
State Transfer for
Clear and Efficient Runtime Updates

Christopher M. Hayden, Edward K. Smith, Michael Hicks, Jeffrey S. Foster
University of Maryland, College Park

{hayden, tedks, mwh, jfoster}@cs.umd.edu

Abstract—Dynamic software updating (DSU), the practice of
updating software while it executes, is a lively area of research.
The DSU approach most prominent in both commercial and
research systems is in-place updating, in which patches containing
program modifications are loaded into a running process. How-
ever, in-place updating suffers from several problems: it requires
complex tool support, it may adversely affect the performance of
normal execution, it requires challenging reasoning to understand
the behavior of an updated program, and it requires extra effort
to modify program state to be compatible with an update.

This paper presents preliminary work investigating the poten-
tial for state transfer updating to address these problems. State
transfer updates work by launching a new process running the
updated program version and transferring program state from
the running process to the updated version. In this paper, we
describe the use and implementation of Ekiden, a new state
transfer updating library for C/C++ programs. Ekiden seeks
to redress the difficulties of in-place updating, and we report
on our experience updating VSFTPD using Ekiden. This initial
experience suggests that state transfer provides the availability
benefits of in-place DSU approaches while addressing many of
their shortcomings.

I. INTRODUCTION

In recent years, dynamic software updating (DSU) systems,
which enable software updates to take place at runtime,
have evoked a flurry of interest and activity. Research DSU
systems for C, C++, and Java have been used to dynamically
update servers and operating systems [4], [15], [8], [12],
[22]. Ksplice [6] and Unsanity’s Application Enhancer [23],
each commercial offerings of binary-level DSU, provide run-
time updating support to the Linux Kernel and to Mac OS
X applications, respectively. Ericsson’s Erlang programming
language [5] has DSU support as a core feature, and its
creators laud the uptime that DSU has enabled for fielded
telecommunications systems.

Each of these systems employs in-place updating: when
a new program release is available, its developers write a
dynamic patch that contains the new code. This patch is loaded
into the running program, and execution of the old code is
redirected to the new. Such redirection is either enabled by spe-
cial compilation of the original program, as in Ginseng [15],
Erlang, and UpStare [13], or forced on the running system
via runtime program rewriting, as in Ksplice [6], POLUS [8],
or Jvolve [22]. Patches also include state transformation code
that runs after the patch is loaded, adjusting both data and
control state.

While popular, in-place updating has several drawbacks:
(1) it requires a compiler or binary rewriter that can be

complex and tricky to get right, and may not work in some
contexts, such as when a memory region containing executable
code is read-only; (2) compilers to support in-placing up-
dating sometimes use static analyses to ensure that program
transformations are semantics-preserving, but such analyses
are inherently conservative and so will effectively force some
programs to be altered before they can be correctly compiled;
(3) the mechanisms used to implement in-place updating
often introduce steady-state run-time overhead; e.g., inserted
levels of indirection add extra instructions and inhibit compiler
optimizations like inlining; (4) reasoning about the behavior of
an updated program places additional cognitive burden on the
programmer, particularly when updates could take effect from
many run-time states; and (5) all state of the new program
must be explicitly initialized, even state that does not carry
over from the old version. In our experience, point (4) is the
real show-stopper: It takes a heroic effort to simultaneously
reason about a program, the points within that program where
an update might occur, the modified code in the patch, and
the state transformation code.

In this paper we argue that these drawbacks can be ad-
dressed by using state transfer-based updating [10]. We have
been developing a library, called Ekiden, that implements this
approach for C and C++ programs.1 In Ekiden, updates work
by starting the new program when an update is requested,
marshaling and transferring state from the old version of the
running program to the new, transforming the state in the new
program, and then terminating the old program.

