
Static Type Inference for Ruby

Michael Furr Jong-hoon (David) An Jeffrey S. Foster Michael Hicks

Department of Computer Science
University of Maryland

College Park, MD 20742
{furr,davidan,jfoster,mwh}@cs.umd.edu

ABSTRACT
Many general-purpose, object-oriented scripting languages are dy-
namically typed, which provides flexibility but leaves the program-
mer without the benefits of static typing, including early error de-
tection and the documentation provided by type annotations. This
paper describes Diamondback Ruby (DRuby), a tool that blends
Ruby’s dynamic type system with a static typing discipline. DRuby
provides a type language that is rich enough to precisely type Ruby
code we have encountered, without unneeded complexity. When
possible, DRuby infers static types to discover type errors in Ruby
programs. When necessary, the programmer can provide DRuby
with annotations that assign static types to dynamic code. These
annotations are checked at run time, isolating type errors to unver-
ified code. We applied DRuby to a suite of benchmarks and found
several bugs that would cause run-time type errors. DRuby also re-
ported a number of warnings that reveal questionable programming
practices in the benchmarks. We believe that DRuby takes a major
step toward bringing the benefits of combined static and dynamic
typing to Ruby and other object-oriented languages.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program analysis

General Terms
Languages, Verification

Keywords
dynamic typing, Ruby, type inference, contracts

1. INTRODUCTION
Dynamic type systems are popular in general-purpose, object-

oriented scripting languages like Ruby, Python and Perl. Dynamic
typing is appealing because it ensures that no correct program exe-
cution is stopped prematurely—only programs about to “go wrong”
at run time are rejected.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

However, this flexibility comes at a price. Programming mis-
takes that would be caught by static typing, e.g., calling a method
with the wrong argument types, remain latent until run time. Such
errors can be painful to track down, especially in larger programs.
Moreover, with pure dynamic typing, programmers lose the con-
cise, automatically-checked documentation provided by type anno-
tations. For example, the Ruby standard library includes textual
descriptions of types, but they are not used by the Ruby interpreter
in any way, and in fact, we found several mistakes in these ad hoc
type signatures in the process of performing this research.

To address this situation, we have developed Diamondback Ruby
(DRuby), an extension to Ruby that blends the benefits of static
and dynamic typing. Our aim is to add a typing discipline that
is simple for programmers to use, flexible enough to handle com-
mon idioms, that provides programmers with additional checking
where they want it, and reverts to run-time checks where necessary.
DRuby is focused on Ruby, but we expect the advances we make
to apply to many other scripting languages as well. Our vision of
DRuby was inspired by an exciting body of recent work on mixing
static and dynamic typing, including ideas such as soft typing [14],
the dynamic type [2], gradual typing [33], and contracts [16].

Designing DRuby’s type system has been a careful balancing act.
On the one hand, we would like to statically discover all programs
that produce a type error at run time. On the other hand, we should
not falsely reject too many correct programs, lest programmers find
static typing too restrictive. Our approach is to compromise on both
of these fronts: We accept some programs that are dynamically
incorrect, and reject some programs that are dynamically correct.

In particular, we use type inference to model most of Ruby’s
idioms as precisely as possible without any need for programmer
intervention. For example, we track the types of local variables
flow-sensitively through the program, e.g., allowing a variable to
first contain a String and then later an Array. On the other hand,
we provide no precise characterization of Ruby’s more dynamic
features, such as metaprogramming with eval or removing methods
with Module.remove method. Incorrect usage of these features
could lead to a run-time type error that DRuby fails to warn about.

Between these two extremes lies some middle ground: DRuby
might not be able to infer a static type for a method, but it may
nonetheless have one. For example, DRuby supports but does not
infer intersection and universal types. To model these kinds of
types, DRuby provides an annotation language that allows pro-
grammers to annotate code with types that are assumed correct at
compile time and then are checked dynamically at run time. While
the Ruby interpreter already safely aborts an execution after a run-
time type error, our checked annotations localize errors and prop-
erly blame [16] the errant code.

To summarize, DRuby makes three main contributions. First,

DRuby includes a type language with features we found necessary
to precisely type Ruby code: union and intersection types [28],
object types (to complement nominal types) [1], a self type [12],
parametric polymorphism [29], tuple types for heterogeneous ar-
rays, and optional and variable arguments in method types.

Second, DRuby includes a surface type annotation syntax. An-
notations are required to give types to Ruby’s core standard library,
since it is written in C rather than Ruby, and they are also use-
ful for providing types for Ruby code that uses hard-to-analyze
features. These annotations are dynamically checked and provide
blame tracking, i.e., statically typed code is never blamed for a
run-time type error. We believe our annotation language is easy
to understand, and indeed it resembles the “types” written down
informally in the standard library documentation.

Finally, DRuby includes a type inference algorithm to statically
discover type errors in Ruby programs, which can help program-
mers detect problems much earlier than dynamic typing. By pro-
viding type inference, DRuby helps maintain the lightweight feel
of Ruby, since programmers need not write down extensive type
annotations to gain the benefits of static typing.

We have applied DRuby to a suite of benchmark programs rang-
ing from 29–1030 lines of code. Our benchmarks are representa-
tive of the kinds of scripts programmers write with Ruby. DRuby
found these 18 benchmarks to be largely amenable to static typing:
it reported 5 potential errors and 16 warnings for questionable code
compared to 16 false positives.

We believe that DRuby takes a major step toward combining the
benefits of static and dynamic typing in object-oriented program-
ming languages.

2. STATIC TYPES FOR RUBY
We present DRuby’s type system by example; we elide a full

formal presentation due to space constraints. The design of DRuby
was driven by experience—we included features expressive enough
to type idioms common in our benchmark programs and the stan-
dard library APIs, but at the same time we tried to keep types easy
for programmers to understand.

