Dynamic Software Updating’

Michael Hicks
Computer and Information
Science Department
University of Pennsylvania

mwh@dsl.cis.upenn.edu

ABSTRACT

Many important applications must run continuously and
without interruption, yet must be changed to fix bugs or up-
grade functionality. No prior general-purpose methodology
for dynamic updating achieves a practical balance between
flexibility, robustness, low overhead, and ease of use.

We present a new approach for C-like languages that pro-
vides type-safe dynamic updating of native code in an ex-
tremely flexible manner (code, data, and types may be up-
dated, at programmer-determined times) and permits the
use of automated tools to aid the programmer in the up-
dating process. Our system is based on dynamic patches
that both contain the updated code and the code needed
to transition from the old version to the new. A novel as-
pect of our patches is that they consist of verifiable native
code (e.g. Proof-Carrying Code [17] or Typed Assembly
Language [16]), which is native code accompanied by an-
notations that allow on-line verification of the code’s safety.
We discuss how patches are generated mostly automatically,
how they are applied using dynamic-linking technology, and
how code is compiled to make it updateable.

To concretely illustrate our system, we have implemented
a dynamically-updateable web server, FlashEd. We discuss
our experience building and maintaining FlashEd. Perfor-
mance experiments show that for FlashEd, the overhead due
to updating is typically less than 1%.

1. INTRODUCTION

Many computer programs must be ‘non-stop’, that is, run
continuously and without interruption. This is especially
true of mission critical applications, such as financial trans-
action processors, telephone switches, airline reservations
and air traffic control systems, and a host of others. The
increased importance of the Internet and its link with the
global economy has made non-stop service important to a

*This work was supported by the NSF under contracts ANI
#00-82386, ANI #98-13875. and ANI #0081360.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

Jonathan T. Moore
Computer and Information
Science Department
University of Pennsylvania

jonm@adsl.cis.upenn.edu

Scott Nettles
Electrical and Computer
Engineering Department

University of Texas at Austin

nettles@ece.utexas.edu

larger range of less sophisticated users who wish to run e-
commerce Servers.

On the other hand, companies must be able to upgrade
their software to fix bugs, improve performance, and ex-
pand functionality. In the simplest case, upgrades and bug
fixes require the system to be shut down, updated, and then
brought back on-line. This, of course, is not acceptable for
non-stop applications; at best, it will result in loss of service
and revenue, and, at worst, may compromise safety.

Thus, in general, non-stop systems require the ability to
update software without service interruption. Solutions to
this problem exist and are widely deployed. A common ap-
proach is to provide application-specific software support
in conjunction with redundant hardware (already present
to support fault tolerance) to enable so-called hot standbys.
For example, Visa makes use of 21 mainframe computers to
run its 50 million line transaction processing system; it is
able to selectively take machines down and upgrade them
by preserving relevant state in the on-line computers. This
system is updated as many as 20,000 times per year, but
tolerates less than 0.5% downtime [20]. Of course, Visa’s
approach is expensive and, perhaps worse, adds to the com-
plexity of building applications. Much of the complexity
comes from the need for the standby machine(s) to keep or
gain the state maintained by the running application.

Less sophisticated users do not have Visa’s resources, and
seek simpler, more general, but no less effective solutions. In
particular, while redundant hardware may often be present
to support fault tolerance, we would prefer not to require it
for updating, since it adds cost and complexity. By using a
simpler, general-purpose approach, we can support systems
that do not typically require extra hardware, like commu-
nications components (e.g. routers, firewalls, NAT transla-
tors, etc.), simple Internet servers, monitoring systems, and
others. Furthermore, there are many non-redundant sys-
tems that do not necessarily require non-stop service but
would certainly benefit from it. For example, rather than
having to reboot a desktop computer each time its operating
system is upgraded, we would prefer to realize the updates
dynamically.

We present a general-purpose framework for updating pro-
grams as they run, called dynamic software updating, that
is flexible, robust, easy to use, and efficient. Our approach
is both cheaper and less complex than typical application-
specific approaches, and as we shall argue, improves signifi-
cantly over existing general-purpose systems.

After stating the goals of our approach in §2; we describe
our updating framework in §3 and our implementation of it

using Typed Assembly Language [16] in §4. Our experience
with a real-world application, a dynamically-updateable web
server, FlashEd, is described in §5; its performance is pre-
sented in §6. We then move on to a more in-depth discussion
of existing research and future directions before concluding.
This work summarizes the first author’s thesis [10]; readers
seeking more explanation and analysis should look there.

2. GOALS AND APPROACH

What properties define an effective dynamic updating frame-
work? To evaluate general-purpose dynamic updating sys-
tems, we establish four evaluation criteria:

e Flexibility. Any part of a running system should be
updateable without requiring downtime.

e Robustness. A system should minimize the risk of
error and crash due to an update, using automated
means to promote update correctness.

e Ease of use. Generally speaking, the less complicated
the updating process is, the less error-prone it will tend
to be. The updating system should therefore be easy
to use.

e Low overhead. Making a program updateable should
impact its performance as little as possible.

In this section, we first argue that existing systems do not
satisfy all of these criteria (we defer an in-depth discussion
of related work to §7). Next, we describe the key aspects of
our approach, and explain how they combine to successfully
meet these requirements.

2.1 Existing Approaches

Unfortunately, no existing general-purpose updating system
meets all of the desired criteria. Many systems have lim-
ited flexibility, constraining their evolutionary capabilities;
for example, dynamic linking is a well-known mechanism,
but while systems based upon dynamic linking [2, 21] may
add new code to a running program, they cannot replace
existing bindings with new ones. Those systems that do al-
low replacement typically either limit what can be updated
(e.g., only abstract types [7], whole programs [9], or class in-
stances [12]), when the updates can occur (e.g., only when
updated code is inactive [7, 14, 6, 9]), or how the updates
may occur (e.g., functions and values must not change their
types [12], or changes to module and class signatures are
restricted [14, 7]). These limitations leave open the possi-
bility that a software update may be needed yet cannot be
accomplished without downtime.

In many cases, there are few safeguards to ensure up-
date correctness. Some systems, for example, break type
safety [22, 12, 6, 9, 5] or have only dynamic checking [3], or
require potentially error-prone hand-generation of complex
patch files [13, 7, 14, 6, 9, 3, 5]. Others rely on uncommon
source languages or properties [13, 4, 3] and hence are not
broadly applicable. Finally, some systems impose a high
overhead, either due to implementation complexities [13, 5],
or due to a reliance on interpreted code [14].

2.2 Our Framework

Our framework, dynamic software updating, avoids the ex-
tra equipment and added complexity of typical application-

specific approaches, and unlike previous general-purpose sys-
tems, it meets all four of the evaluation criteria through a
novel combination of new and existing technology.