Ekiden’s approach addresses many of the disadvantages
of in-place updates: (1) no complicated program transforma-
tions are needed—state transfer updating can be implemented
as a library that builds largely on existing infrastructure;
(2) the approach does not rely on static analyses, so no
programs are conservatively rejected; (3) using state transfer
does not inhibit compiler optimizations and imposes no steady-
state overhead—the only slowdown occurs at update time,
a relatively rare event; (4) while the effort of preparing an
updatable program is slightly increased, the cognitive burden
of reasoning that an update is correct is dramatically decreased
since Ekiden forces us to indicate exactly where and how it
will take place; and (5) the effort in writing state transformers
is reduced, since new state is automatically initialized by the

1Ekiden is named after the Japanese long-distance relay race, suggesting
both the desired long running time of dynamically updated programs and the
hand-off of state that takes place between versions.

new version of the program, so only old state that evolves
during execution needs to be transferred and updated.

On the other hand, state transfer is not a panacea, and
presents several challenges: (1) while steady-state overhead
is minimized, the cost to transfer large volumes of state could
be high; (2) some types of state (e.g., state internal to a
library) may be difficult to transfer; (3) not all applications
can have multiple instances running at once, e.g., operating
systems (typically); and (4) more manual effort is required to
determine which state to transfer, to insert annotations into the
program (cf. Section II), and possibly to write serializers for
transferred state (though we suspect this can all be automated
in most cases). While we have yet to thoroughly evaluate these
trade-offs, we believe that for many applications, the benefits
outweigh the drawbacks.

In this paper, we present the design of Ekiden, report on
our preliminary experience using Ekiden to update VSFTPD, a
server we have previously experimented with using Ginseng,
and compare Ekiden to in-place updating approaches gener-
ally. In our experience so far, it has been straightforward to
implement state transfer for VSFTPD using Ekiden, particu-
larly because Ekiden did not require us to run and satisfy a
complex program analysis like Ginseng’s.

II. RUNTIME UPGRADES USING STATE TRANSFER

In this section, we give an overview of how Ekiden works,
what program changes it requires from users, and our experi-
ence using Ekiden to update VSFTPD.

A. Preparing a Program to use Ekiden

To make use of Ekiden’s capabilities, the programmer needs
to make some changes to their source code, as illustrated in
Figure 1. The left of the figure shows a minimal, single-
threaded server program, and the right shows the required
modifications (some have been slightly simplified for im-
proved illustration).

Tagged Program State: The programmer must identify
the critical state to be transferred at update time. Some state
need not be transferred if it will be correctly initialized during
new-version start-up or can be derived from other state. In
Figure 1, the variable nclients , which tracks the number of
clients that have connected, has been tagged using the function
tag st() so that it will be transferred. The variable const val is
not tagged since it is never written once initialized; as such
we can rely on the new program to simply initialize it when
the program restarts.

Update Points: An update is triggered when a new
program version becomes available and is noticed during a call
to the Ekiden function update point; programmers must insert
calls to this function in their program. The update point func-
tion calls fork to create a new child process, and then calls exec
to start the new program version. This new version arranges
to transfer the tagged state from the old program version via
a UNIX domain socket. When all state is transferred, the old
process shuts down.

void handle client(int cnt,
int val) {
while (1) {

// process client
// requests
}
}
int main(int argc,
char ∗∗argv) {
int nclients = 0;
int const val = 42;

...

while (1) {

// accept connections
handle client(nclients ,

const val);
nclients++;
}
}

void handle client(int cnt,
int val) {
while (1) {
update point(”cl loop”);
// process client
// requests
}
}
int main(int argc,
char ∗∗argv) {
int nclients ;
int const val = 42;
tag args(argc, argv);
if (tag st(&nclients ,

import int ,
export int)) {

// not updating
nclients = 0;
}
...
if (upd from(”cl loop”)) {
// enter client loop
handle client(client count ,
const val);
}
while (1) {
update point(”con loop”)
// accept connections
handle client(nclients ,
const val);

nclients++;
}
}

(a) Original server (b) Modified server
Fig. 1. Preparing a program for state transfer updating

We advocate placing a single update point at the beginning
of each long-running event-processing loop in the program,
as seen in the two update points labeled “cl loop” and
“con loop” in Figure 1. At such update points, the server
is between events and hence tends to be “quiescent,” which
typically makes it easy to map program state between the old
and new versions. Of course, in general update points may be
placed anywhere, but incautious placement of update points
can make updates harder to reason about.