Basic Types and Type Annotations. In Ruby, everything is
an object, and all objects are class instances. For example, 42 is an
instance of Fixnum, true is an instance of TrueClass, and an instance
of a class defined with class A...end is created with A.new. Thus, a
basic DRuby type is simply a class name, e.g., Fixnum, TrueClass,
A, etc. Classes can extend other classes, but a subclass need not be
a subtype. The class Object is the root of the class hierarchy.

Although Ruby gives the illusion that built-in values such as 42
and true are objects, in fact they are implemented inside the Ruby
interpreter in C code, and thus DRuby cannot infer the types of
these classes. However, we can declare their types using DRuby’s
type annotation language. In DRuby, type annotations appear be-
fore the corresponding class or method declaration. All annotations
appear on a line beginning with ##%, and therefore appear as com-
ments to the standard Ruby interpreter.

We developed a file base_types.rb that annotates the “core
library,” which contains classes and globals that are pre-loaded by
the Ruby interpreter and are implemented purely in C. This file
includes types for portions of 185 classes and 17 modules, using
997 lines of type annotations in total. Our implementation analyzes
base_types.rb before applying type inference to a program.

For example, here is part of the declaration of class String, with
##% removed for clarity:

class String
”+” : (String) → String

insert : (Fixnum, String) → String
...

end

The first declaration types the method + (non-alphanumeric me-
thod names appear in quotes), which concatenates a String argu-
ment with the receiver and returns a new String. Similarly, the
next line declares that insert takes a Fixnum (the index to insert at)
and another String, and produces a new String as a result.

Intersection Types. Many methods in the standard library have
different behaviors depending on the number and types of their ar-
guments. For example, here is the type of String’s include? me-
thod, which either takes a Fixnum representing a character and re-
turns true if the object contains that character, or takes a String and
performs a substring test:

include? : (Fixnum)→ Boolean
include? : (String) → Boolean

The type of include? is an example of an intersection type [28]. A
general intersection type has the form t and t′, and a value of such a
type has both type t and type t′. For example, if A and B are classes,
an object of type A and B must be a common subtype of both A
and B. In our annotation syntax for methods, the and keyword
is omitted (only method types may appear in an intersection), and
each conjunct of the intersection is listed on its own line.

Another example of intersection types is String’s slice method,
which returns either a character or a substring:

slice : (Fixnum)→ Fixnum
slice : (Range)→ String
slice : (Regexp)→ String
slice : (String) → String
slice : (Fixnum, Fixnum)→ String
slice : (Regexp, Fixnum)→ String

Notice that this type has quite a few cases, and in fact, the Ruby
standard library documentation for this function has essentially the
same type list.1 Intersection types serve a purpose similar to me-
thod overloading in Java, although they are resolved at run time
via type introspection rather than at compile time via type check-
ing. Annotation support for intersection types is critical for ac-
curately modeling key parts of the core library—74 methods in
base_types.rb use intersection types. Note that our inference
system is currently unable to infer intersection types, as method
bodies may perform ad-hoc type tests to differentiate various cases,
and so they can currently be created only via annotations.

Optional Arguments and Varargs. One particularly com-
mon use of intersection types is methods with optional arguments.
For example, String’s chomp method has the following type:

chomp : () → String
chomp : (String) → String

Calling chomp with an argument s removes s from the end of self,
and calling chomp with no arguments removes the value of (global
variable) $/ from self. Since optional arguments are so common,
DRuby allows them to be concisely specified by prefixing an argu-
ment type with ?. The following type for chomp is equivalent to
the intersection type above:

chomp : (?String) → String

DRuby also supports varargs parameters, specified as ∗t, meaning
zero or more parameters of type t (the corresponding formal argu-
ment would contain an Array of t’s). For example, here is the type
of delete, which removes any characters in the intersection of its
(one or more) String arguments from self:
1
http://ruby-doc.org/core/classes/String.html#M000858

delete : (String , ∗String) → String

Notice this type is equivalent to an intersection of an unbounded
number of types.

Union Types. Dually to intersection types, DRuby supports union
types, which allow programmers to mix different classes that share
common methods. For example, consider the following code:

class A; def f () end end
class B; def f () end end
x = (if ... then A.new else B.new)
x. f

Even though we cannot statically decide if x is an A or a B, this
program is clearly well-typed at run time, since both classes have
an f method. Notice that if we wanted to write a program like this
in Java, we would need to create some interface I with method f,
and have both A and B implement I. In contrast, DRuby supports
union types of the form t or t′, where t and t′ are types (which can
themselves be unions) [24]. For example, x above would have type
A or B, and we can invoke any method on x that is common to A
and B. We should emphasize the difference with intersection types
here: A value of type A and B is both an A and a B, and so it has
both A’s and B’s methods, rather than the union type, which has
one set of methods or the other set, and we do not know which.

Note that the type Boolean used in the type of include? above
is equivalent to TrueClass or FalseClass (the classes of true and
false, respectively). In practice we just treat Boolean as a pseudo-
class, since distinguishing true from false statically is essentially
useless—most uses of Booleans could yield either truth value.

The self type. Consider the following code snippet:

class A; def me() self end end
class B < A; end
B.new.me

Here class A defines a method me that returns self. We could
naively give me the type () → A, but observe that B inherits me,
and the method invocation on the last line returns an instance of B,
not of A. Thus we include the type of self as an implicit parameter
to every method and bind it to the receiver. Similarly, the clone
method of Kernel (a module included in all other classes) has type
() → self. Self annotations are de-sugared into a form of paramet-
ric polymorphism, described below.

