
Existential Label Flow Inference via CFL Reachability

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks

University of Maryland, College Park

Abstract. In programming languages, existential quantification is useful for de-
scribing relationships among members of a structured type. For example, we may
have a list in which thereexistssome mutual exclusion lockl in each list element
such thatl protects the data stored in that element. With this information, a static
analysis can reason about the relationship between locks and locations in the
list even when the precise identity of the lock and/or location is unknown. To
facilitate the construction of such static analyses, this paper presents a context-
sensitivelabel flow analysisalgorithm with support for existential quantification.
Label flow analysis is a core part of many static analysis systems. Following Re-
hof et al, we use context-free language (CFL) reachability to develop an efficient
O(n3) label flow inference algorithm. We prove the algorithm sound by reducing
its derivations to those in a system based on polymorphically-constrained types,
in the style of Mossin. We have implemented a variant our analysis as part of a
data race detection tool for C programs.

1 Introduction
Many modern static program analyses arecontext-sensitive, meaning they can analyze
different calls to the same function without conservatively attributing results from one
call site to another. While very useful, this form of context-sensitivity aids little in the
analysis of data structures. For example, a typical alias analysis conflates all elements
of the same data structure, resulting in a “blob” of indistinguishable pointers [1]. In this
case context-sensitivity for data-structure manipulation functions does not help much
because the data structure elements themselves cannot be distinguished.

One way to solve this problem is to useexistential quantification[2] to express
relations among members of each individual data structure element. For example, an
element might contain a buffer and the length of that buffer [3]; a pointer to data and
the lock that must be held when accessing it [4, 5]; or a closure, consisting of a function
and a pointer to its environment [6]. The important idea is that such relations are sound
even when the identity of individual data structure elements cannot be discerned.

This paper presents a context-sensitivelabel flow analysisalgorithm that supports
existential quantification. Label flow analysis attempts to answer queries of the form
“During program execution, can a valuev flow to some expressione?” Answering such
queries is at the core of a variety of static analyses, including points-to analysis [7,
8], information flow [9], type qualifier inference [10, 11], and race detection [4]. Our
goal is to provide a formal foundation for augmenting such analyses with support for
existential quantification.

Our label flow algorithm is implemented as atype-based program analysis[12], in
which static analysis is defined in terms of type inference. The core result of this paper

let id = λa.a in

(idi 1L1) +L3 ...;

(idk 2L2) +L4 ...

id

La

L1

L2
Lr

L3

L4

→

LaiL1 Lri L3

id

La Lr

→

LakL2 Lrk L4

copy

copy

id

La

L1 (i

L2 (k
Lr

L3)i

L4)k

→

(a) Source program (b) Monomorphic analysis (c) COPY-based analysis (d) CFL-based analysis

Fig. 1.Universal Types Example

is a provably sound and efficient type inference system for label flow that supports
existential quantification. This paper makes the following contributions:

– We present COPY, a subtyping-based label-flow system in the style of Mossin [13].
In COPY, context sensitivity for functions corresponds to universal types (paramet-
ric polymorphism). Our contribution is to show how to support existential quantifi-
cation using existential types [2], applying the duality of∀ and∃. We prove that the
resulting system is sound. (Section 3)

– We present CFL, an alternative to COPY that supports efficient inference. Following
Rehof et al [14, 15], determining flow in CFL is reduced to a context-free language
(CFL) reachability problem, and the resulting inference system runs in timeO(n3)
in the worst case. Our contribution is to show that existentially-quantified flow can
also be expressed as a CFL problem, and to prove that CFL is sound by reducing
it to COPY. These results are interesting because existential types arefirst-class
(as opposed to universal types, which in the style of Hindley-Milner only appear
in type environments). To make inference tractable, we require the programmer to
indicate where existential types are used, and we restrict the interaction between
existentially bound labels and free labels in the program. (Section 4)

– We briefly discuss how a variation of CFL is used as part of LOCKSMITH, a race
detection tool [4] for C programs that correlates memory locations to mutual exclu-
sion locks protecting them. LOCKSMITH uses existential quantification to precisely
relate locks and locations that reside within dynamic data structures, thereby elim-
inating a source of false alarms. (Section 2.3)

2 Polymorphism via Context-Free Language Reachability
This section briefly introduces type-based label flow analysis, presents the encoding of
context sensitivity as universal types, and sketches our new technique for supporting
first-class existential types. We also describe our application of these ideas to LOCK-
SMITH, a race detection tool for C [4].

