
Dynamic Inference of Polymorphic Lock Types

James Rose
rosejr@cs.umd.edu

Nikhil Swamy
nswamy@cs.umd.edu

Michael Hicks
mwh@cs.umd.edu

Computer Science Department
University of Maryland, College Park

ABSTRACT
We present an approach for automatically proving the ab-
sence of race conditions in multi-threaded Java programs,
using a combination of dynamic and static analysis. The
program in question is instrumented so that when executed
it will gather information about locking relationships. This
information is then fed to our tool, FindLocks, that gener-
ates annotations needed to type check the program using the
Race-Free Java [12] type system. Our approach extends ex-
isting inference algorithms by being fully context-sensitive.
We describe the design and implementation of our approach,
and our experience applying the tool to a variety of Java
programs. We have found the approach works well, but has
trouble scaling to large programs, which require extensive
testing for full coverage.

1. INTRODUCTION
Writing correct multi-threaded programs is much more

difficult than writing correct sequential programs. As Java’s
language and library support has brought multi-threaded
programming into the mainstream, there has been widespread
interest in developing tools for detecting and/or preventing
concurrency errors in multi-threaded programs, including
race conditions, timing dependencies, and deadlocks. There
are two main approaches. Static approaches, such as those
based on type systems, take a program annotated with lock-
ing information and prove that the program is free from
certain multi-threaded programming errors. A canonical ex-
ample is the Race-Free Java type system [12]. Dynamic ap-
proaches monitor the execution of the program to discover
violations of locking protocols based on observed execution
history. A canonical example is Eraser [23].

On the face of it, these two techniques that address the
same problems seem very far apart.

• The static approach is appealing because static anal-
ysis can conservatively model all paths through a pro-
gram. When a sound static analysis can show a fact,
that fact must hold in all executions. Thus static anal-
ysis can prove the absence of errors such as race con-
ditions and deadlocks without ever running the pro-
gram, and without requiring the overhead of run-time
code monitoring. The downside is that because static
analysis must be conservative, it will incorrectly signal
errors in correct programs. Such false alarms can be re-
duced, but not eliminated, by employing sophisticated
techniques—e.g., context-, flow-, or path-sensitivity—
but at the cost of scalability and implementation com-

plexity.

• The dynamic approach is appealing because run-time
code monitors are relatively easy to implement and are
less conservative than static analyses [17], in part be-
cause they have complete, precise information about
the current execution state. The downside of the dy-
namic approach is that dynamic systems see only cer-
tain executions of the program, and so in general they
can only conclude facts based on those cases. This
means that either the code monitor must be packaged
with the code permanently, or else run the risk of post-
deployment failures.

Because static analysis can reach sound conclusions1 and
impose no runtime overhead, we believe it to be the pre-
ferred approach whenever possible. However, as we have
just discussed, the limitations of static analysis sometimes
make it “too hard.” Indeed, many static analyses require
users to provide additional program annotations to guide
the static analyzer. Experience has shown that program-
mers are reluctant to provide any but the most minimal
annotations. For example, the designers of ESC/Java [15]
state that such reluctance “has been a major obstacle to
the adoption of ESC/Java. This annotation burden appears
particularly pronounced when faced with the daunting task
of applying ESC/Java to an existing (unannotated) code
base.” [14].

1.1 Dynamic Annotation Inference
An annotation inference tool can reduce or eliminate the

need for annotations. A typical approach is to use a whole-
program, constraint-based analysis [2]. For detecting race
conditions, such an analysis must consider the aliasing re-
lationships between objects in the program. Unfortunately,
the state-of-the-art in scalable points-to analysis can be im-
precise when modeling common linked data structures, such
as lists and trees. These analyses often model elements of
a linked structure as a single abstract location, and thus
will fail to distinguish between a lock that protects one list
element versus another.

In contrast, a dynamic analysis has ready access to pro-
gram objects and their aliasing relationships. Therefore,
we could use a dynamic analysis to generate candidate an-
notations [14] based on its observations, and these can be
checked by the static system. The intuitive idea here is that,

1Not all static analyses are sound. Indeed, unsound “pat-
tern detectors” have proven to be quite useful for finding
bugs [10, 18].

just like for problems in NP, it may be difficult to generate
correct statements about a program, but it is easy to check
them. We call this combination of dynamic and static anal-
ysis dynamic annotation inference.