Object Types. Thus far we have only discussed types constructed
from class names and self. However, we need richer types for in-
ference, so we can describe objects whose classes we do not yet
know. For example, consider the following code snippet:

def f (x) y = x.foo; z = x.bar; end

If we wanted to stick to nominal typing only, we could try to find all
classes that have methods foo and bar, and then give x a type that
is the union of all such classes. However, this would be both ex-
tremely messy and non-modular, since changing the set of classes
might require updating the type of f.

Instead, DRuby includes object types [m0 : t0, . . . ,mn : tn],
which describes an object in which each method mi has type ti.
The parameter x above has type [foo : () → t, bar : () → u] for
some t and u. As another example, base_types.rb gives the print
method of Kernel the type

print : (∗[to s : () → String])→ NilClass

Thus print takes zero or more objects as arguments, each of which
has a no-argument to s method that produces a String. Object

types are critical to describe user code, but they are not that com-
mon in annotations for the core library. Only eight methods in
base_types.rb include object types.

Note that we do not include fields in the annotation syntax for ob-
ject types since they cannot be accessed outside of the class’s meth-
ods. During inference, we model fields flow-insensitively, giving a
field the same type across all instances of its class.

Parametric Polymorphism. To give precise types to container
classes, we use parametric polymorphism, also called generics in
Java. For example, here is part of the Array class type, which is
parameterized by a type variable t, the type of the array contents:

class Array<t>
at : (Fixnum)→ t
collect<u> : () {t → u} → Array<u>
...

end

As usual, type variables bound at the top of a class can be used
anywhere inside that class. For example, the at method takes an
index and returns the element at that index. Methods may also
be parametrically polymorphic. For example, for any type u, the
collect (map) method takes a code block (higher-order function)
from t to u and produces an array of u.

DRuby uses parametric polymorphism internally for self types
by including the method receiver as an implicit argument in the
method signature. For example, we translate the method type for
clone to the type <u> : (u)→ u, where the receiver object of the
method call is passed as the first argument.

Mixins. Ruby includes support for modules (a.k.a mixins [11])
for implementing multiple inheritance. For example, the following
code defines a module Ordered, which includes an leq method that
calls another method⇔ (three-way comparison). Class Container
mixes in Ordered via include and defines the needed⇔ method.

module Ordered # module/mixin creation
def leq(x)

(self ⇔ x) ≤ 0 # note ”⇔” does not exist here
end end

class Container
include Ordered # mix in module
def⇔(other) # define required method

@x⇔ other.get
end end

Standard object-oriented type systems would check all the methods
in a class together, but DRuby cannot do that because of mixins,
e.g., when typing leq, the actual⇔ method referred to depends on
where Ordered is included. Instead, whenever a method m invokes
another method on self, DRuby adds the appropriate constraints to
self, e.g., when typing leq, DRuby adds a constraint that self has
a ⇔ method. Then when m is called, we check those constraints
against the actual receiver. Typically modules also have polymor-
phic type signatures, so that they can be mixed into several different
classes without conflating their types.

Tuple Types. The type Array<t> describes homogeneous arrays
in which each element has the same type. However, since it is dy-
namically typed, Ruby also allows programmers to create heteroge-
neous arrays, in which each element may have a different type. This
is especially common for returning multiple values from a function,
and there is even special parallel assignment syntax for it. For ex-
ample, the following code

def f () [1, true] end
a, b = f

assigns 1 to a and true to b. If we were to type f’s return value
as a homogeneous Array, the best we could do is Array<Fixnum or
Boolean>, with a corresponding loss of precision.

DRuby includes a special type Tuple<t1,. . ., tn> that represents
an array whose element types are, left to right, t1 through tn. When
we access an element of a Tuple using parallel assignment, we then
know precisely the element type.

Of course, we may initially decide something is a Tuple, but then
subsequently perform an operation that loses the individual element
types, such as mutating a random element or appending an Array.
In these cases, we apply a special subsumption rule that replaces
the type Tuple<t1, . . ., tn> with the type Array<t1 or . . . or tn>.

First Class Methods. DRuby includes support for another spe-
cial kind of array: method parameter lists. Ruby’s syntax permits
at most one code block (higher-order function) to be passed to a
method. For example, we can map λx.x+1 over an array as follows:

[1, 2, 3]. collect {|x| x + 1} # returns [2, 3, 4]

If we want to pass multiple code blocks into a method or do other
higher-order programming (e.g., store a code block in a data struc-
ture), we need to convert it to a Proc object:

f = Proc.new {|x| x + 1} # f is λx.x+1
f . call (3) # returns 4

A Proc object can be constructed from any code block and may
be called with any number of arguments. To support this special
behavior, in base_types.rb, we declare Proc as follows:

class Proc<ˆargs,ret>
initialize : () {(ˆargs) → ret} → Proc<ˆargs,ret>
call : (ˆargs) → ret

end

The Proc class is parameterized by a parameter list type ^args and a
return type ret. The ^ character acts as a type constructor allowing
parameter list types to appear as first class types. The initialize
method (the constructor called when Proc.new is invoked) takes a
block with parameter types ^args and a return type ret and returns
a corresponding Proc. The call method takes then has the same
parameter and return types.

As another example use of ^, consider the Hash class:

class Hash<k, v>
initialize : () {(Hash<k, v>, k)→ v} → Hash<k, v>
default proc : () → Proc<ˆ(Hash<k, v>, k),v>

end

The Hash class is parameterized by k and v, the types of the hash
keys and values, respectively. When creating a hash table, the pro-
grammer may supply a default function that is called when an ac-
cessing a non-existent key. Thus the type of initialize includes a
block that is passed the hash table (Hash<k,v>) and the missing
key (k), and produces a value of type v. The programmer can later
extract this method using the default proc method, which returns a
Proc object with the same type as the block.