2.1 Universal Types and Label Flow

The goal of label flow analysis is to determine which values could flow to which opera-
tions. In the program in Fig. 1(a), values 1 and 2 are annotated withflow labelsL1 and
L2, respectively, and the two+ operations are labeled withL3 andL4. Therefore label
flow analysis should show thatL1 flows toL3 andL2 flows toL4. In this program we
annotate calls toid with indicesi andk, which we will use shortly.

To compute the flow of labels, we perform a type- and constraint-based analysis in
which base types are annotated with labels. For our example, the functionid is given
the typeintLa → intLr, whereLa andLr label the argument and return types, re-
spectively. The body ofid returns its argument, which is modeled by theconstraint
La ≤ Lr. The callidi yields constraintsL1 ≤ La andLr ≤ L3, and the callidk yields
constraintsL2 ≤ La andLr ≤ L4. Pictorially, constraints form the directed edges in
a flow graph, as shown in Fig. 1(b), and flow is determined by reachability. Thus the
graph accurately shows thatL1 flows toL3 andL2 flows toL4. However, the graph
conflates the two calls toid—its type is monomorphic—and therefore suggests possible
flows fromL1 toL4 and fromL2 toL3, which is sound but imprecise.

The precision of the analysis can be improved by addingcontext sensitivityusing
Hindley-Milner style universal types. The standard approach [13], shown in Fig. 1(c),
is to giveid apolymorphically constraineduniversal type∀La,Lr[La ≤ Lr].intLa →
intLr, where we have annotatedid’s type with the flow constraints needed to type its
body. Each timeid is used, weinstantiateits type and constraints, effectively “inlining”
a fresh copy ofid’s body. At the callidi, we instantiate the constraint with the substitu-
tion [La 7→ Lai, Lr 7→ Lri], and then apply the constraints from the call site, yielding
L1 ≤ Lai ≤ Lri ≤ L3, as shown. Similarly, at the callidk we instantiate again, this
time yielding the constraintsL2 ≤ Lak ≤ Lrk ≤ L4. Thus we see thatL1 could flow
toL3, andL2 could flow toL4, but we avoid the spurious flows mentioned above.

While this technique is effective, explicit constraint copying can be difficult to im-
plement, because it requires juggling various sets of constraints as they are duplicated
and instantiated, and may require complicated constraint simplification techniques [16–
18] for efficiency. An alternative approach is to encode the problem in terms of a slightly
different graph and use CFL reachability to compute flow, as suggested by Rehof et al
[14]. This solution adds call and return edges to the graph and labels them with paren-
theses indexed by the call site, as shown in Fig. 1(d) with dashed lines. Edges from
idi are labeled with(i for inputs and)i for outputs, and similarly foridk. To compute
flow in this graph, we find paths with no mismatched parentheses. In this case the paths
from L1 to L3 and fromL2 to L4 are matched, while the other paths are mismatched
and hence not considered. Rehof et al [14] have shown that using CFL reachability with
matched paths can be reduced to a type system with polymorphically constrained types.

2.2 Existential Types and Label Flow

The goal of this paper is to show how to use existential quantification during static
analysis to efficiently model properties of data structures more precisely. Consider the
example shown in Fig. 2(a). In this program, functionsf and g add an unspecified
value to their argument. As before, we wish to determine which integers flow to which
+ operations. In the third line of this program we create existentially-quantified pairs
usingpack operations in whichf is paired with 1 andg with 2. Using anif, we then
conflate these two pairs, binding one of them top. In the last line we usep by applying
its first component to its second component.1

In this example, no matter which pairp is assigned,f is only ever applied to 1, and
g is only ever applied to 2. However, an analysis like the one described above would

1 We use pattern matching for simplicity, while the language in Section 3 would use projection.

let f = λa.a +L3 · · · in
let g = λb.b +L4 · · · in
let p = if · · · then
packi (f, 1L1)

else

packk (g, 2L2) in
unpack (p1, p2) = p in

p1 @ p2

f

La

L3

•

→
Lxi •

→

×

Lyi

L1

)i (i

Lx •

→

×

Ly

p

g

Lb

L4

•

→
Lxk •

→ Lyk

L2

)k (k

×∃ ∃

(a) Source program (b) Flow graph

Fig. 2.Existential Types Example

conservatively conflate the types at the two pack sites, generating spurious constraints
L1 ≤ L4 andL2 ≤ L3. To solve this problem, Section 3 presents COPY, a system
that can modelp precisely by giving it a polymorphically constrained existential type
∃Lx,Ly[Ly ≤ Lx].(intLx → int) × intLy, indicating thatp contains a pair whose
second element flows to the argument position of its first element. (The uninteresting
labels are omitted for clarity.) Atpacki, this type is instantiated to yieldL1 ≤ La, and
sinceLa ≤ L3 we haveL1 ≤ L3 transitively. Instantiating atpackk yieldsL2 ≤ Lb ≤
L4. Thus we precisely model that1L1 only flows to+L3 and2L2 only flows to+L4.