1.2 Contributions
We are exploring the possible benefits of dynamic anno-

tation inference. In this paper, we describe the progress we
have made on a prototype system that employs an Eraser-
like dynamic analysis to generate candidate annotations for
the Race-Free Java (RFJ) type system [12]. This paper
makes the following contributions:

• We present a new algorithm (Section 2) for dynamic
annotation inference. Our algorithm improves on prior
static [14] and dynamic [1] algorithms in being fully
context-sensitive (polymorphic), and thus is able to
infer types for more programs.

• We describe our experience applying our tool Find-
Locks to prove the absence of race conditions in a
number of variously-sized Java programs (Section 3).
This experience speaks to both the power of the static
checking system (RFJ) and the efficacy of dynamic in-
ference. We extend prior studies in both areas [13, 1].
In our experience, dynamic inference imposes reason-
ably little runtime overhead, and infers most needed
annotations.

• After comparing to related work (Section 4) we present
a number of lessons learned, and lay out a path for con-
tinuing work (Section 5). Two key lessons learned are
as follows. First, dynamic analysis can frequently dis-
cover properties that typical type-based static analyses
cannot check. We must consider new, path-sensitive
static analyses that can take advantage of dynamically-
discovered information. Second, the larger the pro-
gram being checked, the more difficult it is to write
test cases that cover all its code. In the end, we be-
lieve the most effective approach will be to combine
static, whole-program analysis with dynamic traces to
improve the quality of the inferred types.

2. DYNAMIC LOCK TYPE
INFERENCE

To check for race conditions, most static and dynamic
tools seek to infer or check the guarded-by relation. This re-
lation describes which memory locations (and possibly what
sequence of operations) are guarded by which locks. As-
suming that this relation is consistent, we can be sure that
a particular data object or operation will only be accessed
when a lock is held, thus ensuring mutual exclusion. In a dy-
namic system like Eraser [23], the guarded-by relationship is
inferred at run-time. In static type checking systems, types
expressing what locks guard which locations must be speci-
fied by the programmer as annotations, though well-chosen
defaults can make the task easier.

2.1 Race-Free Java
The RFJ type system requires that each field f of class

C be guarded by either an internal or an external lock for
f. To prevent race conditions, this lock must be held when-
ever f is accessed. An internal lock is any “field expres-
sion” in scope within class C, i.e., an expression of the form

this.f1.f2...fn or D.f1.f2...fn, where f1 is a static field
of D. An external lock is one that is acquired outside the
scope of C by users of C’s methods or fields. In RFJ, an ex-
ternal lock is expressed as a class parameter called a ghost
variable. The guarded-by annotation can refer to this vari-
able as if it were a local field; however, it cannot be acquired
within the class, because it is a type-level variable that exists
only at compile-time. All locks must be final.

Here is a small example of a class that contains both an
internal and external lock:

class C<ghost Object o> {
int count guarded_by this;
int value guarded_by o;
synchronized void set(int x) requires o {

count++;
value = x;

}
}

C’s field count is guarded by this, an internal lock, while
value is guarded o, an external lock. The method set en-
sures these locks are always held when the fields are accessed.
In particular, the fact that set is synchronized means that
the lock this is held when it executes, and thus accessing
count is legal. In addition, the requires clause ensures that
o is held whenever set is called.

A ghost variable is instantiated when the object is created.
For example:

C<this> x = new C<this>();
synchronized (this) {

x.set(1);
}

This code fragment creates a C object, instantiating its ex-
ternal lock with the current object. Thus, the call to x.set(1)

is legal, because the external lock is held before the call.
RFJ also supports the notion of a class whose objects

are never shared between threads (they are thread local),
and thus no lock need be held to access their fields. This
mechanism for thread-local data is a weakness of the RFJ
type system, as we elaborate further in Section 3.

2.2 Dynamic Annotation Inference
Our goal is to automatically infer guarded_by and requires

annotations for unannotated Java programs. To do this, the
target program is instrumented and executed, and we use an
Eraser-like algorithm to infer the guarded-by relationship
dynamically. The results are used to generate candidate an-
notations that can be checked statically.

