start of
CCBSE with a single target, there will be only one function to choose, but as
execution continues there will be more choices, as we show below, and “shortest
to main” ensures that we move backward from target functions toward main.
After selecting the origin function f, pick chooses one of f’s states using a user-
selected forward search strategy. We write CCBSE(S) to denote CCBSE using
forward search strategy S.

The manage_targets(s) function is given in Figure 6. Recall from Figure 1
that s has already been added to the worklist for additional, standard forward
search; the job of manage_targets is to record which paths reach the target line
and to try to connect s with path suffixes previously found to reach the target.
The manage_targets function extracts from s both the origin function sf and the
(interprocedural) path p that has been explored from sf to the current point.
This path contains all the decisions made by the symbolic executor at condition
points. If the path’s end (denoted pc(p)) has reached a target, we associate p
with sf by calling update_paths; for the moment one can think of this function as
adding p to a list of paths that start at sf and reach targets. Otherwise, if the
path’s end is at a call to some function f, and f itself has paths to targets, then
we may possibly extend p with one or more of those paths. So we retrieve f’s
paths, and for each one p’ we see whether concatenating p to p’ (written p + p’)
produces a feasible path. If so, we add it to sf’s paths. Feasibility is checked by
attempting to symbolically execute p’ starting in p’s state s.

Now we turn to the implementation of update_paths. First, we simply add
p to s paths (line 17). If f did not yet have any paths, it will create initial
states for each of f’s callers (pre-computed from the call graph) and add these
to the worklist (line 18). Because these callers will be closer to main, they will
be subsequently favored by pick when it chooses states.

We implement Mix-CCBSE with a slight alteration to pick as described above.
At each step, we decide whether to use CCBSE next, or whether to use regular
forward search. The decision is made based on the system time (computed as 50 x
(no. of solver calls) 4+ (no. of instructions executed)) previously spent by each
strategy: if CCBSE has spent less system time in the past than forward search,
then it gets to run next, and otherwise the forward strategy runs next. This
approach splits the time between CCBSE and forward search roughly 50/50, with
variation due to differences between the time various solver queries or instruction



s manage_targets (s) 16 update_paths (f, p)
9 (sf.p) = path(s) 7 add_path(f, p);
10 if pc(p) € targets s if not(has_paths(f))

~

~

11 update_paths(sf, p) 19 add_callers(f,worklist)
12 else if pc(p) = callto(f) and has_paths(f)

13 for p' € get_paths(f)

1 if (p + p’ feasible)

15 update_paths(sf, p + p’)

Fig. 6. Target management for CCBSE.

executions take.! We could also allow the user to vary this percentage, as desired.
We write Mix-CCBSE(SF,Sg) to denote the mixed strategy where S is the
forward search strategy and CCBSE(Sg) is the backward strategy.

3.3 Starting symbolic execution “in the middle”

As mentioned above, the state initializer for CCBSE may start execution at an
arbitrary function, i.e., “in the middle” of an execution. Thus, it must gener-
ate symbolic values for function inputs (parameters and global variables) that
represent all possible initial conditions the function may be called in. We can
initialize integer-valued data to purely symbolic words, but representing arbi-
trarily complex, pointer-ful data structures presents additional challenges. For
example, we may start at a function that expects a linked list as its input, and
thus we want to create a symbolic state that can represent linked lists of any
length.

In Otter, memory is represented as a map from abstract addresses to sym-
bolic values, and each variable or dynamic memory allocation is given a sepa-
rate mapping in memory. Pointers are represented as (base, offset) pairs, where
base is the index into the memory map, and offset is a concrete or symbolic
integer (indicating the position of a struct field or array element). Null point-
ers are represented as the integer 0. Additionally, we represent pointers that
may point to multiple base addresses using conditional pointers of the form
if g then p else q, where g is a boolean symbolic value while p and ¢ are condi-
tionals or base-offset pairs. For example, a pointer that may be null, point to
a variable x, or point to the second element of an array y could be represented
as if go then 0 else if g1 then (&x,0) else (&y,2). Reads and writes through con-
ditional pointers use Morris’s general axiom of assignment [2, 29].