Updating Control Flow: When the new version of a
program starts up during an update, it must ultimately resume
execution from where the old version left off. This may require
modifying the control flow of the program to branch to update
points after the new version is launched. In Figure 1, for
example, we modified the start of main to jump directly to
the handle client loop if the incoming state indicates the update
occurred at the update point labeled with “cl loop.” Assuming
there are only a few update points, we suspect that such
modifications will be straightforward for most programs, but
more experience is needed to be sure.

Serialization: Any tagged state must be transferred be-
tween the old and new program. Tagged state must be properly
serialized when sending and deserialized on receipt. To specify

struct foo {
char∗ ZT name;
char∗ PTRARRAY(buf len) buf;
int buf len;
struct foo∗ IGNORE misc;
struct foo∗ PTR next;
};

Fig. 2. Data structure annotated for serialization generation

how serialization should take place, the tagging function tag st
takes as arguments pointers to the serializer and deserializer
functions (along with a pointer to the state to transfer). If a
program is started as an update from a previous version, the
tag st function initializes its first argument with a value that is
deserialized, and tag st returns false. Otherwise, tag st returns
true. Looking at Figure 1, we can see that the value of nclients
is serialized with export int when an update takes place, and
will be deserialized using import int. If the new program is
started from scratch, the tag st call will return true, so nclients
is set to 0.

The functions export int and import int are part of an Ekiden
library for serializing basic C types, and this library can be
also used as a basis for serialization code for user-defined
types. (State transfer implementations for other languages,
including Java and Ruby, could leverage language support for
marshaling).

To reduce the burden of writing serializers by hand, we have
developed a tool that generates serialization code based on
programmer annotations, where annotations indicate properties
like the sizes of arrays and fields that should not be transferred.
Figure 2 shows a simple example of a data structure, foo, that
we have annotated for use with our generator. The name field
has been annotated using ZT as a pointer to a null-terminated
string; buf has been annotated using PTRARRAY(buf len) as a
pointer to an array containing buf len chars; buf len requires no
annotation as it is a simple integer; misc has been annotated
with IGNORE, indicating that it should not be serialized; and
next has been annotated as a pointer (PTR) to a single foo
instance (the PTR annotation is the default treatment for
pointers, so this annotation is optional). These annotations
were influenced by the ones used by the Deputy compiler [9]
to prevent memory errors. Our serialization tool generates
code that serializes each object in memory once, to allow
for data structures containing cycles. We have found, in early
experiments, that this tool makes the creation serialization
code quite easy. However, we will continue to refine this tool
and consider alternatives based on our experience updating
additional programs.

We would also like to transfer open file descriptors dur-
ing updates, e.g., so the new version can continue listening
on open sockets and communicating with connected clients.
Fortunately, because exec does not close open file descrip-
tors, programs using Ekiden can simply pass along the file
descriptors’ integer values (using export int), since they will
have the same meaning in the parent and child processes.

Alternatively, file descriptors could be transferred using UNIX
domain sockets and the sendmsg() system call [21]. Libraries
such as the Ancillary Library [1] and Facebook’s libafdt [2]
simplify this process.

We may also wish to transfer function pointers, but how
to do so is not necessarily obvious: we cannot simply pass
the pointers as is because functions may not have the same
address in both versions (indeed, some functions may not even
persist across versions). At the moment, the best alternative
is to map function addresses to integers or strings during
serialization and map them back during dserialization. We
hope to streamline this process in the future by adding function
pointer annotations to our serialization generation tool.