Types for Variables and Nil. DRuby tracks the types of local
variables flow-sensitively, maintaining a per-program point map-
ping from locals to types, and combining types at join points with
unions. This allows us to warn about accesses to locals prior to
initialization, and to allow the types of local variables to vary from
one statement to another. For example, in the following code

b = 42 # b is a Fixnum (no length method)
b = ”foo” # b is now a String (has a length method)
b.length # only look for length in String , not Fixnum

we need flow-sensitivity for locals so to permit the call b.length.

We have to be careful about tracking local variables that may be
captured by blocks. For example, in the code

x = 1
foo() { |y| x = y } # pass in function λy.x=y

the value of x in the outer scope will be changed if foo invokes
the code block. To keep our analysis simple, we track potentially-
captured variables flow-insensitively, meaning they have the same
type throughout the program. We also model class, instance (fields),
and global variables flow-insensitively.

Finally, as it is common in statically typed OO languages, we
treat nil as if it is an instance of any class. Not doing so would
likely produce an excessive number of false alarms, or require a
very sophisticated analysis.

Constants and Scoping. Class names in Ruby are actually
just constants bound to special class objects. In general, constants,
which are distinguished by being capitalized, can hold any value,
and may be nested inside of classes and modules to create names-
paces. For instance,

class A
class B

X = 1
end end

defines the classes A and A::B, and the non-class constant A::B::X.
Identifying the binding of a particular constant is actually rather
tricky, because it involves a search in the lexical scope in which the
constant was created as well as the superclasses and mixins of the
enclosing class. DRuby attempts to resolve the namespaces of all
constants statically, and uses this information to construct the class
hierarchy. For instance, in the definition class A < B, we need to
find the binding for B to give A the right type.

Unsupported features. As we stated in the introduction, DRuby
aims to be flexible enough to type common Ruby programming id-
ioms without introducing needless complexity in its type system.
Thus, there are a number of uses of Ruby that DRuby cannot type.

First, there are standard library methods with types DRuby can-
not represent. For example, there is no finite intersection type that
can describe Array.flatten, which converts an n-dimensional array
to a one-dimensional array for any n.

Second, some features of Ruby are difficult for any static type
system. In particular, Ruby allows classes and methods to be changed
arbitrarily at run time (e.g., added to via class reopening or removed
via the special undef statement). To keep DRuby practical, we as-
sume that all classes and methods defined somewhere in the code
base are available at all times. This may cause us to miss some type
errors, and we leave addressing this assumption to future work.

Third, in Ruby, each object has a special eigenclass that can be
modified without affecting other objects. For example, suppose x
and y are both instances of Object. Then def x.foo() ... end adds
method foo to the eigenclass of x but leaves y unchanged. Thus,
after this declaration, we can invoke x.foo but not y.foo. DRuby
is unable to model eigenclasses because it cannot always decide
statically which object’s type is being modified.

Finally, Ruby includes reflection (e.g., accessing fields by calling
instance variable get) and dynamic evaluation (the eval method).
Combined with the ability to change classes at run time, this gives
programmers powerful metaprogramming tools. For example, our
text-highlight benchmark includes the following:

ATTRIBUTES.each do |attr|
code = ‘‘ def #{attr}(&blk) ... end’’
eval code

end

This code iterates through ATTRIBUTES, an array of strings. For
each element it creates a string code containing a new method defi-
nition, and then evaluates code. The result is certainly elegant—
methods are generated dynamically based on the contents of an
array. However, no reasonable static type system will be able to
analyze this code. Our analysis has no special knowledge of these
constructs, and so when we encounter this code, we simply check
that each is passed arguments of the correct type and ignore its eval-
uation behavior entirely (and would therefore emit a false positive
if these methods are called). Ultimately, we think that approaches
that mix analysis at compile time with analysis at run time (as done
by RPython [7]) may be the best option.

3. TYPE INFERENCE
Our type inference system is constructed as a constraint-based

analysis. We first traverse the entire program (including base_

types.rb), visiting each statement once and generating constraints
that capture dependencies between types. For example, if we see
x.m(), we require that x have method m() by generating a constraint
typx ≤ [m : () → α], meaning the type of x is a subtype of an
object type with an m method. In general, constraints have the
form κ ≤ κ where κ ranges over various kinds of types (objects,
parameter lists, blocks, etc.).

We resolve the generated set of constraints by exhaustively ap-
plying a set of rewrite rules. For example, given typ ≤ α and
α ≤ typ′, we add the closure constraint typ ≤ typ′. During this
process, we issue a warning if any inconsistencies arise. For exam-
ple, given A ≤ [m : meth typ], if the class A has no method m, we
have found a type error. If we detect no errors, the constraints are
satisfiable, and we have found a valid typing for the program.

Our constraint resolution process is a variation on fairly standard
techniques [5, 19]. For example, given a constraint A ≤ [m :
meth typ], where A is a class name, we derive a new constraint
A(m) ≤ meth typ, where A(m) looks up m in A, searching for m
in the superclasses and mixins of A if needed. When working with
tuple types (typ1, . . . , typn) we allow them to be treated as array
types, as outlined in Section 2.

When solving a constraint with unions on the right hand side,
e.g., typ1 ≤ typ2 or typ3, we require typ1 to have a fully-resolved
type that is equal to (not a subtype of) either typ2 or typ3. These
restrictions mean DRuby cannot find a solution to all satisfiable
constraint systems, but keeps solving tractable. We place a similar
restriction on constraints with intersection on the left-hand side.