Thus, for pointer-valued inputs to functions at which CCBSE starts exe-
cution, we can represent arbitrary initial aliasing using conditional pointers in

1 We could also split execution in terms of wall-clock time spent in each strategy.
However, this leads to non-deterministic, non-reproducible results. We opted to use
our notion of system time for reproducibility.



which the guards g are fresh symbolic boolean variables. We experimented with
using a sound pointer analysis to seed this process, but found that it was both
expensive (the conditional pointers created were complex, leading to longer solv-
ing times) and unnecessary in practice. Instead, we use an unsound heuristic: for
inputs p of type pointer to type T', we construct a conditional pointer such that p
may be null or p may point to a fresh symbolic value of type T'. If T is a primitive
type, we also add a disjunct in which p may point to any element of an array of
4 fresh values of type T. This last case models parameters that are pointers to
arrays, and we restrict its use to primitive types for performance reasons. In our
experiments, we have not found this to be a limitation. Note these choices in
modeling pointers only mean that CCBSE could miss some targets, which any
heuristic symbolic execution search could also do; because CCBSE always works
backward to the start of main, all the final paths it produces are still feasible.

To be able to represent recursive data structures, Otter initializes pointers
lazily—we do not actually create conditional pointers until a pointer is used, and
we only initialize as much of the memory map as is required.

4 Experiments

We evaluated our directed search strategies by comparing their performance on
the small example programs from Section 2 and on bugs reported in six programs
from GNU Coreutils version 6.10. These bugs were previously discovered by
KLEE [5].

The results are presented in Table 1. Part (a) of the table gives results for
our directed search strategies. For comparison purposes, we also implemented
an intraprocedural variant of SDSE; we refer to that variant as IntraSDSE, and
to the strategy from Section 3.1 as InterSDSE. This table lists three variants
of CCBSE, using RP, InterSDSE, or IntraSDSE as the forward strategy. In the
last two cases, we modified Inter- and IntraSDSE slightly to compute shortest
distances to the target line or to the functions reached in CCBSE’s backward
search. This allows those strategies to take better advantage of CCBSE (other-
wise they would ignore CCBSE’s search in determining which paths to take).

Part (b) of the table gives the results from running KLEE version r130848
[22], and part (c) gives the results for forward search strategies implemented in
Otter, both by themselves and mixed with CCBSE(RP). We chose CCBSE(RP)
because it was the best overall of the three from part (a), and because RP
is the fastest of the forward-only strategies in part (c). Since we always mix
strategies with CCBSE(RP), we will write Mix-CCBSE(S) as an abbreviation
for Mix-CCBSE(S, RP). We did not directly compare against execution synthesis
(ESD) [42], a previously proposed directed search strategy; at the end of this
section we relate our results to those reported in the ESD paper.

We found that the randomness inherent in most search strategies and in the
STP theorem prover introduces tremendous variability in the results. Thus, we
ran each strategy/target condition 41 times, using integers 1 to 41 as random
seeds for Otter. (We were unable to find a similar option in KLEE, and so simply



Inter- Intra- CCBSE(X) where X is KLEE
SDSE SDSE RP InterSDSE | IntraSDSE
Figure 2|| 0.4 00 0.4 o0 16.2 240 0.5 oom)| 0.4 0003 2.6 0.0(7)
Figure 3 ) ) 60.8 7s(4)| 7.3 120 7.2 104) o
Figure 4 [ee] o] o] [ee] (e e] [e’e]
mkdir 34.7 19.7(10) 3 163.0 425 | 150.3 934 | 150.7 939 00
mkfifo 13.1 o4 oo 70.2 173 49.7 218 49.3 23.2(1)| | 274.2 315.6(9)
mknod 00 00 216.5 60.7 00 00 851.6 554.2(8)
paste 12.6 o5 56.4 5.4 26.0 o51) 31.0 438 32.1 40 30.6 9.7(8)
ptx 18.4 o06(4)| 103.5 19.7(1)| 24.2 o07(1)| 24.5 093)| 24.1 112 93.8 81.7(7)
seq 12.1 o04(1) ) 30.9 14 | 369.3 425.9(6)| 391.8 411.1(6) 38.2 14.5(8)
Total 1891.0 7360.0 530.9 2424.8 2448.0 3088.55
(a) Directed search strategies (b) KLEE
Otter-KLEE Otter-SAGE Random Path
Pure w/CCBSE Pure w/CCBSE Pure w/CCBSE
Figure 2|| 101.1 57.5(4)| 104.8 57.3(5) S oo 15.3 22(6)| 16.1 2.6(6)
Figure 3|| 579.7 <~ | 205.5 133.1(9) 00 o0 160.1 64(1n)| 80.6 177.2(9)
Figure 4|| 587.8 o | 147.6 62.6(7) oo ) 169.8 9.1(8)| 106.8 11.2(4)
mkdir 168.9 310 | 124.7 1212)| 365.3 354.2(5)| 1667.7 o | 143.5 53 | 136.4 7.9
mkfifo 41.7 s21)| 38.2 46 77.6 101122)] 251.9 257.08)| 59.4 3.7 52.7 18(1)
mknod || 174.8 24.1 93.1 127 | 108.5 158.7(5)| 236.4 215.0(5)| 196.7 3.9(2)| 148.9 118
paste 22.6 054) 28.6 093)| 54.9 36205 60.4 5213)| 22.1 06 27.3 1o(1)
ptx 33.2 39 27.1 27 00 o0 28.9 o8 28.1 11(2)
seq 354.8 943(1)| 49.3 5101 0 288.8 o« | 170.8 373)| 35.9 14(1)
Total 795.8 360.9 4206.4 4305.3 621.3 429.4
(c) Undirected search strategies and their mixes with CCBSE(RP)
Table 1. Statistics from benchmark runs. Key: | Median SIQR(Outliers) | 00 : time out