During execution, for every object o and field f we main-
tain the set lockset(o, f). The lockset is the set of locks that
are consistently held when accessing o.f. In Eraser, locks
and objects o are merely machine addresses. We must ad-
ditionally store statically expressible “names” for each lock.
These names are of the form (C,L), such that within an in-
stance of class C, L is a valid field expression for the object.
Because some objects have an infinite number of potential
names (e.g., List.next.next.next . . . for a cyclic linked
list) we set a constant maximum length for the names.

We also maintain a set containing all locks currently held,
and their names. Every field access uses this set to refine the
lockset for the involved object/field pair: the set of objects
in the lockset is intersected with the set of locks currently
held; additionally, the set of names for each object in the
lockset is intersected with the set of names that is currently
valid for that lock.

Once the execution has completed, we attempt to resolve
each field’s lockset into either an internal or external lock.
Consider the result set :

R(C.f) = {(o, ls) | ls = lockset(o, f)}

If we can find a single field expression L within the scope of
C such that, for all (o, ls) ∈ R(C.f), L names an object in ls,
then we have found an internal lock for C.f. In the common
case, this means simply looking for a field of C, preferably
this, that guards f in every instance of C. We also consider
static fields of another class if no internal field exists.

If no internal lock exists, we must parameterize C and
look for names at C’s allocation sites. Let allocsite(o) be
the allocation site where the object o was allocated. Let
allocator(o) be the address of this when o was allocated.
We can partition the result set based on allocation site I, as
follows:

R(C.f)[I] =

(a, ls)
(o, ls) ∈ R(C.f)
I = allocsite(o)
a = allocator(o)

R(C.f)[I] can be used to compute the value of the instan-

tiation parameter for f for objects created at allocation site
I, just as R(C.f) contained the information that was used in
the initial attempt to resolve an internal lock for f.

In other words, we consider separately the n locations
where C is allocated, and attempt to provide a lock name for
f that is valid at that location. Because the set associated
with each location is smaller than the original set (when
n > 1), it is possible that each subset is resolvable (i.e.,
will have a consistent name for the protecting lock) even
when the original set is not. If a subset is not resolvable,
we repartition the subset: because the partitions have the
same structure as the original set, this procedure can be
repeated recursively until we reach a static allocation site.
Each repartitioning adds a class parameter to the class to
be instantiated.

Because each field’s lock is resolved separately, a class will
initially have as many parameters as it has externally-locked
fields. Because classes rarely use more than a single external
lock, these parameters will generally be redundant. Thus,
FindLocks will merge parameters if, at every instantiation
site, the parameters are equivalent.

Consider the example of external locking shown in Fig-
ure 1 adapted from Java-Server, one of our case studies.
Here the class CircList is used as a buffer for log messages.
The class provides no synchronization constructs of its own.
Instead, the client LocalLog protects accesses to the buffer
using itself as the lock.

When attempting to infer the guarded_by clause of the
alist field of CircList, FindLocks is unable to discover a
candidate among the names within the scope of CircList.
By examining the set of names available at the allocation
site of CircList within LocalLog, FindLocks is able to
add the appropriate instantiation parameter for clist and
make the type of CircList polymorphic in the lock.

The above description omits one important special case:
classes which allocate themselves. An example is an ex-
ternally guarded linked list, where each element creates its
successor. If we were to use the above algorithm on such a
list, we would end up with as many parameters as there are
elements in the list. The initial partitioning of the set would

class LocalLog {
CircList<this> clist guarded_by this;
LocalLog(int size) {

clist = new CircList<this>(size);
}
synchronized void add(LogRecord lr){

clist.add(lr);
}

}

class CircList<ghost Object _l>{
ArrayList alist guarded_by _l;
CircList(int size) requires _l {

alist = new ArrayList(size);
}
boolean add(LogRecord lr) requires _l {

if (isFull()) {
int oldestIdx = getOldestIndex();
alist.set(oldestIdx, lr);

}
else alist.add(lr);
return true;

}
}

Figure 1: Example of Polymorphic Locking

result in a set of size one (containing the head of the list),
and a set of size len −1, containing the rest of the elements;
len−1 subsequent repartitionings would be required to each
the ancestral allocator of the tail of the list, outside of the
list class.

To solve this case, we require that every instantiation site
of class C within class C must supply the allocated class with
the same parameters that it received; i.e., class C<a,b> will
only allocate C as C<a,b>. In effect, we forbid polymorphic
recursion of class parameters.