B. Experience Updating vsftpd

We have used Ekiden to construct a sequence of four
updatable versions of VSFTPD [24] (1.1.3, 1.2.0, 1.2.1, and
1.2.2), representing two years of changes. Adding updating
support to each version of VSFTPD required only 16 discrete
changes to 3 out of 30 source files. Here, we discuss the nature
of these modifications and what we learned from these early
experiments.

We made minor changes to VSFTPD to configure the up-
dating framework. First, we needed to install a UNIX signal
handler to initiate an update upon receipt of a particular signal.
Second, we added code to save the command-line arguments
used to invoke the current version so they can be applied when
starting the new version. Finally, we indicated the file system
path where update point should look when signaled that a new
program executable is available.

We added two update points to VSFTPD, each to be reached
between iterations of long-running loops, basically following
the example in Figure 1. The first update point was added to
the loop that accepts connections from new clients. The default
start-up control flow of the program enters this loop following
some initialization, so no modifications were required to
initiate entry to this loop following an update. A second update
point was added to the loop that processes FTP commands
from connected clients. In this case, we inserted some code to
jump to this command-processing loop after an update from
the corresponding loop in the old version. This change required
only a slight modification of control flow, to avoid entering the
client acceptance loop and to enter the FTP command loop.
It was also necessary to wrap an existing block of code in a
condition to prevent re-display of an FTP banner that should
display once per connection.

VSFTPD required serialization and transfer of only two
struct types, and only five state items were tagged in total.
The VSFTPD process that accepts new client connections
maintains three essential pieces of state: a hash table mapping
process IDs to connected IP addresses, a hash table mapping
IP addresses to connection counts, and a count of children.
VSFTPD processes that handle connected clients each maintain
a single record containing all critical state for the client. In
total, updating VSFTPD with Ekiden required identifying four
program variables for transfer. The only non-obvious task was

determining how to write the serializer/deserializer functions
for the hash tables, since their representation contains function
pointers (the hash functions). We simply hardcoded the choice
of these functions to the ones used in our application, using an
enumeration. This solution is somewhat unsatisfying because
the serializers for a generic type needed to be aware of each
of the type’s uses. We are working on refinements to our
serialization generation tool to improve handling of this case.

We found that, overall, most state in VSFTPD need not
be transferred, as it is initialized during server start-up and
only read during subsequent execution. While identifying
and annotating state for transfer was easy, the code written
to serialize and transform it accounted for the bulk of the
modification effort. Further refinements to our serialization-
generation tool should reduce this burden. The developer must
still write the code to transform old program state to conform
to the new version, but this effort is manageable since most
state was not changed between versions. Future work will
determine whether the same is true for other programs.

During the process of configuring VSFTPD for updating,
we found it useful to construct and test “updates” from one
version to the same version. This testing allowed us to check
that the state necessary to resume execution was transferred.

In earlier work, we prepared VSFTPD for updating using
Ginseng. Interestingly, that work required a different set of
modifications. As with Ekiden, we explicitly annotated update
points. To ensure type-safety, Ginseng’s analysis also required
annotating certain types as non-updatable. To enable updates
in long-running loops to reach the updated version of the loop-
body and the code that follows the loop, we added annotations
directing Ginseng to extract particular code blocks into sep-
arate functions. These requirements added up to 14 manual
changes per version. This count does not include several
minor changes that were required to ensure compatibility with
Ginseng’s analysis. While it is difficult to directly compare
the effort required to update VSFTPD using Ginseng versus
Ekiden, the most notable difference is that Ekiden did not
require us to modify VSFTPD to satisfy a complex program
analysis.

III. STATE TRANSFER VERSUS IN-PLACE UPDATING

In this section, we describe how state transfer updating ad-
dresses the drawbacks of in-place updating that we enumerated
in the introduction.