ran it 41 times.) The main numbers in Table 1 are the medians of these runs,
and the small numbers are the semi-interquartile range (SIQR). In parentheses
are the number of outliers, which fall 3xSIQR below the lower quartile or above
the upper quartile, if non-zero. We ran each test for a maximum of 600 seconds
for the synthetic examples, and 1,800 seconds for the Coreutils programs. The
median is oo if more than half the runs timed out, while the SIQR is oo if more
than one quarter of the runs timed out. The fastest two times in each row are
highlighted.

All experiments were run on a machine with six 2.4Ghz quad-core Xeon
E7450 processors and 48GB of memory, running 64-bit Linux 2.6.26. We ran
only 16 tests in parallel, to minimize resource contention. The results required
less than 2 days of elapsed time. Total memory usage was below 1GB per test.




4.1 Synthetic programs

The first two rows in Table 1 give the results from the examples in Figures 2, 3,
and 4. In all cases the programs behaved as predicted.

For the program in Figure 2, both InterSDSE and IntraSDSE performed very
well. Since the target line is in main, CCBSE(*SDSE) is equivalent to *SDSE, so
those variants performed equally well. Otter-KLEE took much longer to find the
target, with more than a quarter of the runs timing out, whereas Otter-SAGE
timed out for more than half the runs. RP was able to find the target, but it
took much longer than *SDSE. Note that CCBSE(RP) degenerates to RP in
this example, and runs in about the same time as RP. Lastly, KLEE performed
very well also, although it was still slower than *SDSE in this example.

For the program in Figure 3, CCBSE(InterSDSE) and CCBSE(IntraSDSE)
found the target line quickly, while CCBSE(RP) did so in reasonable amount of
time. CCBSE(*SDSE) were much more efficient, because with these strategies,
after each failing verification of f(m,n) (when 0 < m < 7), the *SDSE strategies
chose to try f(m+1,n) rather than stepping into f, as f is a target added by CCBSE
and is closer from any point in main than the assertion in f is.

For the program in Figure 4, Mix-CCBSE(RP) and Mix-CCBSE(Otter-KLEE)
performed the best among all strategies, as expected. However, Mix-CCBSE(Otter-
SAGE) performed far worse. This is because its forward search (Otter-SAGE)
got stuck in one value of m in the very beginning, and therefore it and the
backward search did not match up.

4.2 GNU Coreutils

The lower rows of Table 1 give the results from the Coreutils programs. The six
programs we analyzed contain a total of 2.4 kloc and share a common library of
about 30 kloc. For each bug, we manually added a corresponding failing assertion
to the program, and set that as the target line. For example, the Coreutils
program seq has a buffer overflow in which an index i accesses outside the bounds
of a string fmt [28]. Thus, just before this array access, we added an assertion
assert(i<strlen(fmt)) to indicate the overflow. Note that Otter does have built-in
detection of buffer overflows and similar errors, but for this experiment we do
not count those as valid targets for line reachability.

The Coreutils programs receive input from the command line and from stan-
dard input. We initialized the command line as in KLEE [5]: given a sequence of
integers ny,na, - - - ,ng, Otter sets the program to have (excluding the program
name) at least 0 and at most k arguments, where the ith argument is a symbolic
string of length n;. All of the programs we analyzed used (10,2, 2) as the input
sequence, except mknod, which used (10, 2,2, 2). Standard input is implemented
as an unbounded stream of symbolic values.