4. CAST INSERTION
Annotations allow DRuby to interface with code it cannot stat-

ically verify, either because the code is written in C, or because it
is too expressive for our type system. However, because DRuby
trusts annotations to be correct, improperly annotated code may
cause run-time type errors, and these errors may be misleading.
For example, consider the following code:

1 ##% evil : () → Fixnum
2 def evil () eval (‘‘2. to s () ’ ’) end
3 def f () return(evil () ∗ 3) end
4 f()−4

Here we have annotated the evil method on line 1 to return a Fixnum,
and given this assumption, DRuby verifies that the remainder of
the program is statically type safe. However, evil uses eval to re-
turn the string “2.” This does not cause a type error on line 3 be-
cause String has a method ∗ : Fixnum→String, but then the result-
ing String is returned to line 4, where the Ruby interpreter finally
raises a NoMethodError, since String does not have a − method.

There are two problems here. First, DRuby has certified that
line 4 will never cause a type error, and yet that is exactly what has
occurred. Second, the error message gives little help in determining
the source of the problem, since it accuses the return value of f of
being incorrect, rather than the return value of evil .

We can solve this problem with higher-order contracts [16], which
allow us to attribute the blame for this example correctly. To ensure
that a method matches its annotation, we instrument each annotated
method with run-time checks that inspect the parameters and return
values of the method. DRuby ensures that “inputs” have the correct
type, and the dynamic checks ensure the “outputs” match the static
types provided to DRuby.

There is one catch, however: if a method has an intersection type,
we may not know statically which parameter types were passed in,
which might affect what result type to check for. For example,
consider the following method:

foo : (String) → String
foo : (Fixnum)→ Fixnum

Whether the result should be a String or a Fixnum depends on
the input parameter type. Our instrumented code for this example
(slightly simplified) looks like the following:

1 alias untyped foo foo
2 def foo(arg)
3 sigs = [[String ,String],[Fixnum,Fixnum]]
4 result = untyped foo(arg)
5 fail () unless sigs.include? [arg.class, result .class]
6 end

On line 1, we save the old foo method under the name untyped foo
before defining a new version of foo on line 2. The annotated sig-
nature is then stored as a Ruby value in the variable sigs (line 3),
and the original method is called on line 4. Finally, on line 5 we
check to ensure that the combination of the argument class and re-
turn class are included in the list of possible signatures.

Currently, we support run-time checking for nominal types, union
and intersection types, parameter lists with regular, optional, and
vararg arguments, blocks, and polymorphic methods. We plan on
expanding our support for annotations in future work, such as run-
time checks for object types, annotations on individual expressions,
and statically checked annotations.

5. IMPLEMENTATION
Ruby is a dauntingly large language, with many constructs and

complex control flow. For instance, most branching statements
have multiple forms, such as if e1 then e2 or the equivalent e2 if
e1. Other statements like return e have behavior that varies by
context. For instance, an occurrence of return e inside a block may
cause control to return from the current block or from the enclosing
method, depending on the form of the block definition.

To analyze Ruby programs, we developed a GLR parser for Ruby
that produces an AST that preserves the details of the surface syn-
tax. We then translate this AST into a smaller, simpler intermediate
language we call the Ruby Intermediate Language (RIL). RIL nor-
malizes redundant constructs, separates side-effect free expressions
from statements, and makes all control flow explicit. Combined,
these transformations make writing static analyses with RIL much
easier than working directly with Ruby source code. DRuby main-
tains a mapping between RIL code and positions in the original
Ruby source so we can report errors in terms of the Ruby code.
Together, DRuby and RIL comprise approximately 15,000 lines of
OCaml and 1,900 lines for the lexer and parser.

DRuby is a drop-in replacement for Ruby: the programmer in-
vokes “druby filename” instead of “ruby filename.” DRuby also

Program LOC Changes Tm(s) E W FP
pscan-0.0.2 29 None 3.7 0 0 0

hashslice-1.0.4 91 S 2.2 1 0 2
sendq-0.0.1 95 S 1.9 0 3 0

merge-bibtex 103 None 2.6 0 0 0
substitution solver-0.5.1 132 S 2.5 0 4 0

style-check-0.11 150 None 2.7 0 0 0
ObjectGraph-1.0.1 153 None 2.3 1 0 1

relative-1.0.2 158 S 2.3 0 1 5
vimrecover-1.0.0 173 None 2.8 2 0 0

itcf-1.0.0 183 S 4.7 0 0 1
sudokusolver-1.4 201 R-1, S 2.7 0 1 1

rawk-1.2 226 None 3.1 0 0 2
pit-0.0.6 281 R-2, S 5.3 0 0 1

rhotoalbum-0.4 313 None 12.6 0 1 0
gs phone-0.0.4 827 S 37.2 0 0 0

StreetAddress-1.0.1 877 R-1, S 6.4 0 0 0
ai4r-1.0 992 R-10, S 12.2 1 6 1

text-highlight-1.0.2 1,030 M-2, S 14.0 0 0 2

Figure 1: Experimental Results

accepts several custom options to control its behavior, e.g., to spec-
ify the location of base_types.rb. Another option instructs DRuby
to execute the script with Ruby after performing its analysis (even
in the presence of static type errors), which can be useful for testing
specific execution paths during development. When DRuby is run,
it first loads in the library annotations in base_types.rb, and then
analyzes the “main” program passed as a command line argument.
Ruby programs can load code from other files by invoking either
require or load. When DRuby sees a call to one of these methods,
it analyzes the corresponding file if the name is given by a string
literal, and otherwise DRuby issues an error.

Language constructs like new and include, which appear to be
primitives, are actually method calls in Ruby. However, because
they implement fundamental language operations, DRuby recog-
nizes calls to these methods syntactically and models them spe-
cially, e.g., creating a new class instance, or adding a mixin mod-
ule. Thus if a Ruby program redefines some of these methods
(a powerful metaprogramming technique), DRuby may report in-
correct results. DRuby also has special handling for the methods
attr, attr accessor, attr writer, and attr reader, which create get-
ter and/or setter methods named according to their argument.