Now, the resolution on result sets is thus changed so that,
instead of partitioning objects based on their allocation sites,
they are partitioned based on their most recent external an-
cestor in the tree formed by the allocation relation {(a, o) |
a = allocator(o)}. For example, assume there are three
classes C, D, E which each create a linked list of ten elements
of class L. Even though 27 of the elements were allocated
within class L, a single recursive step will result in all 30 ob-
jects being associated with the allocation sites of the head
elements within C, D, and E, skipping the sites within L.

2.3 Implementation
FindLocks executes in two phases. First, the target pro-

gram is instrumented using the BCEL [7] bytecode manipu-
lation library and executed. During execution, we track field
writes to maintain the mapping between the objects and
names; we track lock acquire/release to maintain the set of
locks held and their names; and we track field reads/writes
in order to determine the locks that are consistently held for
every object/field pair. We also record the allocation site of
every object, to be used in resolving external locks. We do
not need to instrument bytecodes that read and write local
variables: their names are not relevant, because they can’t
be locks; and, because the analysis is dynamic, we always
have the identity of objects when they are used. Once exe-
cution terminates, we resolve the locksets as described above
to produce annotations. These annotations are added to the
source code by an external tool, which is then checked by
RccJava, a type-checker for RFJ.

It should be noted that most JVMs make strong assump-
tions with regard to the layout of the certain core classes,
particularly those in the the java.lang package. Our tech-
nique involves instrumenting all application code and, only
where permissible, instrumenting library classes. We have
found that in certain situations it is not straightforward to
instrument packages such as java.util since there exist cir-
cular dependencies from this package to other packages such
as java.lang which may not be modified. To avoid this
problem, core library classes could be annotated manually;
this would only need to be done once. In the description of
our experiments that follow the exact set of instrumented
classes will be noted.

3. EXPERIMENTAL RESULTS
In this section, we describe our experience using Find-

Locks on a number of Java programs. We present the
runtime overhead of running FindLocks. Next we address
the accuracy, expressiveness and completeness of the anno-
tations emitted by FindLocks. Finally, we describe our
experience using our tool on a large program.

3.1 Sample Programs
Table 1 lists our benchmark programs, with relevant statis-

tics in the first two columns. Classes refers to the number
of classes that were instrumented. The numbers in paren-
theses indicate the number of library classes that were in-
strumented. LOC is the number of non-comment non-blank
lines of code.

The programs Elevators1 and Elevators2 were writ-
ten by students at the University of Maryland as part of
CMSC433, a course in object-oriented programming. They
simulate the scheduling of elevators in a building. Each
program came with its own test cases that ran various sim-
ulations. For both Elevators programs we were able to
instrument the 152 classes that form the java.util library.

The program Proxy-Cache was adapted from a program
developed at the Technion, Israel Institute of Technology.
It consists of an HTTP proxy that runs on a local server.
It also provides content caching. Our test cases consisted
of stressing Proxy-Cache with concurrent requests using
httperf [19].

Weblech is a small web-crawler that was adapted from
a program developed at MIT. To test Weblech we had it
perform a depth 1 crawl from the University of Maryland
home page.

Java-Server is small HTTP server that was developed
at the University of Maryland. The program came with its
own test cases that consisted of placing about 50 requests
to the server.

3.2 Runtime Overhead
In Table 1 the column Orig refers to the maximum mem-

ory and elapsed time consumed by the program prior to
instrumentation. The columns labeled Instr refers to the re-
sources consumed by the instrumented program. The Annot
columns refer to the resources consumed while annotating
the source-code with the results of the inference. In each
case, the numbers represent the median value from ten tri-
als. The variation is not appreciable. These measurements
were performed on a 2 GHz Pentium 4 with 750MB of RAM.

In each of these cases the overhead incurred by the instru-
mented code is within acceptable limits. While the resources

used by the annotation phase may appear extravagant, it
should be noted that this phase can easily be integrated
into the RccJava framework. The cost of annotation can
thus be amortized against the cost of analysis performed by
RccJava. We report the expense of the annotation phase
only for completeness.