Since Otter is a source-code-only symbolic executor, we needed complete li-
brary function source code to symbolically execute Coreutils programs. To this
end, we implemented a symbolic model of POSIX system calls and the file sys-
tem, and use newlib [31] as the C standard library.



1 int main(int argc, charxx argv) {

2 while ((optc = getopt_long (argc, argv, opts, longopts, NULL)) != —1) { ... } ...
8 if (/* some condition /) quote(...);

4

5 if (/* another condition */) quote(...);

5}

Fig. 7. Code pattern in mkdir, mkfifo and mknod

Analysis. We can see clearly from the shaded boxes in Table 1 that InterSDSE
performed extremely well, achieving the fastest running times on five of the six
programs. However, InterSDSE timed out on mknod. Examining this program,
we found it shares a similar structure with mkdir and mkfifo, sketched in Figure 7.
These programs parse their command line arguments with getopt_long, and then
branch depending on those arguments; several of these branches call the same
function quote(). In mkdir and mkfifo, the target is reachable within the first call
to quote(), and thus SDSE can find it quickly. However, in mknod, the bug is
only reachable in a later call to quote()—but since the first call to quote() is a
shorter path to the target line, InterSDSE takes that call and then gets stuck
inside quote(), never returning to main() to find the path to the failing assertion.

The last row in Table 1 sums up the median times for the Coreutils pro-
grams, counting time-outs as 1,800s. These results show that mixing a forward
search with CCBSE can be a significant improvement—for Otter-KLEE and
Random Path, the total times are notably less when mixed with CCBSE. One
particularly interesting result is that Mix-CCBSE(Otter-KLEE) runs dramati-
cally faster on mknod than either of its constituents (93.1s for the combination
versus 174.8s for Otter-KLEE and 216.5s for CCBSE(RP)). This case demon-
strates the benefit of mixing forward and backward search: in the combination,
CCBSE(RP) found the failing path inside of quote() (recall Figure 7), and Otter-
KLEE found the path from the beginning of main() to the right call to quote().
We also observe that the SIQR for Mix-CCBSE(Otter-KLEE) is generally lower
than either of its constituents, which is a further benefit.

Overall, Mix-CCBSE(Otter-KLEE) has the fastest total running time across
all strategies, including InterSDSE (because of its time-out); and although it is
not always the fastest search strategy, it is subjectively fast enough on these ex-
amples. Thus, our results suggest that the best single strategy option for solving
line reachability is Mix-CCBSE(Otter-KLEE), or perhaps Mix-CCBSE(Otter-
KLEE) in round-robin with InterSDSE to combine the strengths of both.

Ezecution synthesis. ESD [42] is a symbolic execution tool that also aims to solve
the line reachability problem (ESD also includes other features, such as support
for multi-threaded programs). Given a program and a bug report, ESD extracts
the bug location and tries to produce an execution that leads to the bug. It uses
a prozimity-guided path search that is similar to our IntraSDSE algorithm. ESD
also uses an interprocedural reaching definition analysis to find intermediate
goals from the program start to the bug location, and directs search to those



goals. The published results show that ESD works very well on five Coreutils
programs, four of which (mkdir, mkfifo, mknod, and paste) we also analyzed.

Since ESD is not publicly available, we were unable to include it in our
experiment directly, and we found it difficult to replicate from the description in
the paper. One thing we can say for certain is that the interprocedural reaching
definition analysis in ESD is clearly critical, as our implementation of IntraSDSE
by itself performed quite poorly.

Comparing published numbers, InterSDSE in parallel with Mix-CCBSE(Otter-
KLEE) performs in the same ballpark as ESD, which took 15s for mkdir, 15s for
mkfifo, 20s for mknod, and 25s for paste. The authors informed us that they did
not observe variability in their experiment, which consists of 5 runs per test pro-
gram [43]. However, we find this surprising, since ESD employs randomization
in its search strategy, and is implemented on top of KLEE which performance
we have found to be highly variable (Table 1).