Universal and existential quantification are dual notions, which allows us to look
to universal types to understand how to support existential types. Intuitively, we give a
universal type toid becauseid is polymorphic in the label it is called with—whatever it
is called with, it returns. Conversely, we give an existential type ofp because therest of
the programis polymorphic in the pairs—no matter which pair is used, the first element
is always applied to the second.

Section 4 shows how to perform inference efficiently for existential label flow using
CFL reachability. Fig. 2(b) shows the flow graph generated for this example program.
When packing the pair(f, 1L1), instead of normal flow edges we generate edges la-
beled byi-parentheses, and we generate edges labeled byk-parentheses when packing
(g, 2L2). Flow for this graph again corresponds to paths with no mismatched parenthe-
ses. For example, in this graph there is a matched path fromL2 to L4, indicating that
the value2L2 may flow to+L4, and there is similarly a path fromL1 toL3. Notice that
restricting flow to matched paths again suppresses spurious flows fromL2 to L3 and
from L1 to L4. Thus, the two existential packages can be conflated without losing the
flow relationships of their members.

2.3 Existential Quantification and Race Detection

Our interest in studying existential label flow arose from the development of LOCK-
SMITH, a C race detection tool [4]. During our experiments we found several examples
of code similar to Fig. 3, which is taken from theknot multithreaded web server [19].
Herecache_entry is a linked list with a per-node lockrefs_mutex that guards ac-
cesses to therefs field. Without existential quantification, LOCKSMITH conflates all
the locks and locations in the data structure. As a result, it does not know exactly which

struct cache_entry { int refs; pthread_mutex_t refs_mutex; ... };

void cache_entry_addref(cache_entry *entry) { ...

pthread_mutex_lock(&entry->refs_mutex);

entry->refs++;

pthread_mutex_unlock(&entry->refs_mutex);

... }

Fig. 3.Example code with a per-element lock

lock is held at the write toentry->refs, and reports thatentry->refs may not al-
ways be accessed with the same lock held, falsely indicating a potential data race.

With existential quantification, however, LOCKSMITH is able to model this idiom
precisely. We add annotations to specify that in typecache_entry, the fieldsrefs
andrefs_mutex should be given existentially quantified labels. Then we addpack
annotations whencache_entry is created andunpack annotations wherever it is used,
i.e., within cache_entry_addref. Using an adaptation of the analysis presented in
this paper, LOCKSMITH then can determine that therefs_mutex lock in a node always
guards therefs field in that node. While this prior work sketches the use of existential
types, it gives neither type rules nor proofs for them, which are the main contributions
of this paper. The remainder of this paper focuses exclusively on existential types for
label flow, and we refer the reader to our other paper for details on LOCKSMITH [4].

3 Label Flow with Polymorphically Constrained Types
This section studies label flow in the context of a polymorphically-constrained type
system COPY, which is essentially Mossin’s label flow system [13] extended to include
existential types. Note that COPY supports label polymorphism but not polymorphism
in the type structure. We use the following source language throughout the paper:

e ::= nL | x | λLx.e | e1@
Le2 | if0L e0 then e1 else e2 | (e1, e2)

L | e.Lj
| let f = e1 in e2 | fix f.e1 | f i | packL,i e | unpackL x = e1 in e2

In this language, constructors and destructors are annotated with constant labelsL. The
goal of our type system is to determine which constructor labels flow to which destruc-
tor labels. For example, in the expression(λLx.e)@L′

e′, the labelL flows to the label
L′. Our language includes integers, variables, functions, function application (written
with @ to provide a position on which to write a label), conditional branches and pairs.
Our language also includes binding constructslet andfix, which introduce universal
types. Each use of a universally quantified functionf i is indexed by aninstantiation
site i. Expressions also include existential packages, which are created withpackL,i

and consumed withunpack. Since existential packages are passed around the program,
we label them with concrete labelsL as with other values. Instantiation sites are ignored
in this section, but are used in Section 4.