3.3 FindLocks and RccJava

Table 2 describes the results of running RccJava on the
annotated programs. The column Classes shows the number
of classes that were actually annotated. Classes contain no
annotations if either the test cases did not cover the class, or
sometimes if the class contains no fields. The column Auto
refers to the number of annotations that were added auto-
matically by FindLocks. In a few cases we were required
to add annotations manually. These are recorded in the col-
umn Manual. The section of the table labeled Rcc Warnings
classifies the type of warnings issued by RccJava when run
on the annotated programs. Thl represents spurious race
condition warnings about fields that are in fact thread local,
or are read-only. The column Final records RccJava warn-
ings about the use of locks that are not final expressions.
These are spurious warnings too since, in each case, the
lock expressions though not final expressions are actually
constants. The column Race records warnings about real
race conditions.

It is clear from the table that the overwhelming majority
of warning issued by RccJava refer to thread local fields.
Our analysis is able to easily discover when a field is accessed
only by a single thread, or if the field, after initialization, is
a read-only field. Furthermore, FindLocks notes in partic-
ular the case where an object is constructed by one thread
and is then handed off to another thread. In each of these
cases FindLocks annotates the source with comments (in-
visible to RccJava) that assists the user in classifying Rcc-
Java warnings as spurious or genuine. These results reflect
the weakness of the RFJ type system’s handling of thread-
local data. A more advanced type system would be able to
check these usages [8, 16].

The dynamic analysis also assists the user in ignoring
RccJava warnings about non-final expressions used as locks.
The read-only annotations added by FindLocks help the
user to confirm that lock expressions are constant. This
was particularly useful in the case of Weblech. Again, a
stronger static analysis would be able to check these cases.

Manual annotations were added in some cases to suppress
some warnings. For example, RccJava (optionally) assumes
that the this lock is held during object construction in or-
der to allow for common initialization patterns; this is sound
if the constructor does not allow this to escape. However,
Elevators1 uses a dummy object as a mutex instead of
synchronizing on this. Thus in the constructor of the ob-
ject RccJava issues warnings about the mutex not being
held, since it only assumes that constructors hold the this

lock. Despite adding the annotation to escape these warn-
ings Elevators1 fails to typecheck under RccJava because
it contains a real race condition. This race condition is also
detected by FindLocks. In this case, FindLocks adds a
comment to the field noting the problem.

Elevators2 uses an external synchronization mechanism
to guard instances of java.util.HashSet. That is, there
is a field elevators of type HashSet and each access to
this field is protected by obtaining a lock external to the

Program Classes LOC Memory (MB) Time (sec)
Orig Instr Annot Orig Instr Annot

Elevators1 4(+152) 567 8.8 48.1 110 8.9 10.0 23.0
Elevators2 4(+152) 408 8.7 46.6 112 8.4 10.2 22.6
Proxy-Cache 7 1218 12.0 49.7 112 9.8 21.4 14.9
Weblech 12 1306 33.1 48.7 127 17.5 18.8 20.3
Java-Server 36 1768 10.3 37.4 126 7.0 7.9 15.2

Table 1: Runtime Overhead for FindLocks

Program Annotations Rcc Warnings
Classes Auto Manual Thl Final Race Oth

Elevators1 3 26 1 5 0 1 0
Elevators2 6 27 0 1 0 0 0
Proxy-Cache 7 69 0 15 0 0 4
Weblech 11 52 4 30 10 0 1
Java-Server 18 59 2 5 0 0 0

Table 2: Checking Annotated Programs

scope of the HashSet. FindLocks infers that HashSet has
a type that is polymorphic in the type of the lock. Find-
Locks correctly annotates the java.util.HashMap field of
the HashSet field as being guarded by the lock parameter.
Furthermore, an inner class of HashMap, HashMap.Entry is
also parameterized by the same lock parameter. (This is
why Elevators2 annotates six classes: three are from the
program itself, and two are from the standard library.)

Java-Server also uses a similar external synchronization
construct as described in Section 2.2. Two manual annota-
tions were required to handle a class that was not executed
by our test cases.

We were able get Proxy-Cache to type check without
any further annotations. RccJava does, however, issue
warnings regarding a two fields of array type. The contents
of the array are read-only expressions and do not require
any synchronization.

Attempting to type-check Weblech reveals another lim-
itation of RccJava. The code in Figure 2 is illegal in Rcc-
Java: even though every access to the field Spider.q is
guarded by Spider.q, it is not possible to instantiate the
lock parameter of the DownloadQueue object with Spider.q.
Using a separate mutex allows the lock parameter to be in-
stantiated correctly.