Flexibility. Our system permits changes to programs at
the granularity of individual definitions, be they functions,
types, or data. Furthermore, we allow these definitions to
change in arbitrary ways; most notably, functions and data
may change type, and named types may change definition.
The system does not restrict when updates may be per-
formed, even allowing active code to be updated. Our ap-
proach uses an imperative, C-like language, and should thus
be widely usable.

Robustness. In our system, dynamic patches consist of ver-
ifiable native code, in particular Typed Assembly Language
(TAL) [16]. As a result, a patch cannot crash the system
or perform many incorrect actions since it can be proven to
respect important safety properties, including type safety;
ours is the first dynamic updating system to use verifiable
native code. Our implementation builds on top of basic dy-
namic linking, keeping the implementation simple and ro-
bust.

Ease of use. Construction of patches is largely automated
and clearly separated from the typical development process.
When a new software version is completed, a tool com-
pares the old and new versions of the source files to develop
patches that reflect the differences. Although total automa-
tion is undecidable, our tool can nonetheless generate useful
patch code for a majority of cases, leaving placeholders for
the programmer in the other (infrequent) cases. No previ-
ous system both cleanly separates patch development from
software development and provides automated support for
patch construction.

Low Overhead. Our system imposes only a modest run-
time overhead, largely inherited from dynamic linking. Be-
cause we use TAL, programs and patches consist of native
code, giving obvious performance benefits as compared to
interpreted systems like Java.

In short, our approach provides type-safe dynamic updating
of native code in an extremely flexible manner and permits
the use of automated tools to aid the programmer in the
updating process. As a result, ours is the first dynamic
updating system to satisfy all of the evaluation criteria.

3. FRAMEWORK

In this section, we discuss our general framework; details
about our implementation of a specific instance of this frame-
work are presented in §4. We assume an imperative source
language, using C-like code in the examples.

3.1 Dynamic Patches

Central to our approach are dynamic patches; namely, ones
that are applied to a running program. Dynamic patches
differ from static patches, such as those created and applied
using the Unix programs diff and patch, because they must
deal with the state of the running program. We can ab-
stractly define a dynamic patch of some file f as the pair
(f',S), where f’ is the new code and S is an optional state

static int num = O;
int f(int a, int b) {
num++;
return a + b;

}

Figure 1: A file f

new version f’: state transformer S

static int num = 0; void S ()

int £(int a, int b) { f’::num = f::num;
num++;
return a * b;

}

Figure 2: Dynamic patch for f: (f',S)

transformer function, used to convert the existing state to a
form usable by the new code.

For example, consider the file f shown in Figure 1. The
function f increments num to track the number of times it
was called and returns the sum of its two arguments. Sup-
pose we modify f to return the product of its arguments,
producing f’. The dynamic patch that converts f to f’ is
shown in Figure 2. The state transformer function S is triv-
ial: it copies the existing value of num in the old version f to
the num variable in the new version f’. In general, arbitrary
transformations are possible.

Because patches are applied to individual files, rather than
whole programs, there is a problem in applying a single
patch if exported code or data changes type: existing referers
of changed items will access them at the old (now incorrect)
type. In general, this problem can be ‘corrected’ by simul-
taneously applying patches to correct the callers. In most
situations, it would not make sense to do otherwise; in tran-
sitioning from one version of a program to another, it only
makes sense to patch all of the files that changed. However,
for greater flexibility, we can extend the notion of a patch to
optionally include stub functions to be interposed between
old callers and new definitions to get the types right. There
is no analogous construct for data, so if a patch changes the
type of some global variable, then all the code that refer-
ences that variable must be simultaneously changed.

3.2 Enabling Dynamic Patches

For reasons of flexibility and simplicity, we build dynamic
patch application on top of dynamic linking. In essence,
a patch is dynamically linked into the running program,
and then the running program is transitioned from the old
code to the new code. In this section, we consider possible
mechanisms for transitioning the program to use dynami-
cally linked patches. We arrive at our basic methodology by
considering possible choices in light of our evaluation crite-
ria, particularly flexibility, efficiency, and ease of use. We
first consider updates to code and data, and then updates
to type definitions.

3.2.1 Code and Data Updates

Once a patch has been dynamically linked into the pro-
gram, existing function calls and data must be redirected to
the stubs and new definitions in the patch. There are es-
sentially two ways to do this: either by code relinking or by
reference indirection. When using code relinking, the rest of

the program is relinked after loading a patch; as a result, all
references to the old definitions will be redirected to refer
to the new ones. By contrast, reference indirection requires
modules to be compiled so that references to other modules
are indirected through a global indirection table. An update
then consists of loading a patch and altering appropriate en-
tries in the table to point to the patch.

With relinking, the process of updating is active: the dy-
namic linker must go through the entirety of the program
and ‘fix up’ any existing code to point to the new code. With
reference indirection, updating is passive: the existing code
is compiled to notice changes. As a result, the linker does
not need to keep track of the existing code and simply makes
changes to the table, but at the cost of an extra indirection
to access definitions through the table. In both cases it is
the responsibility of the state transformer function to find
references to old definitions that are stored in the program’s
data. For example, if the program defines a table of function
pointers, the state transformer must redirect each pointer in
the table to its new version.

We have chosen to use code relinking because it has two
main benefits: it avoids extra indirection, reducing over-
head, and it is simple to implement, enhancing robustness.
In particular, we implement code relinking by reusing the
code in the dynamic linker (described in §4.1). The only ap-
parent burden is the need to keep track of the existing code
to be able to relink it; but we must do this already, since the
dynamic linker resolves external references in loaded code
against all the existing code.

Ultimately, we could take a hybrid approach in which
some elements are compiled to notice updates, and others
must be relinked. One possibility that we have explored
is to compile pointerful data (notably function pointers) to
have an extra indirection, but require code references to be
relinked. This would ease the requirement that the state
transformer translate pointer data. We touch on this idea
further in §7.

3.2.2 Updating Type Definitions

If we wish to preserve type-safety, we need a way to upgrade
the type definitions as understood by the type-checker used
by the dynamic linker. Again, there are basically two ap-
proaches we could take: replacement or renaming. With re-
placement, applying the patch replaces the existing type def-
inition in the typechecking context with a new one. Newly
loaded code is checked against the new definition, implying
that to preserve consistency we must also convert any ex-
isting instances of the old type definition (whether in the
heap, stack, or static data area) to the new one. Further-
more, any code that makes use of the old type elsewhere
in the program must itself be replaced (unless the type is
abstract; then only the code that implements the type must
be replaced).

The alternative approach is type renaming. Instead of al-
lowing type definitions to be replaced, we maintain a fixed
notion of a type definition, and rely on the compiler to de-
fine a new type that logically replaces the old one by syn-
tactically renaming occurrences of the old name with the
new one. Renaming is similar to the idea of a-conversion in
scoped programming languages, in which a type definition
can override a definition of the same name in a surrounding
scope; the overriding type is renamed to avoid the clash.
The consequence of this approach is that when the patch is

applied, existing instances of the old type are left as they
are; the state transformer function and/or the stub func-
tions in the patch can be used to convert old instances at
update-time or later if needed. The typechecking context
retains its definition of the old type and adds a new one for
the new type.