Clearly this comparison should be taken with a grain of salt due to major
differences between Otter and ESD as well as in the experimental setups. These
include the version of KLEE evaluated (we used the latest version of KLEE as
of April 2011, whereas the ESD paper is based on a pre-release 2008 version of
KLEE), symbolic parameters, default search strategy, processor speed, memory,
Linux kernel version, whether tests are run in parallel or sequentially, the number
of runs per test program, and how random number generators are seeded. These
differences may also explain a discrepancy between our evaluations of KLEE:
the ESD paper reported that KLEE was not able to find those bugs within an
hour, but we were able to find them with KLEE (nearly one-third of the runs
for mkdir returned within half an hour, which is not reflected by its median; see
Appendix A.1).

Threats to validity. There are several threats to the validity of our results. First,
we were surprised by the wide variability in our results: the SIQR can be very
large—in some cases for CCBSE(*SDSE) and Otter-SAGE, the SIQR exceeds
the median—and there are some outliers.? This indicates the results are not
normally distributed, and suggests that randomness in symbolic execution can
greatly perturb the results. To our knowledge, this kind of significant variability
has not been reported well in the literature, and we recommend that future efforts
on symbolic execution carefully consider it in their analyses. That said, the vari-
ation in results for CCBSE(Otter-KLEE) and InterSDSE, the best-performing
strategies, was generally low.

Second, our implementation of KLEE and SAGE unavoidably differs from
the original versions. The original KLEE is based on LLVM [25], whereas Otter
is based on CIL, and therefore they compute distance metrics over different
control-flow graphs. Also, Otter uses newlib [31] as the standard C library, while
KLEE uses uclibe [39]. These may explain some of the difference between KLEE
and Otter-KLEE’s performance in Table 1.

2 Appendix A shows beeswarm distribution plots for each cell in the results table.



Finally, the original SAGE is a concolic executor, which runs programs to
completion using the underlying operating system, while Otter-SAGE emulates
the run-to-completion behavior by not switching away from the currently exe-
cuting path. There are other differences between SAGE and Otter, e.g., SAGE
only invokes the theorem prover at the end of path exploration, whereas Otter
invokes the theorem prover at every conditional along the path. Also, SAGE suf-
fers from divergences, where a generated input may not follow a predicted path
(possibly repeating a previously explored path) due to mismatches between the
system model and the underlying system. Otter does not suffer from divergences
because it uses a purely symbolic system model. These differences may make the
SAGE strategy less suited to Otter.

5 Other related work

Several other researchers have proposed general symbolic execution search strate-
gies, in addition to the ones discussed in Section 2. Hybrid concolic testing mixes
random testing with symbolic execution [26]. Burnim and Sen propose several
such heuristics, including a control-flow graph based search strategy [4]. Xie et al
propose Fitnex, a strategy that uses fitness values to guide path exploration [41].
It would be interesting future work to compare against these strategies as well;
we conjecture that, as these are general rather than targeted search strategies,
they will not perform as well as our approach for targeted search.

In addition to improved search strategies, researchers have explored other
means to make symbolic execution more scalable. Majumdar and Xu propose
using symbolic grammars to guide symbolic execution by reducing the space
of possible inputs [27]. Godefroid et al propose a similar idea with improved
scalability [14]. Boonstoppel et al propose RWset analysis to prune symbolic
execution paths that are redundant with prior path exploration [1]. Composi-
tional Dynamic Testing creates function summaries during symbolic execution to
improve performance [13]. Loop-extended symbolic execution attempts to sum-
marize multiple loop iterations, so that a small number of symbolic executions
of a loop body can capture many possible unrollings of the loop [37]. While all
of these ideas are promising, they are orthogonal to the directed symbolic exe-
cution we explore in this paper—it should be possible to combine any of them
with our proposed search strategies.

Prior work has explored the issue of initializing pointers in symbolic execu-
tion. Symbolic Java PathFinder lazily initializes object references, and uses types
to infer aliasing [20]. CUTE, a concolic executor, starts at an arbitrary function
by initializing pointers based at first on a simple heap with abstract addresses,
and incrementally increasing the heap complexity in subsequent runs [38]. Ex-
tensions to SAGE [10] and to Pex [40] build on CUTE by modeling pointers as
symbolic integers; the latter also uses types to enforce non-aliasing constraints.
Otter combines the approaches of JPF and SAGE/Pex by modeling pointers as
lazily initialized conditionals of abstract addresses with symbolic integer offsets.