Weblech also reveals a problem associated with subtyp-
ing of methods in the presence of requires annotations. The
DownloadQueue object overrides the Object.toString() method
in which it accesses all its fields. But annotating the over-
ridden method with a requires clause that contains the lock
parameter is illegal since required lock sets on function types
are contravariant with regard to subtyping. Thus, an asser-
tion that the lock was held was added to handle this case.

3.4 Scaling to Large Programs
We also ran FindLocks on HSQL2, an open-source, JDBC-

compliant database. HSQL consists of 260 classes and about
55000 lines of code. Unfortunately, we did not have access to
a comprehensive test-suite for the application. Instead, we
devised a simple test program that spawned a large number
of threads and repeatedly performed simple queries on the
database.

2http://hsqldb.sourceforge.net/

class Spider {
DownloadQueue<q> q guarded_by q;
Spider() {

q = new DownloadQueue<q>();
}
URL nextURL(){

synchronized(q) {
return q.nextURL();

}
}

}
class DownloadQueue<ghost Object _l>{

ArrayList urls guarded_by _l;
DownloadQueue() requires _l {

alist = new ArrayList();
}
URL nextURL() requires _l {

return urls.remove(0);
}
String toString() requires _l {

return urls.toString();
}

}

Figure 2: Illegal Code snippet from Weblech

We found both the runtime overhead as well as the anno-
tation overhead to be acceptable. However, the accuracy of
the annotations that were inserted were greatly undermined
by the extreme simplicity of the test case. Our test case
only managed to cover some 90 out of the 260 classes. The
annotations generated are thus skewed with respect to the
particular execution trace that the instrumented program
generated.

A large number of the 208 warnings issued by RccJava were
with regard to fields that were marked thread local by Find-
Locks. While the inability to handle thread-local fields is
an obvious limitation of RccJava, the accuracy of the an-
notations generated by FindLocks is also questionable. As
with any dynamic analysis, FindLocks is limited to draw-
ing unsound conclusions about the program based only on
the executions that the analysis has witnessed. A stronger
type system is needed in this case.

In light of this experience, it becomes clear that our ap-
proach is most likely to succeed when it complements a thor-
ough testing regime. Achieving a good degree of code cov-
erage is essential to inferring correct lock relationships from
program traces.

4. RELATED WORK
Our approach is an example of what we call a dynamic-

static analysis, in which dynamically-gathered information
is used to support or improve a static analysis. Ernst’s
Daikon tool [11] infers simple invariants between variables in
a program through run-time profiling. Nimmer and Ernst [20,
21] showed that many of the inferred invariants could be
proven sound using a theorem prover. In their approach,
dynamically-determined invariants are part of a candidate
set, and the theorem prover removes those invariants that it
cannot prove. Specification mining [4] is a technique for au-
tomatically discovering sequencing and data constraints on
API calls. The information may be useful for a static veri-
fication tool. The most common example of dynamic-static
analysis is profile-directed compilation [5, 6, 22, 25]. In this
case, generated code is improved by considering run-time
profiles. This is a matter of performance, not correctness,
so poor profiling information will not cause the program to
produce the wrong answers.

A wide variety of type-checking systems have been devel-
oped for preventing possible race conditions. However, we
know of only two approaches that infer types for such sys-
tems, to relieve the annotation burden on the programmer.
Houdini [14] is a self-described annotation assistant that
statically generating sets of candidate annotations based on
domain knowledge. Houdini was applied to a simplified ver-
sion of race-free Java [13]. Unfortunately, Houdini does not
support external (polymorphic) locks, restricting the set of
programs for which it can infer types.

Concurrently with us, Agarwal and Stoller [1] developed
a dynamic inference algorithm for the Parameterized Race-
Free Java (PRFJ) [8] type system. Their algorithm is simi-
lar to ours in many respects. One difference is that it is not
fully context-sensitive in that it handles polymorphic instan-
tiation, but not polymorphic generalization. In particular,
it assumes that either a class has a single lock parameter,
or if the class has multiple parameters then the user has
annotated it as such. With the knowledge of these lock
parameters, their algorithm can infer how to most appropri-
ately instantiate them. Our algorithm not only instantiates

lock parameters, but can infer them as well by maintaining
an allocation map between an object and the object that
allocated it. This allows us to generalize (or ”resolve” using
our terminology) to arbitrary depth in the allocation chain,
creating as many parameters as needed. This is particularly
useful for library-like functions, like the CircList class we
used as an example, which may wish to admit a variety of
locking patterns. Agarwal and Stoller’s algorithm handles
some advanced features of PRFJ not present in RFJ, such
as unique and read-only objects. It would be interesting to
carefully consider how the two approaches could be com-
bined, as we discuss below.