There are advantages to both approaches. Type replace-
ment, in general, is quite flexible and easy to use: it main-
tains the identity of a type within the program but lets its
definition change. The system updates the values of the
changed type (perhaps using user-provided code), so long
as the programmer has updated all of the modules that use
that type. However, because the program has no notion
of the old and new versions of the type, the system must
ensure that it can (logically) convert all of the old types in-
visibly. This restriction prevents an update to a type while
code in the program is using values of that type [7]. In con-
trast, type renaming only allows the loading of new types
to logically replace existing ones, placing more burden on
the programmer to convert values from the old to new type
in either the state transformer or stub functions. However,
renaming provides more freedom in timing updates, since
the program is ‘aware’ of both versions.

Implementing type renaming is quite simple, requiring no
additional runtime support. To be practical it does require
a standard method for renaming type definitions at compile-
time so that different developers do not choose clashing or
inconsistent names, which would result in program errors.
This problem can be solved by taking a cryptographic hash
(e.g. using MD5 [18]) of the type’s definition to arrive at a
consistent name. In contrast, type replacement requires a
way to find all existing instances of a given type, and a way
to change them from the old version to the new. Further-
more, to ensure that type updates do not occur when code
that uses them is active requires heavyweight mechanisms
to track when modules are in use [6, 13, 9].

We favor the simpler type renaming approach over the
more complex, though easier to use, type replacement ap-
proach. Type renaming is more likely to be correctly imple-
mented because it is simple, and is more portable, relying on
facilities available in type-safe dynamic linkers. Renaming
also provides more flexibility as to when and how values of
changed type will be converted. Other approaches [14] have
cited runtime type dispatch operators (e.g. instanceof in
Java) as a reason for performing type replacement, but we
believe more study is needed to bring to light the problems of
type renaming in such a context. In our experience, renam-
ing types at compile-time, and having multiple notions of a
type in the program, has not been problematic; we present
some of our experience in this regard in §5.1.1.

3.3 Building Updateable Systems

Now that we understand the mechanisms for building a
system that can have dynamic patches applied to it, two
key methodological questions remain. The first is how the
patches are generated. The second is how to structure our
system so that patches can be correctly applied, particularly
with respect to the timing of patch application.

3.3.1 Patch Construction Methodology

Constructing correct software is already difficult, so having
to write dynamic patches only compounds the difficulty. A
key goal of our approach has been to reduce the added bur-

den as much as possible. In particular, we wish to simplify
the process of constructing patches, and we wish cleanly to
separate software development from patch development.

Our approach to generating patches is straightforward.
First, the programmer develops and tests a new version of
the code, exactly as if he was going to statically compile and
deploy it. Next, our system automatically generates as much
of the patch file as possible by comparing the source of the
old code to that of the new code. Finally, the programmer
fills in the parts of the state transformer and stub functions
that could not be automatically generated.

A key benefit of this approach is that software develop-
ment is separated from patch development. This is possible
because our notion of patch (and our implementation of it)
allows essentially arbitrary changes to the running program,
and all of these changes are encapsulated in the patch file.
In many other systems, patches are limited to certain forms,
and so software development is similarly limited. For exam-
ple, in Dynamic C++ classes [12], changes are limited to
instance methods and data; static methods and data can-
not evolve. As a result, the process of generating patches is
tied to development, with the newest version of the software
having artifacts of the old version, such as useless fields in
structures or additional copies of static data.

3.3.2 Automatic Patch Generation

A novel aspect of our approach is the (mostly) automatic
generation of patch files. This feature was originally born
out of convenience: it is very tedious to write state trans-
formation and stub functions by hand. It has also proven
invaluable in minimizing human error: it is less likely that a
necessary state transformation or stub function will be ac-
cidentally left out. As it turns out, a very simple syntactic
comparison of files, informed by type information, can do a
good job of identifying most changes.

The job of the patch generator is twofold: identify changes
to functions and data, and when possible, generate appropri-
ate stub functions and state transformers. The identification
algorithm is simple. First, both the old and new version of
the file to patch are parsed and type-checked. Then, for
each definition in the new file, the corresponding definition
is looked up by name in the old file. In the case of type
definitions, the bodies of the definition are compared and
differences are noted. In the case of value declarations, the
bodies are also compared syntactically, taking into account
the differences in type definitions; in particular, the syn-
tax of a function may remain the same from the old to the
new version, but the function has actually changed if a type
definition mentioned in the body has changed.

After the identification has completed, the state trans-
formation code is generated. For all global variables that
remain unchanged, an assignment statement is created from
the old to the new versions, like the one for num in Figure 2.
For those global variables that have changed type, appropri-
ate code is generated automatically, when possible. For ex-
ample, in FlashEd, our updateable webserver (described in
85), we often change the type definition httpd_conn, which
contains information about a pending connection. All con-
nections are stored in a global array of httpd_conn’s. In this
case, the generator automatically inserts a loop that copies
from the old to new array, calling a type conversion function
for each element, which is also generated automatically (to
the extent possible), as explained below.

The patch generator also generates default stubs for func-
tions that have changed type. Two basic modes are pos-
sible. In the simplest mode, the generator merely inserts
a statement that raises an exception. This is useful when
all patches for the running program are to be applied si-
multaneously. In this case no stub functions should ever be
invoked, so the exception signals an unexpected error. The
second mode is to automatically generate a call to the new
version of the function, first translating the arguments ap-
propriately. Because we have, to this point, only applied all
patches simultaneously, we have not yet implemented this
mode, although it should be straightforward.

During the identification phase, the patch generator keeps
track of any type definitions that have changed, and gener-
ates new names for these types by taking the MD5 hash of
the pretty-printed type definition. This allows development
of patches by multiple programmers without the worry of
choosing incompatible type names.

Finally, type conversion functions are constructed to the
extent possible for data conversion from old to new versions
of a type, and vice versa. These are used by the state trans-
formation and stub code, as mentioned above. For struct
types, each field with an unchanged type is copied; each field
that is added is given a default value; and each field that has
changed type is translated. Values of union type are decon-
structed and then reconstructed at the new type, translating
any fields that have changed. In the case that a translation
is not possible, a placeholder is left for the programmer to
fill in the appropriate value. Currently we support transla-
tion between like types (i.e., int and float), and struct
and union types (by calling the appropriate type conversion
function).

3.3.3 When to Apply Patches

A critical component of assuring patch correctness is the
timing of an update. In particular, it is possible for a well-
formed update to be applied at a bad time, resulting in
incorrect state. For example, consider the file f and its
patch, shown in Figures 1 and 2, respectively. Here the patch
state transformation function S copies the current value of
num to the new version. The new code then uses this new
version of num. If this patch is applied while f is inactive
(that is, £ is not currently running, and not on the stack)
then everything will be fine. However, if (the old version of)
f begins execution just before the patch is applied, it will
increment the old version of num after it has been copied by
S. The result is the new version of num will not reflect the
call of £.