The types and environments used by COPY are given by the following grammar:

types τ ::= intl | τ →l τ | τ ×l τ | ∃l~α[C].τ schemes σ ::= ∀~α[C].τ | τ
labels l ::= L | α constraints C ::= ∅ | {l ≤ l} | C ∪ C
env. Γ ::= · | Γ, x : σ

Id
C; Γ, x : τ `cp x : τ

Int
C ` L ≤ l

C; Γ `cp nL : intl

Lam
C; Γ, x : τ `cp e : τ ′ C ` L ≤ l

C; Γ `cp λLx.e : τ →l τ ′
App

C; Γ `cp e1 : τ →l τ ′

C; Γ `cp e2 : τ C ` l ≤ L

C; Γ `cp e1@
Le2 : τ ′

Pair

C; Γ `cp e1 : τ1 C; Γ `cp e2 : τ2

C ` L ≤ l

C; Γ `cp (e1, e2)
L : τ1 ×l τ2

Proj

C; Γ `cp e : τ1 ×l τ2

C ` l ≤ L j ∈ {1, 2}
C; Γ `cp e.Lj : τj

Cond

C; Γ `cp e0 : intl C ` l ≤ L
C; Γ `cp e1 : τ C; Γ `cp e2 : τ

C; Γ `cp if0L e0 then e1 else e2 : τ
Sub

C; Γ `cp e : τ1

C; ∅ ` τ1 ≤ τ2

C; Γ `cp e : τ2

Fig. 4. COPY Monomorphic Rules

Types include integers, functions, pairs and existential types. All types are annotated
with flow labels l, which may be either constant labelsL from the program text or
label variablesα. Type schemes include normal types and polymorphically-constrained
universal types of the form∀~α[C].τ . HereC is a set offlow constraintseach of the form
l ≤ l′. In our type rules,substitutionsφmap label variables to labels. The universal type
∀~α[C].τ stands for any typeφ(τ) whereφ(C) is satisfied, for any substitutionφ. When
l ≤ l′, we say that labell flows to labell′. The type∃l~α[C].τ stands for the typeφ(τ)
where constraintsφ(C) are satisfied forsomesubstitutionφ. Universal types may only
appear in type environments while existential types may appear arbitrarily. The free
labels of types (fl(τ)) and environments (fl(Γ)) are defined as usual.

The expression typing rules are presented in Figs. 4 and 5. Judgments have the form
C;Γ `cp e : τ , meaning in type environmentΓ with flow constraintsC, expression
e has typeτ . In these type rulesC ` l ≤ l′ means that the constraintl ≤ l′ is in the
transitive closure of the constraints inC, andC ` C ′ means that all constraints inC ′

are in the transitive closure ofC.
Fig. 4 contains the monomorphic typing rules, which are as in the standardλ calcu-

lus except for the addition of labels and subtyping. The constructor rules ([Int], [Lam]
and [Pair]) requireC ` L ≤ l, i.e., the constructor labelL must flow to the corre-
sponding label of the constructed type. The destructor rules ([Cond], [App] and [Proj])
require the converse. The subtyping rule [Sub] is discussed below.

Fig. 5 contains the polymorphic typing rules. Universal types are introduced by
[Let] and [Fix]. As is standard, we allow generalization only of label variables that are
not free in the type environmentΓ . In both these rules, the constraintsC ′ used to type
e1 become the bound constraints in the polymorphic type. Whenever a variablef with
a universal type is used in the program text, its type is instantiated. Such instantiations
appear in the program text, writtenf i, and are checked by [Inst]. The premiseC `
φ(C ′) effectively inlines the constraints of the instantiated function into the caller’s
context.

[Let]

C′; Γ `cp e1 : τ1 C; Γ, f : ∀~α[C′].τ1 `cp e2 : τ2

~α ⊆ (fl(τ1) ∪ fl(C′)) \ fl(Γ)

C; Γ `cp let f = e1 in e2 : τ2

[Fix]

C′; Γ, f : ∀~α[C′].τ `cp e : τ C ` φ(C′)
~α ⊆ (fl(τ) ∪ fl(C′)) \ fl(Γ)

C; Γ `cp fix f.e : φ(τ)

[Inst]
C ` φ(C′)

C; Γ, f : ∀~α[C′].τ `cp f i : φ(τ)

[Pack]
C; Γ `cp e : φ(τ) C ` φ(C′) C ` L ≤ l

C; Γ `cp packL,i e : ∃l~α[C′].τ

[Unpack]

C; Γ `cp e1 : ∃l~α[C′].τ C ∪ C′; Γ, x : τ `cp e2 : τ ′

~α ⊆ (fl(τ) ∪ fl(C′)) \ (fl(Γ) ∪ fl(C) ∪ fl(τ ′)) C ` l ≤ L

C; Γ `cp unpackL x = e1 in e2 : τ ′

Fig. 5. COPY Polymorphic Rules

Existential types are manipulated usingpack andunpack. To understand [Pack]
and [Unpack], recall that∀ and∃ are dual notions. Notice that∀ introduction ([Let])
restricts what can be universally quantified, and instantiation occurs at∀ elimination
([Inst]). Thus∃ introduction ([Pack]) should perform instantiation, and∃ elimination
([Unpack]) should restrict what can be existentially quantified.