5. CONCLUSIONS
Our experience thus far leads us to believe that dynamic

analysis can usefully perform annotation inference. Since
programmers typically write tests for their programs, dy-
namic annotation inference imposes only a small burden,
and adds value by proving sound properties, in our case the
absence of race conditions, based on collected traces. In-
deed, our tool inferred the majority of annotations needed
for idioms RFJ could check. Moreover, a number of ap-
plications made use of external locking, and our approach
correctly parameterized classes to express this fact, an im-
provement over past work [1, 14].

However, our experience has exposed two limiting factors
in the technique:

1. In general, a given static analysis may not be able to
verify properties easily detected by dynamic analysis.
For example, RFJ does not support treating classes as
thread-local on a per-field basis. It also cannot check
temporal shifts in protection, such as an object that
is thread-local at first, but later becomes read-only or
shared and locked. Our dynamic tool discovered these
situations easily, but the static analysis could not check
them.

The solution is to develop a stronger complementary
static checking system. Indeed, PRFJ fixes the first
problem, and, to a limited degree, the second, by al-
lowing uniquely referenced objects to be unguarded.
This is sufficient to allow hand-offs between threads,
which are supported in RFJ only by escapes from the
type system. (Other idioms, such as barrier synchro-
nization, remain uncheckable.) The type inference al-
gorithm for PRFJ developed by Agarwal et al. [1] is
able to indicate uniquely referenced objects (using a
complementary static algorithm described in [3]). An
immediate possibility for future work is to develop an
inference algorithm for PRFJ that combines this abil-
ity with our algorithm’s ability to infer multiple owner
parameters, which are analogous to external locks in
RFJ.

A more ambitious approach would be to develop a
more sophisticated type system which requires more
annotations, since we have a tool to assist with an-
notation inference. For example, dynamic analysis
can easily and efficiently capture the program exe-
cution paths for which a safety property holds. To
make best use of this information, our static check-
ing system should be path sensitive. Type systems
with intersection-, union-, and dependent types can
describe path-sensitive properties. Since (static) type

inference in such a system is generally undecidable,
dynamic path information will supply needed annota-
tions.

2. A large program may only execute a portion of its code
during common usage, and thus a dynamic tool may
not generate annotations for the entire program. This
was a problem for HSQL.

We believe that the right approach to this problem, be-
yond having more comprehensive tests, is to have the
dynamic analysis “add value” to a more traditional
static inference system. This is similar to the idea of
profile-directed compilation [5, 22]. In this case, gen-
erated code is improved by considering run-time pro-
files. In our case, candidate annotations could be gen-
erated both statically and dynamically, and checked
for soundness in the style of Houdini [13, 14]. One
challenge would be the effective handling of class pa-
rameterization.

An interesting avenue of future work is to evaluate, under
a variety of metrics, when the technique of applying dy-
namic analysis to aid sound static analysis makes sense. In
general, the fact that a property is satisfied by some set of
executions does not imply that the property holds for the en-
tire program. However, in our work the guarded-by relation
discovered by the dynamic instrumentation can frequently
be proved sound for the whole program. The interesting
question is when and why this is the case. While work has
been done to characterize the computability classes of run-
time analysis as compared to static analysis [17, 24], little
has been done to explore the two at the level of actual pro-
grams. For example, Ernst [11] has found that dynamically-
inferred properties sometimes hold statically, but does little
to explain why. We intend to consider program traces and
programs that induce them, following abstract interpreta-
tion [9].

6. REFERENCES
[1] Rahul Agarwal and Scott D. Stoller. Type Inference

for Parameterized Race-Free Java. In Proceedings of
the Fifth International Conference on Verification,
Model Checking and Abstract Interpretation, volume
2937 of Lecture Notes in Computer Science, Venice,
Italy, January 2004. Springer-Verlag.

[2] Alexander Aiken, Manuel Fähndrich, Jeffrey S. Foster,
and Zhendong Su. A Toolkit for Constructing Type-
and Constraint-Based Program Analyses. In Xavier
Leroy and Atsushi Ohori, editors, Proceedings of the
Second International Workshop on Types in
Compilation, volume 1473 of Lecture Notes in
Computer Science, pages 78–96, Kyoto, Japan, March
1998. Springer-Verlag.