Unfortunately, Gupta has shown that the problem of cor-
rect timing is, in general, undecidable [9]. Thus, in exist-
ing systems, programmers must identify correct timing con-
ditions for a given patch, a task which typically must be
done by hand [13, 6] or with very limited automated sup-
port [9]. Furthermore, dynamically enforcing these condi-
tions requires special runtime support [13] or restrictions to
updating only inactive code [7, 14, 6], which still does not
necessarily guarantee that race conditions of the above sort
will not occur.

Instead, we observe that the problem of timing can be
greatly simplified by requiring the program to be coded
from the outset so that updates are only permitted at well-
understood times. This transfers the timing enforcement
issue from run-time to compile-time: rather than assuming,

as past approaches do, that a program will not be aware that
it is updateable, and thus updates may conceptually occur
at any time, we instead require the program to be coded to
perform its own updating. Furthermore, not only can we
‘eyeball’ the code to determine an appropriate spot, we can
use the techniques of previous authors mentioned above to
determine one. The difference is that this spot is codified
at software construction time, as opposed to specified and
enforced at runtime.

As a result, we avoid the implementation complexity of
update timing enforcement, without losing the benefits of
correctness. The cost is that the system must be constructed
appropriately from the outset. However, given that the
clientele of dynamic updating systems already recognize the
need for updates, this is perfectly reasonable. Our own
experience, and that of other updating systems, such as
Erlang [3], indicate that this burden is not great, espe-
cially compared to the complexity of application-specific ap-
proaches that use hot and cold standbys.

4. IMPLEMENTATION

We have implemented our framework to target Typed As-
sembly Language (TAL) [16]. Both TAL and its cousin,
proof-carrying code [17], belong to a framework we call ver-
ifiable native code, in which native machine code is coupled
with annotations such that the code is provably safe. A well-
formed TAL program is memory safe (i.e. no pointer forg-
ing), control-flow safe (i.e. no jumping to arbitrary memory
locations), and stack-safe (i.e. no modifying of non-local
stack frames) among other desirable properties. TAL has
been implemented for the Intel IA32 instruction set; this
implementation, called TALx86 [15], includes a TAL veri-
fier and a prototype compiler from a safe-C language, called
Popcorn, to TAL.

This section presents the details of our implementation,
including how we implement dynamic updating by code re-
linking, and how we define patch files and compile them to
TAL.

4.1 Dynamic Updating

In previous work, we added a type-safe dynamic linker to
TALx86 [11]. Our current work extends that work to pro-
vide dynamic updating for Popcorn programs. We briefly
describe the existing dynamic linker, and follow with the
changes we made to support dynamic updating.

At the core of the TAL dynamic linker is a simple prim-
itive, load, that loads and verifies TAL modules. The re-
mainder of the linker’s functionality, which includes linking
and symbol management, is written in Popcorn, and can
thus be proven type-safe, adding to the implementation’s
robustness.

Dynamically loadable files are compiled so that their ex-
ternal references are indirected through a local table called
the global offset table (GOT) in the style of ELF dynamic
linking [22]. At load-time, the entries in this table are re-
solved with the exported definitions of the running program.
These definitions are tracked by the dynamic linker within
a global dynamic symbol table. This ‘table’ consists of a
linked list of hashtables, one per module, that maps sym-
bol names to their addresses. In ELF, both the GOT and
the dynamic symbol table are encoded as part of the object
file header, but in our system, they are written in Popcorn.
In particular, the GOT for each loadable file is constructed

automatically via a source-to-source translation, and the dy-
namic symbol table is generated and maintained by symbol
management part of the dynamic linker. As a result, the
indirection facility and the the process of linking can be
checked for type-safety.

To support dynamic updating, we alter this scheme only
slightly. Say we are loading a patch for some program mod-
ule A.

1. All files, whether statically- or dynamically-linked, are
compiled to have a GOT, and external references are
indirected through that GOT.

2. When the patch for A is loaded, a new hashtable is
created to be stored in the dynamic symbol table.
Once the patch has been linked with the running pro-
gram, the patch’s state transformer copies the old state
from A, transforming it as necessary. If an error oc-
curs during linking (e.g a symbol is looked up at the
wrong type) or state transformation (some exception is
raised), then we roll back to the old version of A. This
can be done by simply throwing out the new hashtable,
since the old code and the old hashtable has not been
modified. Once state transformation is complete, the
existing code in the program is relinked; this includes
the present version of A in case that code is still active.
The result is that the GOT’s of each of the existing
files will have their entries redirected to the new code’s
symbols. Finally, the old A’s hashtable is essentially
removed from the dynamic symbol table (see below).
When applying multiple patches simultaneously, we re-
quire more than one linking pass, since patches may
contain mutually-recursive references, but the gist is
the same.

To properly support these operations, we modified our dy-
namic linker to support the following features:

e FEzxporting static variables. This allows state trans-
formers have access to all global state. To avoid name
clashes between files, we prepend local variables with
filename: :Local: :.

e Customized linking order. This allows us to look up ex-
isting table entries before they are overwritten; this is
important for state transformer functions, which may
refer to both old and new versions of a given variable.

e Rebinding. We can map symbols in the program to
different names in the dynamic symbol table. This
allows us to replace function symbols with stubs that
do not have the exact same name.

e Secondary lookups. After a patch is loaded, say for
module A, the old version of A needs to be relinked in
case it is still active. In this case, if a lookup during
the relinking finds a requested symbol at the wrong
type, it secondarily looks for the old version of that
symbol in an older hashtable. This circumstance will
only occur when a symbol changes type and does not,
or cannot in the case of data, define a stub function.
Because the old A is going to shortly be outmoded by
the new A, we allow the code to use the old version of
the symbol. In contrast, when relinking the rest of the
program (i.e. everything but the old version of A), we
do not allow secondary lookups, effectively enforcing

that current code always refers to the most current
symbols.

e Weak pointers. Once relinking is complete, we would
like to remove any old hashtables from the dynamic
symbol table to make the old code unreachable, and
thus garbage-collectible. However, doing so is strictly
correct because there is no guarantee that this old code
will not be active at the next update, and thus need to
be relinked. An effective compromise is to keep the old
hashtables linked into the dynamic symbol table with
weak pointers. Weak pointers do not keep data from
being garbage collected when not reachable by some
non-weak pointer elsewhere in the program, and thus
code can be collected when it is no longer needed.

Unfortunately, TAL does not currently support weak
pointers, but adding them would be straightforward.
To simulate the weak pointer implementation, for pur-
poses of understanding the performance of updated
programs, we remove the old tables following an up-
date, but ensure via program construction that the
removed code will not be active at the next update.