6. EXPERIMENTAL EVALUATION
We evaluated DRuby by applying it to a suite of programs gath-

ered from our colleagues and RubyForge. We believe these pro-
grams to be representative of the kind of small to medium sized
scripts that people write in Ruby and that can benefit from the
advantages of static typing. The left portion of Figure 1 lists the
benchmark names, their sizes as computed by SLOCCount [40],
and the number and kinds of changes required to be analyzable by
DRuby (discussed below). The analyzed code includes both the
application or library and any accompanying test suite.

Our current implementation does not analyze the standard li-
brary due to its frequent use of dynamic language features. Instead,
we created a stub file with type annotations for the portion of the
standard library, 120 methods in total, used by our benchmarks.
Surprisingly, we found that although the standard library itself is
quite dynamic, the APIs revealed to the user very often have pre-
cise static types in DRuby. For those benchmarks that supplied test
suites (8 of the 18), we ran the test suite with and without dynamic
annotation checking enabled. None of the dynamic checks failed,
and the overhead was minimal. Five test suites took less than one

second with and without dynamic checking. The remaining three
test suites ran in 2, 6, and 53 seconds and had overheads of 7.7%,
0.37%, and -12% respectively. The last test suite actually ran faster
with our instrumentation, likely due to interactions with the Ruby
virtual machine’s method cache.

We made three kinds of changes to the benchmarks to analyze
them. First, the benchmarks labeled with “R” included require calls
that were passed dynamically constructed file names. For instance,
the test suite in the StreetAddress benchmark contained the code

require File .dirname(FILE) + ’ ../ lib /street address’

In the benchmarks that used this technique, we manually replaced
the argument of require with a constant string.

Second, several of the benchmarks used a common unit testing
framework provided by the standard library. This framework takes
a directory as input, and invokes any methods prefixed by test con-
tained in the Ruby files in the directory. To ensure we analyzed all
of the testing code, we wrote a stub file that manually required and
executed these test methods, simulating the testing harness. Bench-
marks with this stub file are labeled with “S.”

Finally, the text-highlight benchmark used metaprogramming (as
shown in Section 2) to dynamically generate methods in two places.
DRuby did not analyze the generated methods and hence thought
they were missing, resulting in 302 false positives the first time
we ran it. We manually replaced the metaprogramming code with
direct method creation, eliminating this source of imprecision.

6.1 Experimental Results
The right portion of Figure 1 shows the running times for DRuby,

the number of errors, the number of warnings, and the number
of false positives. Times were the average of 5 runs on an AMD
Athlon 4600 processor with 4GB of memory. We define errors (E)
as source locations that may cause a run-time type error, given ap-
propriate input, and warnings (W) as locations that do not cause a
run-time error for any input, but involve questionable programming
practice. False positives (FP) are locations where DRuby falsely
believes a run-time error can occur, but the code is actually correct.

For these 18 programs, DRuby runs quickly (under 7 seconds
except four mid-size benchmarks), producing 37 messages that we
classified into 5 errors, 16 warnings, and 16 false positives.

Errors. The 5 errors discovered by DRuby occurred in 4 bench-
marks. The error in ai4r was due to the following code:

return rule not found if !@values.include?(value)

There is no rule not found variable in scope at this point, and so if
the condition ever returns true, Ruby will signal an error. Interest-
ingly, the ai4r program includes a unit test suite, but it did not catch
this error because it did not exercise this branch. The two errors in
vimrecover were also due to undefined variables, and both occurred
in error recovery code.

The error in hashslice is interesting because it shows a conse-
quence of Ruby’s expressive language syntax, which has many sub-
tle disambiguation rules that are hard to predict. In hashslice, the
test suite uses assertions like the following:

assert nothing raised { @hash[’a’, ’b’] = 3, 4 }
assert kind of (Fixnum, @hash[’a’, ’b’] = 3, 4)

The first call passes a code block whose body calls the []= method
of @hash with the argument [3,4] . The second call aims to do a
similar operation, verifying the return value is a Fixnum. However,
the Ruby interpreter (and DRuby) parse the second method call as
having three arguments, not two as the author intended (the literal
4 is passed as the third argument). In the corresponding standard
library stub file, this method is annotated as the following:

assert kind of<t> : (Class, t , ?String) → NilClass

Because 4 is a Fixnum and not a String, DRuby considers this a type
error. Although our type annotation matches the documentation for
assert kind of, the actual implementation of the method coerces its
third argument to a string, thus masking this subtle error at run time.

The last error is in ObjectGraph, which contains the following:

$baseClass = ObjectSpace.each object(Class)
{ |k| break k if k.name == baseClassName }

The method each object takes a code block, applies it to each el-
ement of the collection, and returns the total number of elements
visited (a Fixnum). However, the block supplied above terminates
the iteration early (break k), returning a specific element that has
type Class. The programmer intended the loop to always termi-
nate in this fashion, using $baseClass throughout the program as a
Class, not a Fixnum. However, it is easy to make the loop termi-
nate normally and therefore return a Fixnum, since the above code
depends on data provided by the end user.

Warnings. 14 of the 16 reported warnings are due to a simi-
lar problem. Consider the code “5.times { | i | print ”∗” }”, which
prints five stars: The times function calls the code block n times
(where n is the value of the receiver), passing the values 0..n − 1
as arguments. In the above code, we never used parameter i, but we
still included it. However, Ruby allows blocks to be called with too
many arguments (extra arguments are ignored) or too few (miss-
ing arguments are set to nil). We think this is bad practice, and so
DRuby reports an error if blocks are called with the wrong number
of arguments, resulting in these 14 warnings. If the user intends
to ignore block parameters, they can supply an anonymous vararg
parameter such as 5.times {|∗| ...} to suppress the warning.