6 Conclusion

In this paper, we studied the problem of line reachability, which arises in the
applications of automated debugging and triaging static analysis results. We in-
troduced two new directed search strategies, SDSE and CCBSE, that use two
very different approaches to solve line reachability. We also discussed a method
for combining CCBSE with any forward search strategy, to get the best of both
worlds. We implemented these strategies and a range of state-of-the-art forward
search strategies (KLEE, SAGE, and Random Path) in Otter, and studied their
performance on six programs from GNU Coreutils and on two synthetic pro-
grams. The results indicate that both SDSE and mixed CCBSE and KLEE out-
performed the other strategies. While SDSE performed extremely well in many
cases, it does perform badly sometimes, whereas mixing CCBSE with KLEE
achieves the best overall running time across all strategies, including SDSE. In
summary, our results suggest that directed symbolic execution is a practical and
effective approach to line reachability.
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A Beeswarm distribution plots of benchmark results

A.1 Grouped by strategy

The following plots are beeswarm distribution plots generated in R [33] using
the beeswarm [34] package. Each set of plots corresponds to a strategy, and each
subplot to a benchmark program from our experiment (Section 4). Each point
corresponds to the time it takes for a single run to complete. The points are
plotted vertically along the y axis, which is scaled to the slowest run that did
not time out for each strategy across all benchmark programs, and randomly
dispersed horizontally to avoid overlap. Runs that timed out are plotted either
just above the upper limit of y axis, or at 1,800 seconds.
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A.2 Overlaid Pure(S), Random Path, Mix-CCBSE(S)

To compare Mix-CCBSE strategies against its components, each of the following
plots overlays three beeswarm distribution plots: Pure(S), which is the standard
forward strategy S, Random Path, and Mix-CCBSE(S).
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A.3 Analysis

Many of the distributions in Appendix A.1 are bimodal, which can be seen as
two distinct clusters of run times. Since the distributions are observably non-
normal, it is inappropriate to summarize our experimental results using mean
and standard deviation statistics. Thus, in Table 1, we report the median and
SIQR, which are non-parametric (distribution-agnostic) statistics.

Bimodal distribution in CCBSE(RP). CCBSE(RP) is distinctly bimodal for
mkdir, mkfifo and mknod, and to a lesser extent for Figure 2. We analyzed these
runs and found that, for the faster clusters, CCBSE(RP) found paths from quote
to the target line that are also realizable from main. When CCBSE eventually
works backwards to main, the search then short-circuits from main through quote
to the target line. Thus, these cases demonstrate the advantages of CCBSE.

For the slower clusters, CCBSE(RP) found paths originating from quote that
are ultimately not realizable from main. Here, CCBSE(RP) degenerates to pure
Random Path with overhead: it works backwards to main (which is the overhead),
and then finds a different path to the target. Looking at the Random Path plot
in Appendix A.2, we can see that it is indeed the case that the slower cluster in
CCBSE(RP) is slightly slower than Random Path.

Bimodal distributions due to time outs. The distributions of several other strat-
egy/program test conditions are also bimodal in that runs either finish quickly
or time out. KLEE as well as strategies involving Otter-KLEE and Otter-SAGE
seem to exhibit this issue. We speculate that this is due to the coverage-based
heuristics used by these strategies: if a run happens to explore paths that cover
many of the same lines as the path to the target, the coverage heuristic may
then penalize the path to the target, making it more likely to time out. As a
result, the timed-out cluster becomes more distinctly separated from the timely
clusters, as seen in the plots.

In general, randomness in a strategy can lead to exploration that never
reaches the target in certain programs, therefore creating two clusters of timely
and timed-out runs.

Miz-CCBSE. At the end of Section 2.3, we explained that we mix strategies with
CCBSE in order to get the best of both worlds, but it can as well degenerate to
being worse than either. The plots in Appendix A.2 show more examples of the
former than the latter.

For Otter-KLEE and Random Path, Mix-CCBSE (as shown by green crosses)
tends to be located towards the bottom of the distribution for each program;
in the case of Mix-CCBSE(Otter-KLEE) for mknod, it is located at the bottom,
i.e., Mix-CCBSE(Otter-KLEE) performs better than either of its constituents
alone.

The analysis for Otter-SAGE is less positive: Mix-CCBSE(Otter-SAGE) seems
to be as bad as Otter-SAGE alone. We speculate that this is because Otter-SAGE
will always run a path to completion, even if the path has reached a point in the



program where the target is no longer reachable, and Mix-CCBSE(Otter-SAGE)
can no longer take advantage the partial paths found by CCBSE.