Complex Tool Support: In-place DSU approaches fre-
quently rely on complex compilation schemes and program
analyses to support updating. Figure 3 shows the updating
process for Ginseng, in which a non-standard compiler instru-
ments the program for updating and prepares patches. Ginseng
also uses a complex safety analysis to ensure that updates
will not violate type safety. As we described in the previous
section, preparing VSFTPD for Ginseng required annotating
certain types as non-updatable. State transfer updating is
more transparent and imposes far fewer restrictions. In our
experience, the non-standard compilation schemes and safety
analyses used by in-placing updating systems are undesirable

ip-v0.c

v0
executable

ip-v1.c

v0->v1
patch

ip-vN.c

...->vN
patch

Custom
Compiler

Patch
Compiler

Patch
Compiler

...
Runtime
System

running
process

Runtime
Updating

Compilation

Fig. 3. In-place Update Compilation and Updating

Ekiden
Library

ek-v0.c

v0
executable

ek-v1.c

v1
executable

ek-vN.c

vN
executable

Standard
Compiler

Standard
Compiler

Standard
Compiler

...

v0
process

v1
process

vN
process

Runtime State

Compilation

Runtime
Updating

Fig. 4. Ekiden Compilation and Updating

because they introduce new points of failure and behave in
ways that are hard to understand.

Because Ekiden is implemented as a library, the update
development process, illustrated in Figure 4, need not involve
any non-standard tools. While as mentioned above we have
developed tools to automate generation of serialization and
transformation code, these tools are entirely optional. More-
over, we have found they are easy to understand, since they
depend only on type definitions in the program, and they also
can handle programs that use odd or unsafe idioms (e.g., those
involving typecasts, pointer aliasing, and other features that
often confuse static analyses).

Steady-state Performance: In-place updating schemes
often introduce a level of indirection so that function calls
and variable accesses will reach the appropriate version. For
example, Ginseng compiles the program so that for each
function f, a global variable f ptr is introduced, initialized to
f. Direct calls to f occurring in the program are changed to
calls via f ptr instead. When the update takes place, f ptr is
redirected to loaded code that implements the new version
of f. Erlang [5] and K42 [12] are similar. To reduce the
steady state overhead, some systems, like POLUS [8] and

Ksplice [6], rewrite the old version of a function within the
running program’s code to call the new version instead. Doing
so requires inserting a “trampoline,” which is another kind of
indirection.

Adding indirection has two potential downsides: the indi-
rection itself may incur a performance penalty during normal
execution, and it may also require disabling compiler opti-
mizations that would remove the indirection. Both may hinder
an updatable program’s performance. Because Ekiden creates a
new process to run the updated code, it makes no assumptions
about the internal organization of the program. As a result,
no indirection is required, and Ekiden is compatible with all
compiler optimizations. For programs where steady-state per-
formance is critical, the Ekiden approach provides a significant
advantage. Trampolines have the additional downside that they
are incompatible with useful, increasingly common measures
to improve security. In particular, use of trampolines requires
setting the code portion of memory to be writable, which opens
the system up to rootkits [16].

Developer Burden: Reasoning about the behavior of a
program updated using the in-place approach may be chal-
lenging, since it requires simultaneously considering when
updates might happen, the contents of the patch, and whether
the resulting execution of code at different versions is correct.

In-place DSU approaches load a patch containing modified
functions and typically ensure that future calls to those func-
tions reach the updated version. This means that the body of a
particular function is executed entirely at the version at which
it was invoked, but may call updated code. This policy may
produce undesirable behavior in two ways. First, it prevents
execution from reaching the updated version of a function
that was active on the stack when the update occurred. In
our experience with Ginseng, we observed that this policy
often prevents the updated body of a loop (and code following
the loop) from being reached when an update occurs within
the loop, and solving this problem requires extracting these
code blocks (via Ginseng-supported annotations) into new
functions. Second, this policy may cause two pieces of related
code to be executed at different versions, producing a version
consistency error. We have previously observed that these
errors do occur and are not always prevented by safety checks
designed to prevent some problematic update timings [11].

Both in-place and state-transfer DSU techniques require
modifying a program to support updating. The difference
is that the code for state transfer makes updating behavior
explicit, while the changes to a program to support in-place
DSU cannot be understood in terms of normal control flow,
i.e., they are typically code restructurings made in anticipation
of likely function changes in future updates.