4.2 Patches

Our implementation of dynamic patches closely follows the
abstract description of §3.1. The contents of a patch are de-
scribed by a patch description file containing four parts: the
implementation filename, the interface code filename, the
shared type definitions, and the type definitions to rename.
The first two fields describe the patch: its implementation
in the first file, and the state transformer and stub functions
in the second file. The final two fields are for type names-
pace bookkeeping. The shared type definitions are those
types that the new file has in common with the old, while
the changed definitions are in the renaming list, along with
a new name to use for each. The compiler uses this infor-
mation to syntactically replace occurrences of the old name
with the new one.

As introduced in the state transformation function of Fig-
ure 2, we need a way to refer to different versions of a vari-
able within the interface code file. For a variable x, we may
wish to differentiate between the old version of z, the new
version of x, or the stub function for x. This is achieved
by prepending the variable references in the interface code
file with New::, 01d::, and Stub:: respectively. With no
prefix, the reference defaults to the version available before
the patch was applied; this turns out to simplify how we
compile patch files.

The patch file is compiled by translating it into a normal
Popcorn file, and then using the normal Popcorn compiler.
The translation works as follows. First, all definitions in the
implementation file whose variables are in the sharing list
are made into externs, which will resolve to the old ver-
sion’s definitions at link time. Second, all of the defined
variables (non-extern) in the implementation file are pre-
fixed with New::. Third, the interface code file and the
implementation file are concatenated together. Finally, all
the mappings from the renaming list are applied to the file’s
type names. The resulting file is then compiled to be load-
able and updateable, as described above.

To changed A source total interface LOC
ver || files types LOC patches | auto by hand

0.2 11 3 433 16 1324 48
0.3 9 2 813 14 1261 99
0.4 7 1 1557 12 1214 99

Table 1: Summary of changes to versions 0.2 through
0.4 of FlashEd

S. THE FLASHED WEBSERVER

To demonstrate our system, as well as to further inform its
design and implementation, we developed a dynamically-
updateable webserver, based on the Flash webserver [19].
Flash consists of roughly 12,000 lines of C code and has per-
formance competitive with popular servers, like Apache [1].
We constructed our version, called FlashEd (for Editable
Flash), by recoding Flash in Popcorn while preserving its es-
sential structure and coding techniques. In this section, we
use FlashEd as a case study to explain three aspects of our
system: how to construct an updateable application, how to
construct and test patches in practice, and how dynamic up-
dateability affects application performance; we look at the
first two of these points in this section, and discuss perfor-
mance in the next section.

5.1 Building an Updateable Application

Flash’s structure is quite amenable to ensuring patches are
well-timed. It is constructed around an event loop (in a file
separate from that of main) that does three things. First, it
calls select to check for activity on client connections and
the connection listen socket. Second, it processes any client
activity. Finally, it accepts any new connections. This kind
of event loop is common in server applications.

Only two changes were needed to Flash to support dy-
namic updating. First, we added a maintenance command
interface. A separate application connects to the webserver
and sends a textual command with the files to dynamically
load. After the select completes, a pending maintenance
command is processed and the specified dynamic patches are
applied. Upon completion, the event loop exits and re-enters
the loop (thus reflecting any change to the file containing the
loop) and continues processing. Relevant state is preserved
between loop invocations.

The second change was to how errors were handled. Flash
contains many places where exit is called upon the discov-
ery of illegal conditions. Such aborts are not acceptable in
a non-stop program, so we changed these cases to throw an
exception instead. When the event loop catches any unex-
pected exceptions, it prints diagnostics, shuts down existing
connections, and restarts. If an exception is thrown from a
module that maintains state, that state is also reset. Thus
the program can continue service until it can be repaired,
albeit with the loss of some information and connections.

5.1.1 Patching

To gain experience evolving a program using our system,
we constructed FlashEd incrementally. Our initial imple-
mentation (version 0.1) lacked some of the Flash’s features
(such as dynamic directory listings) and performance en-
hancements (such as pathname translation caching and file
caching). We added these features, one at a time, following

the process outlined in §3.3.1. Version 0.2 adds pathname
translation caching; version 0.3 adds file caching; and ver-
sion 0.4 adds dynamic directory listings.

Information about the changes between versions, includ-
ing the patches that resulted, is summarized in Table 1.
Columns two to four of the table show the changes to the
source code made from the previous version, including the
number of changed or added source files (not including header
files), the number of changed type definitions, and the num-
ber of changed or added lines of code. The last three columns
describe the patches, including the total number of patches
generated (not including the type conversion file), the total
lines of generated code for the patch interface code files, and
those lines that were added or changed by hand.

There are two things to notice in the table. First, the
number of patches generated exceeds the number of changed
source files; this is because certain type definitions changed,
such that functions in those files that refer to those types
also effectively changed. Second, the number of lines of in-
terface code automatically generated far exceeds the amount
modified or added by hand. This is not to say that the
process of modifying the automatically-generated files was
simple (it was not in some cases), only that a large portion
of the total work, much of it tedious, could be done auto-
matically. For example, many of the generated lines include
extern statements that refer to the old and new versions
of changed definitions; these would have had to be placed
by hand otherwise. Most importantly, using the patch gen-
erator guaranteed that the patches were complete—all of
the changes were identified automatically, even though some
changes needed to be addressed by the programmer.

The alterations to the generated files usually had one of
three forms. First, we had to write code in the state trans-
former function to translate pointerful data. For example,
sometimes various connection handler functions changed, so
we had to translate references to those handlers in the global
handler array to point to the new version. Second, we had
to occasionally fill in placeholders in the generated type con-
version functions, particularly for function pointers (like the
per-connection timeout function) and newly-defined types
(like a struct added to manage cached files). Finally, we
had to add code to the state transformer to initialize new
functionality; this code already exists in (and was copied
from) main, but because the new functionality is added dy-
namically, the code must run in the state transformer.

5.2 Experience

To simulate a production environment, we have been run-
ning a public server and attempting to never shut it down,
making all changes on-line. A brief chronology for FlashEd
is shown in Figure 3. We started version 0.1 at http:
//flashed.cis.upenn.edu on October 12, 2000, to host the
FlashEd homepage. We applied patches for version 0.2 on
October 20 and for version 0.3 on November 4. All patches
were tested offline on a separate server under various con-
ditions, and when we were convinced they were correct, we
applied them to the on-line server. Even so, we found a mis-
take in the first patch—a flag had not been properly set—
and applied a fix on October 27. In addition, we applied
roughly five small patches for debugging purposes, such as
to print out the current symbol table.