Of the two remaining warnings, one occurs in substitution solver,
which contains the block arguments |tetragraph, freq| instead of
|(tetragraph, freq)|. In the former case, DRuby interprets the block
as taking two arguments, whereas the latter is a single (tuple) argu-
ment. As each calls the block with only a single argument, DRuby
signals an error. As it turns out, Ruby is fairly lenient, and allows
the programmer to omit the parentheses in this case. However, we
feel this leads to confusing code, and so DRuby always requires
parentheses around tuples used in pattern matching.

The last warning occurs in relative, which, similarly to Object-
Graph, calls an iterator where all executions are intended to exit
via a break statement. In this case, the normal return path of the
iterator block appears to be infeasible, and so we classify this as a
warning rather than an error.

False positives. DRuby produced a total of 16 false positives,
due to several causes. Three false positives are due to union types
that are discriminated by run-time tests. For example, one of the
methods in the sudokusolver benchmark returns either false or an
array, and the clients of this method check the return values against
false before using them as arrays. DRuby does not model type
tests to discriminate unions, and a technique such as occurrence
types [39] could improve precision in these circumstances.

Three additional false positives occurred because a benchmark
redefined an existing method, which DRuby forbids since then it
cannot tell at a call site whether the previous or the redefined me-
thod is called. (Unlike statically typed object-oriented languages,
redefined methods in Ruby can have radically different types.)

The remaining false positives occurred because DRuby could not
resolve the use of an intersection type; because DRuby could not
locate the definition of a constant; because of a wrapper around
require that dynamically changed the argument; and because of
rebinding of the new method.

7. RELATED WORK
Many researchers have previously studied the problem of apply-

ing static typing to dynamic languages. Some of the earliest work
in this area is soft typing for Scheme, which uses a set-based anal-
ysis to determine what data types may reach the destructors in a
program [14, 6, 41, 18]. Typed Scheme adds type annotations and
type checking to Scheme [39]. One of the key ideas in this system
is occurrence types, which elegantly model type testing functions
used to discriminate elements of union types. As mentioned earlier,
DRuby support for occurrence types would be useful future work.

Several researchers investigated static typing for Smalltalk, a
close relation of Ruby. Graver and Johnson [20] propose a type
checking system that includes class, object, union, and block types.
Strongtalk [35], a variant of Smalltalk extended with static types,
has a similar system with additional support for mixins [10].
Spoon [34] and RoelTyper [42] each a present type system that
trades precision for scalability. Agesen et al. [4, 3] explored type in-
ference for Self, which is an object-based (rather than class-based)
language. DRuby differs from these system as it integrates both
static type inference and dynamically checked annotations.

Type inference for Ruby has been proposed before. Kristen-
sen [25] claims to have developed a Ruby type inference system,
but his thesis is not available on-line, and emails requesting it were
not returned. Morrison [27] developed a type inference algorithm
that has been integrated into RadRails, an IDE for Ruby on Rails.
In RadRails, type inference is used to select the methods suggested
during method completion. There is no formal description of Rad-
Rails’s type inference algorithm, but it appears to use a simple in-
traprocedural dataflow analysis, without support for unions, object
types, parameter polymorphic, tuples, or type annotations.

Several type systems have been proposed to improve the perfor-
mance of dynamic languages. The CMUCL[26] and SBCL[31]
Lisp compilers use type inference to catch some errors at com-
pile time, but mainly rely on inference to eliminate runtime checks.
Similarly, aggressive type inference [9], Starkiller [30], and a sys-
tem proposed by Cannon [13] all infer types for Python code to im-
prove performance. RPython is a statically-typed subset of Python
designed to compile to JVM and CLI bytecode [7]. RPython in-
cludes type inference, though it is unclear exact what typing fea-
tures are supported. One interesting feature of RPython is that it
performs type inference after executing any load-time code, thus
providing some support for metaprogramming.

There are several proposals for type inference for Javascript [8,
37]. The proposed ECMAScript 4 (Javascript) language includes a
rich type annotation language with object types, tuple types, para-
metric polymorphism, and union types [22]. The challenges in typ-
ing Ruby are somewhat different than for Javascript, which builds
objects by assigning pre-methods to them rather than using classes.

Aside from work on particular dynamic languages, the question
of statically typing dynamic language constructs has been studied
more generally. Abadi et al. [2] propose adding a type Dynamic
to an otherwise statically typed language. Quasi-static typing takes
this basic idea and makes type coercions implicit rather than ex-
plicit [36]. Gradual type systems improve on this idea further [33,
23], and have been proposed for object-oriented type systems [32].
Sage mixes a very rich static type system with the type Dynam-
ic [21]. Tobin-Hochstadt and Felleisen [38] present a framework
for gradually changing program components from untyped to typed.

Finally, our run-time type checks are based heavily on contracts,
which were developed as the dynamic counterpart to static types to
generalize and extend run-time assertions [17, 15]. An important
property of contracts is to track blame through a program to ensure
that when a contract is violated, the cause of the failure is correctly

correlated with the proper syntactic origin, which can be tricky in
the higher-order case [16].

8. CONCLUSIONS
We have presented DRuby, a tool that aims to combine static and

dynamic typing for Ruby. DRuby includes an expressive type lan-
guage, a surface type annotation syntax that is close to the informal
Ruby documentation, a powerful type inference system, and au-
tomatic cast insertion to dynamically check programmer-provided
annotations. We applied DRuby to a range of benchmarks and
found several latent type errors as well as a number of question-
able coding practices, with a relatively low false positive rate. We
believe that DRuby is a major step toward the goal of developing
an integrated static and dynamic type system for Ruby in particular,
and object-oriented scripting languages in general.