Not all in-place updating approaches are created equal,
however. A recently proposed approach called stack recon-
struction permits the active stack and program counter (PC)
of the running program to be updated to resume execution at
the proper position in the new code. This model is used by
UpStare [13] and DynAMOS [14]. Assuming that the stack
and PC are updated correctly, stack reconstruction provides

similar behavior to Ekiden’s but requires fewer manual mod-
ifications, e.g., code to jump to equivalent control positions
in the new program. But this flexibility has costs. First, the
code to capture and restore the stack is introduced by a special
compiler, and thus imposes steady-state overhead. Second, the
programmer must match up potentially arbitrary stack layouts
of the two program versions; inferring the required stack and
PC mappings remains an open research question [7]. That said,
if UpStare updates were limited to explicit update points, we
believe that the reasoning burden would be comparable to that
of Ekiden updates.

State Transformation: When updating programs in place,
we must provide state transformation code to update all pro-
gram state that has changed. We have identified two drawbacks
with this requirement. First, bug-fixes for some errors, such
as memory or resource leaks, may be difficult to fix through
in-place updating, since there may be no reference to the
leaked resources. By creating a new process to replace the
old one, state transfer provides fresh start. Second, some
program state (e.g., a table of server commands) is written
during initialization and is static thereafter. While changes
to such data require manual state transformation under the
in-place update approach, with state transfer-based updating
such changes occur with no extra effort during startup of
the new version. In Neamtiu et al.’s updates to VSFTPD and
OPENSSH, a significant portion of the state transformation
code was devoted to updating this kind of write-once state
[15].

IV. RELATED WORK

State transfer-like techniques are currently used to update
many types of programs. As an example, both Apple’s iOS
and Google’s Android mobile platforms persist the state of
applications that become inactive so they can be resumed
later. When an application is upgraded, the new version must
make sense of any state stored by the prior version and begin
execution at an appropriate point. In effect, such applications
have performed a state transfer-based upgrade.

Process migration techniques support transferring a running
program, along with its state, to a different machine. Migration
is often performed to improve performance, reliability, or for
load balancing. Smith provides a survey of the mechanisms
used for migration [20]. Process migration schemes are rele-
vant to state transfer largely because they share the challenge
of quickly transferring program state checkpointed either man-
ually or automatically. However, state transfer updating differs
from the general problem of process migration in that it must
cope with underlying changes to the code and state of the
program.

Checkpointing may be implemented in a variety of ways.
The libckpt library supports program checkpointing in user-
space [17]. Checkpointing may also be implemented at the
operating system [19] or virtual machine [3] level to allow
handling of program state managed by the operating system.

Potter et al. [18] perform operating system upgrades by
migrating running applications to an updated operating system

instance. They facilitate process migration by running each
application within pods—isolated environments that provide
a virtual machine abstraction. These can be viewed as state
transfer updates where the state of the updated operating
system is its running applications.

Gupta et al. [10] developed a state transfer-based updating
system that provides similar functionality to in-place DSU.
Updates at arbitrary program points are allowed, subject to
an activeness check performed using ptrace. The contents of
the stack, heap, and registers are transferred from the old
version to the new version. The program counter may need
to be adjusted if functions have changed location in memory.
Additions of global variables or fields in structures require
that padding was present in the original program; if the
program versions use different amounts of padding or become
misaligned, memory locations will be misinterpreted.

Gupta et al.’s work represents an interesting point in the
spectrum of state transfer approaches. Like an in-place updat-
ing system, they seek to automate as much of the process as
possible. In doing so, they employ mechanisms and policies
that may obscure the runtime behavior of updates from the
developer. In our research, in contrast, we aim to make
behavior of updates understandable and predictable.