Running the server has revealed which aspects of the sys-
tem work well and which do not. For instance, we learned

12 0Oct 2000 @ initia version 0.1 (only/ i ndex. ht nl)

: fixed date parsing bug
20 Oct 2000 version 0.2 added pathname translation caching
27 Oct 2000 completed date parsing fix
added 32 MB file cache
jon 0.3 < added new maintenance commands
4 Nov 2000 version handling for previously-fatal exceptions
eliminated spurious hangup message
7 Feb 2001 version 0.4 ... dynamic directory listing

t

Figure 3: Timeline of FlashEd updates

soon after we deployed the server that our version of the
TAL verifier is buggy—it only checks a subset of all of the
basic blocks in loaded files. Since the verifier is part of the
trusted computing base, it cannot be updated. As a result,
we shut down the server on February 7' and redeployed it
compiled with the new verifier. To accommodate these kinds
of changes dynamically, we could allow certain trusted code
to be loaded without benefit of verification.

We also made a human error when compiling the server:
we forgot to enable the exporting of static variables when
compiling the library code. This problem became apparent
when we attempted to dynamically update the dynamic up-
dating library. The library was not properly removing old
entries from the dynamic symbol table, and so we wanted
to patch the library to fix the problem, as well as clean up
the existing symbol table. However, since the symbol table
is declared static, it was not available for use by the patch.
As aresult, any update to the library is effectively precluded
since the state cannot be properly transferred.

On the whole, however, the system has been easy to use,
since the only burden on the programmer is to fill out parts
of the patch that the automated generator leaves out, and
then to test the patches off-line. It has been particularly
effective to be able to load code to print out diagnostic in-
formation. For example, on a number of occasions we loaded
code that would print out the dynamic symbol table (by call-
ing an existing function in the updating library) to make
sure that symbol names referenced in our patches, particu-
larly the ones chosen for static variables, matched the ones
present in the table. We also loaded code to print out the
state of the file and translation caches, to make sure that
things were working.

Having the verifier to check patches as they are being
loaded has been quite valuable. For example, we tried to
apply some patch files that were incorrectly generated; the
implementation file path mentioned in the patch description
file was for an incorrect version. As a result, some of the type
definitions were incorrect, and this fact was caught by the
verifier. Once we applied a patch whose state transformation
function failed to account for null instances; the updating
library caught the NullPointer exception and rolled back
the changes made to the symbol table. Using an unsafe
language, such as C, would have resulted in our non-stop

! Actually, the power was accidentally shut off on the server,
and so we took that opportunity to make the change.

system stopping with a core dump.

6. PERFORMANCE ANALYSIS

Adding dynamic-updating imposes a number of costs on the
system. At update-time, each patch must be verified and
linked. At run-time, each external reference entails an extra
indirection, essentially inherited from dynamic linking. In
this section, we present the results of some experiments that
measure these costs.

Our experimental cluster is made up of four dual-300 MHz
Pentium-II’s with split first level caches for instruction and
data, each of which is 16 KB, 4-way set associative, write-
back, and with pseudo LRU replacement. The second level
4-way set associative cache is a unified 512 KB with 32-
byte cache lines and operates at 150 MHz. These machines
receive a rating of 11.7 on SPECint95 and have 256 MBs of
EDO memory. Each machine is connected to a single Fast
Ethernet (100 Mb/s), switched by a 3Com SuperStack 3000.
We run fully patched RedHat Linux 6.2, which uses Linux
kernel version 2.2.17.

6.1 FlashEd runtime performance

The only runtime overhead of our implementation is in-
curred through the use of the GOT, which is inherited from
dynamic linking. We could avoid this cost by implement-
ing our linker to resolve external references in-place, as de-
scribed in [11]. Using a GOT, each external reference re-
quires two additional instructions, which adds about 2 cy-
cles (or 6.7 ms) on our machines. By itself, this overhead is
not very meaningful, since its overall effect is application-
specific, depending on both the number of external function
calls made during execution, and the amount of computa-
tion that occurs between those calls. To provide context, we
examined the impact of this overhead on FlashEd’s applica-
tion performance.

To measure server performance, we used httperf (v0.8),
which is a single, highly-parameterizable executable process
that acts as an HTTP client. It can generate HTTP loads
in a variety of ways, being able to simulate multiple clients
by using non-blocking sockets. To ensure that the server is
saturated, multiple httperf clients can be executed concur-
rently on different machines. Throughput is measured by
sampling the server response over fixed intervals, and then
summarizing the samples at the end of the test.

Our experimental setup is as follows. One machine runs
the webserver, and the other three run httperf clients. To
simulate ‘typical’ client activity, we ran a log-based test, in
which each client uses an identical filelist containing a list
of files to request, with a corresponding weight for each file.
Each request is determined pseudo-randomly, as preferenced
by its weight. Our filelist was obtained from the WebStone
benchmarking system [23], which claims it to be a fair rep-
resentation of file-based traffic. We used 90 second sample
times, and we measured each server for roughly 32 minutes,
totalling 21 samples. Because we observed skewed distribu-
tions in many cases, we report the median, rather than the
mean, and use the quartiles to illustrate variability. (We had
to make some minor changes to httperf to run this test.)

Figure 4 shows the results of our measurements. The X-
axis varies with server version; the first three columns show
the throughput for FlashEd 0.1, 0.2, and 0.3, respectively,
and the fourth column shows the throughput for Flash (com-
piled using gcc version eges-2.91.66 with flag -02) as a point

. X static
— . m updateable
4 1 e updated
Q -
g 75 <
= _
o
F= _
=)]
=}
8 J
e
= 70 —

0.1 0.2 0.3 C

Server Version

Figure 4: Flash and FlashEd throughput by version

of reference. The Y-axis shows throughput in Mb/s (note
that it does not start at 0). For each version of FlashEd,
we measured the server’s performance when it was compiled
with and without updating support (labeled static and up-
dateable in the figure, respectively), as well as when it was
patched on-line (labeled updated in the figure); for exam-
ple, the updateable FlashEd 0.3 was compiled directly from
the version 0.3 sources, while updated FlashEd 0.3 was com-
piled from the version 0.1 and then patched twice dynam-
ically. We suspected (correctly or incorrectly) that an up-
dated FlashEd would have higher overhead than an update-
able one due to a larger heap and memory footprint, since it
retains the original version of the code in the text segment
while new code is loaded into the heap. For each server we
show the median throughput, with the quartiles as bars.

6.1.1 Analysis

The overhead due to updating is the difference in perfor-
mance, per server version, between the medians of the static
and updated /updateable versions. In all cases, this overhead
is between 0.3% and 0.9%, which is negligible when com-
pared to the measured variability. This variability is not un-
expected because the URL request pattern seen by the server
differs from sample to sample, since the URL’s requested in
aggregate by the three clients will differ during each sample
(we chose longer sample times to mitigate this effect). To
reduce experimental variability, we also ran tests in which
the httperf clients constantly request the same URL, using
a variety of URL file sizes. For these tests, the variabil-
ity dropped significantly (the semi-interquartile range was
typically 0.25% of the median, as opposed to about 3% for
the log-based test), and the overheads were similar, ranging
from 2.3% for a 500B file and 0% for a 500KB file; details
on these tests can be found in [10].