[3] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annotations for Program
Understanding. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
pages 311–330, October 2002.

[4] Glenn Ammons, Rastislav Bodik, and James R. Larus.
Mining specifications. In Proceedings of the 29th
Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 4–16,
Portland, Oregon, January 2002.

[5] Glenn Ammons and James R. Larus. Improving
data-flow analysis with path profiles. In Proceedings of
the 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 72–84, Montreal, Canada, June 1998.

[6] Thomas Ball and James R. Larus. Optimally profiling
and tracing programs. In Proceedings of the 19th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 59–70,
Albuquerque, New Mexico, January 1992.

[7] Bytecode engineering library.
http://jakarta.apache.org/bcel/.

[8] Chandrasekhar Boyapati and Martin Rinard. A
Parameterized Type System for Race-Free Java
Programs. In Proceedings of the 16th ACM SIGPLAN
Conference on Object-oriented Programming Systems,
Languages, and Applications, pages 56–69, November
2001.

[9] Patrick Cousot and Radhia Cousot. Abstract
Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or
Approximation of Fixpoints. In Proceedings of the 4th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252,
1977.

[10] Dawson Engler and Ken Ashcraft. Racerx: effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 237–252, Bolton Landing,
New York, October 2003.

[11] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically Discovering Likely
Program Invariants to Support Program Evolution.
IEEE Transactions on Software Engineering,
27(2):99–123, February 2001.

[12] Cormac Flanagan and Stephen N. Freund.
Type-Based Race Detection for Java. In Proceedings of
the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 219–232, Vancouver B.C., Canada, June 2000.

[13] Cormac Flanagan and Stephen N. Freund. Detecting
race conditions in large programs. In Proceedings of
the ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages
90–96, Snowbird, Utah, June 2001.

[14] Cormac Flanagan and K. Rustan M. Leino. Houdini,
an Annotation Assitant for ESC/Java. In J. N.
Oliverira and Pamela Zave, editors, FME 2001:
Formal Methods for Increasing Software Productivity,
International Symposium of Formal Methods, number
2021 in Lecture Notes in Computer Science, pages
500–517, Berlin, Germany, March 2001.
Springer-Verlag.

[15] Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended Static Checking for Java. In
Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 234–245, Berlin, Germany,
June 2002.

[16] Dan Grossman. Type-Safe Multithreading in Cyclone.
In Proceedings of the 2003 ACM SIGPLAN
International Workshop on Types in Language Design
and Implementation, pages 13–25, New Orleans,
Louisiana, USA, January 2003.

[17] Kevin W. Hamlen, Greg Morrisett, and Fred B.
Schneider. Computability classes for enforcement
mechanisms. Technical Report 2003-1908, Cornell
Unviversity Department of Computer Science, 2003.

[18] David Hovemeyer and William Pugh. Finding Bugs Is
Easy. http://www.cs.umd.edu/~pugh/java/bugs/
docs/findbugsPaper.pdf, 2003.

[19] David Mosberger and Tai Jin. httperf: A tool for
measuring web server performance. In First Workshop
on Internet Server Performance, pages 59—67. ACM,
June 1998.

[20] Jeremy W. Nimmer and Michael D. Ernst. Static
verification of dynamically detected program
invariants: Integrating Daikon and ESC/Java. In
Proceedings of the First Workshop on Runtime
Verification (RV ’01), July 2001.

[21] Jeremy W. Nimmer and Michael D. Ernst. Invariant
Inference for Static Checking: An Empirical
Evaluation. In Tenth Symposium on the Foundations
of Software Engineering, pages 11–20, Charleston,
South Carolina, USA, November 2002.

[22] Karl Pettis and Robert C. Hansen. Profile guided code
positioning. In Proceedings of the 1990 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 16–27, White
Plains, New York, June 1990.

[23] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A
Dynamic Data Race Detector for Multi-Threaded
Programs. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 27–37, St.
Malo, France, October 1997.

[24] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and Systems Security,
3(1):30–50, February 2000.

[25] Youfeng Wu and James R. Larus. Static branch
frequency and program profile analysis. In Proceedings
of the 27th International Symposium on
Microarchitecture, pages 1–11, San Jose, CA, 1994.