V. CONCLUSION AND FUTURE WORK

We believe dynamic software updating using state transfer
has the potential to gain traction in the developer community in
a way that in-place updating techniques have not. In particular,
the potential advantages of state transfer are that the behavior
of an updated program is explicit, making reasoning about
correctness easier; the technique can be implemented as a
library that is compatible with developers’ existing toolchains;
and steady-state performance should be largely unaffected by
modifications to support updates.

So far, our experience applying Ekiden to VSFTPD has
been positive, but we need more experience and evaluation,
including direct comparison with other updating systems. We
also need to develop techniques and tools that address chal-
lenging cases that may seem to favor in-place DSU techniques,
such as updating programs that maintain a large amount of
state, transferring state maintained within library code, and
supporting updates to concurrent software. Currently, we are
working to implement Ekiden updates for additional server
programs to discover additional benefits and challenges of the
approach.

REFERENCES

[1] Ancillary library, May 2010. http://www.normalesup.org/∼george/comp/
libancillary/.

[2] libafdt, May 2010. http://github.com/facebook/hiphop-php/tree/master/
src/third party/libafdt/.

[3] VMWare, May 2010. http://www.vmware.com.
[4] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. Opus:

online patches and updates for security. In USENIX Security, 2005.
[5] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent

programming in ERLANG (2nd ed.). Prentice Hall International Ltd.,
1996.

[6] Jeff Arnold and Frans Kaashoek. Ksplice: Automatic rebootless kernel
updates. In Eurosys, 2009. To appear.

[7] Rida A. Bazzi, Kristis Makris, Peyman Nayeri, and Jun Shen. Dynamic
Software Updates: The State Mapping Problem. In The 2nd ACM
Workshop on Hot Topics in Software Upgrades (HotSWUp ’09), October
2009.

[8] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew.
Polus: A powerful live updating system. In ICSE, pages 271–281, 2007.

[9] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C. Necula. Dependent types for low-level programming. In In
European Symposium on Programming, 2007.

[10] Deepak Gupta and Pankaj Jalote. On-line software version change using
state transfer between processes. Software Practice and Experience,
23(9):949–964, September 1993.

[11] Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S.
Foster. A testing based empirical study of dynamic software update
safety restrictions. Technical Report CS-TR-4949, UMD, Department
of Computer Science, 2009. http://www.cs.umd.edu/∼hayden/papers/
tr-dsutest.pdf.

[12] The K42 Project. http://www.research.ibm.com/K42/.
[13] Kristis Makris and Rida Bazzi. Immediate multi-threaded dynamic

software updates using stack reconstruction. In USENIX ATC, 2009.
[14] Kristis Makris and Kyung Dong Ryu. Dynamic and Adaptive Updates

of Non-Quiescent Subsystems in Commodity Operating System Kernels.
In EuroSys 2007, March 2007.

[15] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol.
Practical dynamic software updating for C. In PLDI, 2006.

[16] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of
persistent kernel control-flow attacks. In CCS, October 2007.

[17] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under Unix. In Usenix Winter Technical Conference,
pages 213–223, January 1995.

[18] Shaya Potter and Jason Nieh. Autopod: Unscheduled system updates
with zero data loss. In ICAC 2005: Proceedings of the 2nd IEEE
International Conference on Autonomic Computing, pages 367–368,
Seattle, WA, USA, 2005. IEEE Press.

[19] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: a fast
capability system. In In Symposium on Operating Systems Principles,
pages 170–185, 1999.

[20] Jonathan M. Smith. A survey of process migration mechanisms. SIGOPS
Oper. Syst. Rev., 22(3):28–40, 1988.

[21] Richard W. Stevens and Stephen A. Rago. Advanced Programming in
the UNIX(R) Environment (2nd Edition). Addison-Wesley Professional,
2005.

[22] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dy-
namic software updates for Java: A VM-centric approach. In PLDI,
2009.

[23] Unsanity. Application Enhancer – enhance the applications by loading
modules. http://www.unsanity.com/haxies/ape.

[24] vsftpd: Very secure ftp daemon. http://vsftpd.beasts.org/.