The measurements do not consistently favor either the
updated or updateable code. In particular, for FlashEd 0.2,
the updated server is slightly faster than the updateable one,
while the reverse is true for version 0.3. The fact that the
relative and absolute locations of the code in an updated
program is different than the updateable one may be one
source of difference, since the same modules will be affected
differently by cache policy. In addition, because the heap
sizes are the same but the updated program uses some of
this heap to store update code, we have observed that the

39 O other
] @ consistency checking
] | disassembly
2
DR
TR
£
1

50000 100000
filesize (B)

150000

Figure 5: Time to apply dynamic patches

updated code garbage collects more often, favoring the up-
dateable code in this regard. However, in general this differ-
ence is well within the measured variability of the numbers
and may be due to experimental variation.

We are encouraged by the fact that FlashEd 0.3 has per-
formance essentially identical to that of Flash, though at
first this is surprising, given our prototype compiler. How-
ever, much of the cost of file processing is due to 1/0, re-
ducing the benefit of compiler optimizations; a more CPU
intensive task would certainly favor the C implementation.
In any case, FlashEd’s favorable performance suggests that
TAL, and verifiable native code in general, is a viable plat-
form for medium-performance, I/O-intensive applications.

6.2 Load-time overhead

Our updating system also imposes a load-time cost to link
and verify dynamic patches. We measured the component
costs to apply patch files, and in Figure 5 we present mea-
surements for the patches to update FlashEd version 0.2 to
version 0.3. All of these files are applied together, due to
the mutually-recursive references among them, for a total
time of 16.2s; 0.81s of this time was needed to relink the
program.

In the figure, the X-axis is the total size of the compiled
patch file, and each bar sums the total time to perform dy-
namic linking for that patch. We break down dynamic ap-
plication into three operations: disassembly and consistency
checking, which are the core of TAL verification, and other,
which is the combination of the remaining costs, including
the time to load and link the file, and to verify that its
interface (the types of its imported and exported symbols
and its exported type definitions) is consistent with that of
the program. We can see that the total time is dominated
by verification, averaging 72% for consistency checking and
25% for disassembly. According to [8], verification is gen-
erally linear in the size of the files being verified, which we
find to be true here.

In many contexts, loading times of this magnitude are not
a problem. For example, 16 seconds of pause time is less
intrusive than an OS reboot. In the case of the webserver,
an infrequent pause is at worse inconvenient to the user,
but not harmful to the system. However, in other contexts,
there may be good reason to want shorter update times.

We have identified three means of reducing the load-time

cost. First, the verifier could be further optimized, given
that proof-carrying code [17] has demonstrated much smaller
verification times, albeit with a different type system, and
even TAL’s implementors recognize that further gains could
be made [8]. Second, verification could be performed in par-
allel with normal service, meaning that the system need only
be stopped for linking and relinking, which have negligible
cost. Finally, in the case of a completely trusted system
(as is FlashEd, for example), we can safely turn off on-line
consistency checking, running it instead for each loaded file
on some other machine. Leaving on link-checking ensures
that the loaded code meshes with the running program at
the module level, but trusts that the contents of the loaded
module are well-formed. Since consistency checking is the
most time-consuming operation, we greatly reduce our total
update times as a result.

7. DISCUSSION

To conclude, we discuss related work, place our current work
into a broader context, and consider future work. We orga-
nize the discussion around our four major criteria for evalu-
ating updating systems: flexibility, robustness, ease of use,
and low overhead. A more complete discussion of related
work may be found in [10].

7.1 Flexibility

At one extreme of the flexibility axis are systems that use
dynamic linking alone to support updating [2, 21]. These
solutions are only adequate when the programmer can cor-
rectly anticipates the form of future updates. Other systems
are more flexible, but do not allow arbitrary changes. For
example, Dynamic ML [7] only permits changing the defini-
tions of types that are abstract, and updated modules cannot
remove or change the types of existing elements. The Dy-
namic Virtual Machine [14], a Java VM with updating abil-
ity, and Dynamic C++ classes [12] similarly require class
signature compatibility.

At the other extreme of the flexibility axis are systems
that, like ours, allow nearly arbitrary changes to programs
at runtime [13, 6, 9, 3, 4]. DYMOS [13] (DYnamic MOd-
ification System) is the most flexible existing system; pro-
grammers can not only update functions, types, and data,
but can also update infinite loops. Like ours, some past sys-
tems permit updates to active code. A gradual transition
from old to new code occurs at well-defined points, such as
at procedure calls [3, 13, 6, 4], or during object creation [12].

We believe our system sufficiently balances flexibility with
the other updating criteria: the generality of our dynamic
patches allows us to achieve most of the flexibility of the
most general solutions, and programmer control of patch ap-
plication gives good flexibility in timing updating. However,
there are some important flexibility limitations we would like
to address, as informed by our experience with FlashEd.

Pointerful Data. As mentioned in §3.1, we rely on the state
transformer function to alter pointers to updated definitions
that are stored in the program’s data; such references could
be to functions (i.e. function pointers), or to global data.
For instance, when some function f is updated, a function
pointer to £ must be modified during state transformation
to point to the new f; the system does not do this automat-
ically. While handling ‘pointerful data’ in this way seems
reasonable for imperative languages like C and Popcorn, this

approach is likely insufficient for functional languages that
make heavy use of closures (which are essentially function
pointers), and may prove problematic for object-oriented
languages as well.

An effective way to automatically update pointerful data
is to selectively use reference indirection. In particular, we
have experimented with having the compiler modify the
code so that rather than passing or storing a function pointer,
we pass the function’s GOT entry. When the function pointer
is actually used, the GOT entry is dereferenced, effectively
retrieving the most recent version. This approach should ap-
ply equally well to pointers to data as well. We have largely
implemented this idea, but still have a number of loose ends
to tie up.

Updating abstract types. In Popcorn, structures and un-
ions can be declared abstract, meaning that only the code
in the local file may see the type’s implementation; this is
enforced by the TAL verifier. As a result, no dynamically-
linked file will be able to see the implementation of an ab-
stract type. In general, this behavior is desirable, but it
also potentially prevents updating the abstract types, since
it may be impossible to translate objects of the old type to
ones of the new implementation.

We can solve this problem by implementing a more flexible
type management policy. In particular, whether a type’s
implementation is visible or not to loaded code can be made
a matter of policy; code that updates an abstract type may
break the abstraction, but all other code may not. This
should be reasonably easy to implement with our linker [11].

Unchecked updates. We currently support updates con-
sisting of verifiable native code, but as motivated in §5.1.1,
we would also prefer to occasionally update the trusted ele-
ments of the system, including the TAL verifier and runtime
system. Implementing trusted updates should be straight-
forward by using the underlying loader without the verifier.