Acknowledgments
This research was supported in part by NSF CCF-0346982, CNS-
0715650, and DARPA ODOD.HR00110810073.

9. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer,

1996.
[2] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically typed language. ACM TOPLAS,
13(2):237–268, 1991.

[3] O. Agesen and U. Hölzle. Type feedback vs. concrete type
inference: A comparison of optimization techniques for
object-oriented languages. In OOPSLA, pages 91–107, 1995.

[4] O. Agesen, J. Palsberg, and M. Schwartzbach. Type
Inference of SELF. ECOOP, 1993.

[5] A. Aiken, M. Fähndrich, J. S. Foster, and Z. Su. A Toolkit for
Constructing Type- and Constraint-Based Program Analyses.
In TIC, pages 78–96, 1998.

[6] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft Typing
with Conditional Types. In POPL, pages 163–173, 1994.

[7] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython:
Reconciling Dynamically and Statically Typed OO
Languages. In DLS, 2007.

[8] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
Type Inference for JavaScript. In ECOOP, pages 428–452,
2005.

[9] J. Aycock. Aggressive Type Inference. In Proceedings of the
8th International Python Conference, pages 11–20, 2000.

[10] L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold,
and U. Holzle. Mixins in Strongtalk. Inheritance Workshop
at ECOOP, 2002.

[11] G. Bracha and W. Cook. Mixin-based inheritance. In
OOPSLA/ECOOP, pages 303–311, 1990.

[12] K. B. Bruce, A. Schuett, and R. van Gent. Polytoil: A
type-safe polymorphic object-oriented language. In W. G.
Olthoff, editor, ECOOP, pages 27–51, 1995.

[13] B. Cannon. Localized Type Inference of Atomic Types in
Python. Master’s thesis, California Polytechnic State
University, San Luis Obispo, 2005.

[14] R. Cartwright and M. Fagan. Soft typing. In PLDI, pages
278–292, 1991.

[15] R. B. Findler and M. Blume. Contracts as pairs of
projections. In FLOPS, volume 3945, pages 226–241, Fuji
Susono, JAPAN, Apr. 2006. Springer-Verlag.

[16] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In ICFP, pages 48–59, 2002.

[17] R. B. Findler, M. Flatt, and M. Felleisen. Semantic casts:
Contracts and structural subtyping in a nominal world. In
ECOOP, pages 365–389, 2004.

[18] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and
M. Felleisen. Catching Bugs in the Web of Program
Invariants. In PLDI, pages 23–32, 1996.

[19] M. Furr and J. S. Foster. Polymorphic Type Inference for the
JNI. In ESOP, pages 309–324, 2006.

[20] J. O. Graver and R. E. Johnson. A type system for Smalltalk.
In PLDI, pages 136–150, 1990.

[21] J. Gronski, K. Knowles, A. Tomb, S. Freund, and
C. Flanagan. Sage: Hybrid Checking for Flexible
Specifications. Scheme and Functional Programming, 2006.

[22] L. T. Hansen. Evolutionary Programming and Gradual
Typing in ECMAScript 4 (Tutorial), Nov. 2007.

[23] D. Herman, A. Tomb, and C. Flanagan. Space-efficient
gradual typing. Trends in Functional Programming, 2007.

[24] A. Igarashi and H. Nagira. Union types for object-oriented
programming. In SAC, pages 1435 – 1441, 2006.

[25] K. Kristensen. Ecstatic – Type Inference for Ruby Using the
Cartesian Product Algorithm. Master’s thesis, Aalborg
University, 2007.

[26] R. A. MacLachlan. The python compiler for cmu common
lisp. In ACM conference on LISP and functional
programming, pages 235–246, New York, NY, USA, 1992.

[27] J. Morrison. Type Inference in Ruby. Google Summer of
Code Project, 2006.

[28] B. Pierce. Programming with Intersection Types and
Bounded Polymorphism. PhD thesis, CMU, 1991.

[29] B. C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[30] M. Salib. Starkiller: A Static Type Inferencer and Compiler
for Python. Master’s thesis, MIT, 2004.

[31] Steel Bank Common Lisp, 2008. http://www.sbcl.org/.
[32] J. Siek and W. Taha. Gradual typing for objects. In ECOOP,

pages 2–27, 2007.
[33] J. G. Siek and W. Taha. Gradual typing for functional

languages. In Scheme and Functional Programming
Workshop, September 2006.

[34] S. A. Spoon. Demand-driven type inference with subgoal
pruning. PhD thesis, Georgia Institute of Technology,
Atlanta, GA, USA, 2005. Director-Olin Shivers.

[35] Strongtalk, 2008. http://www.strongtalk.org/.
[36] S. Thatte. Quasi-static typing. In POPL, pages 367–381,

1990.
[37] P. Thiemann. Towards a type system for analyzing javascript

programs. In ESOP, pages 408–422, 2005.
[38] S. Tobin-Hochstadt and M. Felleisen. Interlanguage

migration: from scripts to programs. In OOPSLA, pages
964–974, 2006.

[39] S. Tobin-Hochstadt and M. Felleisen. The Design and
Implementation of Typed Scheme. In POPL, pages 395–406,
2008.

[40] D. A. Wheeler. Sloccount, 2008.
http://www.dwheeler.com/sloccount/.

[41] A. Wright and R. Cartwright. A practical soft type system for
scheme. ACM TOPLAS, 19(1):87–152, 1997.

[42] R. Wuyts. RoelTyper, May 2007. http://decomp.ulb.ac.
be/roelwuyts/smalltalk/roeltyper/.