7.2 Robustness

Dynamic linking alone provides a significant advantage with
respect to robustness over the more general updating system
we have proposed, simply because bindings are stable: once
bound, a reference never changes. Previous work has lever-
aged this fact to try to build support for evolving systems
that only use dynamic linking. For example, Appel [2] de-
scribes an approach in which the old and new version of
code can run concurrently in separate threads, with the old
version phasing out after it completes its work. Similarly,
Peterson et al. [21] describe an application-specific means of
stopping a program, updating its code, and then invoking
the new version with the old version’s state. Both of these
approaches suffer the problem that they are more difficult
to use and less flexible.

However, as we explained in §3.3.3, allowing code to change
arbitrarily can result in incorrect behavior if timing is not
considered. While our approach allows a programmer to de-
termine when updates will occur, much work remains for de-
termining where such safe points lie. In particular, things get
more complicated with multithreading. Previous work [9,
13, 6] can serve as a starting point for this investigation.

Robustness is greatly strengthened by verifying impor-
tant safety properties of loaded code, including type safety.
This is a key benefit to our approach, and to the DVM [14],

which makes use of Java bytecode verification. Other sys-
tems benefit from the use of type-safe source languages, like
SML [2, 7], Haskell [21] and Modula [13], but must trust the
compiler; we need only trust the verifier. Erlang is dynami-
cally typed, so runtime type errors are possible. Most other
approaches are for C [6, 9] and C++ [12], which lacks the
benefit of type-safety.

7.3 Ease of use

Dynamic linking is generally easy to use and is well inte-
grated into standard programming environments. Also due
to its widespread support in current languages and systems,
it is also quite portable. In contrast, the more flexible sys-
tems are quite hard to use. In all of the existing systems,
patches must be constructed by hand: the programmer must
identify parts of the system that have changed and reflect
these in the file to load. In many cases, the limitations of
patch files hamper the normal development process.

Ease of use is one of the areas that our system makes the
greatest contributions. Our basic methodology, in which
programs are developed normally, and dynamic patches up-
date the old version to the new, limits disruption of normal
work flow. In particular, the semi-automatic generation of
patches greatly increases the ease of use of our system, au-
tomating the most tedious parts of patch generation, while
letting the programmer control the more subtle aspects that
are not amenable to automation.

7.4 Low Overhead

Some systems provide updating at no runtime cost, includ-
ing Gupta’s system [9], and Dynamic ML [7]. Most sys-
tems employ reference indirection, either as we described in
§3.2.1 [3, 14, 12], or in slightly more clever ways [13, 6].
Dynamic linking may (as in the case of ELF [22]) or may
not impose an indirection, affecting systems like ours and
those that use it exclusively [21, 2]. As we have demon-
strated here, however, this extra indirection does not trans-
late to high overhead in practice. Furthermore, because our
approach is based on native code, it lacks the overhead of
interpretation, e.g., as in the DVM [14].

8. CONCLUSIONS

We have presented a system for dynamic software updat-
ing built on type-safe dynamic linking of native code. Our
framework provides significant advances in balancing the
tradeoffs of flexibility, robustness, ease of use, and low over-
heads, as borne out by our experience with our dynamically
updateable webserver, FlashEd.

Acknowledgments

We would like to thank the TALC group at Cornell Uni-
versity, and most especially Stephanie Weirich, Karl Crary
(now at CMU), and Greg Morrisett, for the use and support
of the TALx86 implementation, and for contributions to this
work and work that led up to it.

9 REFERENCES

[1] The apache software foundation. http://www.apache.org.

[2] A. Appel. Hot-sliding in ML, December 1994. Unpublished
manuscript.

[3] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams.
Concurrent Programming in Erlang. Prentice Hall, second
edition, 1996.

[4] T. Bloom. Dynamic Module Replacement in a Distributed
Programming System. PhD thesis, Laboratory for
Computer Science, The Massachussets Institute of
Technology, March 1983.

[5] B. Buck and J. K. Hollingsworth. An API for runtime code
patching. Journal of High Performance Computing
Applications, 14(4):317-329, 2000.

[6] O. Frieder and M. E. Segal. On dynamically updating a
computer program: From concept to prototype. Journal of
Systems and Software, 14(2):111-128, September 1991.

[7] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without
Dynamic Types. Technical Report ECS-LFCS-97-378,
Laboratory for the Foundations of Computer Science, The
University of Edinburgh, December 1997.

[8] D. Grossman and G. Morrisett. Scalable certification for
Typed Assembly Language. In R. Harper, editor,
Proceedings of the ACM SIGPLAN Workshop on Types in
Compilation, volume 2071 of Lecture Notes in Computer
Science. Springer-Verlag, October 2000.

[9] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. Transactions on Software
Engineering, 22(2):120-131, February 1996.

[10] M. Hicks. Dynamic Software Updating. PhD thesis,
Department of Computer and Information Science,
University of Pennsylvania, August 2001.

[11] M. Hicks, S. Weirich, and K. Crary. Safe and flexible
dynamic linking of native code. In R. Harper, editor,
Proceedings of the ACM SIGPLAN Workshop on Types in
Compilation, volume 2071 of Lecture Notes in Computer
Science. Springer-Verlag, September 2000.

[12] G. Hjélmtysson and R. Gray. Dynamic C++ classes, a
lightweight mechanism to update code in a running
program. In Proceedings of the USENIX Annual Technical
Conference, June 1998.

[13] I. Lee. DYMOS: A Dynamic Modification System. PhD
thesis, Department of Computer Science, University of
Wisconsin, Madison, April 1983.

[14] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime support for type-safe dynamic Java
classes. In Proceedings of the Fourteenth Furopean
Conference on Object-Oriented Programming, June 2000.

[15] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic.
TALx86: A realistic typed assembly language. In Second
Workshop on Compiler Support for System Software,
Atlanta, May 1999.

[16] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F' to typed assembly language. ACM Transactions
on Programming Languages and Systems, 21(3):527-568,
May 1999.

[17] G. Necula. Proof-carrying code. In Twenty-Fourth ACM
Symposium on Principles of Programming Languages,
pages 106-119, Paris, Jan. 1997.

[18] M. Oehler and R. Glenn. HMAC-MD5 IP Authentication
with Replay Prevention. Internet RFC 2085, February 1997.

[19] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable webserver. In Proceedings of the
USENIX Annual Technical Conference, pages 106—119,
Monterey, 1999.

[20] D. Pescovitz. Monsters in a box. Wired, 8(12):341-347,
2000.

[21] J. Peterson, P. Hudak, and G. S. Ling. Principled dynamic
code improvement. Technical Report
YALEU/DCS/RR-1135, Department of Computer Science,
Yale University, July 1997.

[22] Tool Interface Standards Committee. Executable and
Linking Format (ELF) specification, May 1995.

[23] Mindcraft—webstone benchmark information.
http://www.mindcraft.com/webstone.