In [Pack], an expressionewith a concrete typeφ(τ) is abstracted to a type∃l~α[C ′].τ .
Notice that the substitution goes from abstract to concrete—creating an existential cor-
responds to passing an argument to “the rest of the program,” as if that were universally
quantified in~α. Indeed, the constraint systemC ′ bound in the existential type is ex-
pressed over the quantified variables~α, and these constraintsC ′ are determined by
how the existential package is used after it is unpacked. Similarly to [Inst], the [Pack]
premiseC ` φ(C ′) inlines the abstract constraintsφ(C ′) into the current constraints.

Rule [Unpack] binds the contents of the type tox in the scope ofe2. This rule places
two restrictions on the existential package. First,e2 must type check with the constraints
C ∪ C ′. Thus, any constraints among the existentially bound labels~α needed to check
e2 must be inC ′.2 Second, the labels~α must not escape the scope of theunpack (as is
standard), which is ensured by the subset constraint.

The [Sub] rule in Fig. 4 uses the subtyping relation shown in Fig. 6. These rules
are standard structural subtyping rules extended to labeled types. We use a simple ap-
proach to decide whether one existential is a subtype of another. Rule [Sub-∃] requires
C1 ` C2, since an existential type can be used in any position inducing the same or
fewer flows between labels. We allow subtyping among existentials of a “similar shape.”

2 This differs from [Let], which includesall constraints inC′ (not just those on quantified la-
bels). While we could write [Unpack] and [Let] to be more parallel, this separation of con-
straints simplifies the reduction from CFL to COPYdiscussed in Sec. 4.

[Sub-Label-1]
l, l′ 6∈ D C ` l ≤ l′

C; D ` l ≤ l′
[Sub-Label-2] l ∈ D

C; D ` l ≤ l

[Sub-Pair]

C; D ` l ≤ l′

C; D ` τ1 ≤ τ ′1
C; D ` τ2 ≤ τ ′2

C; D ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2
[Sub-Fun]

C; D ` l ≤ l′

C; D ` τ ′1 ≤ τ1

C; D ` τ2 ≤ τ ′2

C; D ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

[Sub-Int]
C; D ` l ≤ l′

C; D ` intl ≤ intl′
[Sub-∃]

C1 ` C2 D′ = D ∪ ~α
C; D′ ` τ1 ≤ τ2 C; D ` l1 ≤ l2

C; D ` ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2

Fig. 6. COPY Subtyping

That is, they must have exactly the same (alpha-convertible) bound variables, and con-
straints must not be between bound and free variables. We use a setD to track the set of
bound variables, updated in [Sub-∃].3 Rule [Sub-Label-2] permits subtyping between
identical bound labels (l ∈ D), whereas rule [Sub-Label-1] allows subtyping among
non-identical labels only if neither is bound.

These restrictions on existentials forbid some clearly erroneous judgments such as
C ` ∃{α}[∅].intα ≤ ∃{α}[∅].intβ . The two existential types in this example quantify
over the same label; however, the subtyping is invalid because it would create a con-
straint between a bound label and an unbound label. However, these restrictions also
forbid some valid existential subtyping, such asC ` (∃{α, β}[α ≤ β].intα → intβ) ≤
(∃{α}[∅].intα → intα), which is permissible becauseβ is a bound variable with no
other lower bounds exceptα, hence it can be set toα without losing information. In our
experience with LOCKSMITH we have not found this restriction to be an issue, and we
leave it as an open question whether it can be relaxed while still maintaining efficient
CFL reachability-based inference.

We prove soundness for COPY using subject reduction. Using a standard small-step
operational semanticse −→ e′, we define aflow-preserving evaluation stepas one
whose flow is allowed by some constraint setC. Then we prove that if a program is
well-typed according toC then it always preserves flow.

Definition 1 (Flow-preserving Evaluation Step).Supposee −→ e′ and in this reduc-
tion a destructor(if0, @, .j, unpack) labeledL′ consumes a constructor(n, λ, (·, ·),
pack, respectively) labeledL. Then we writeC ` e −→ e′ if C ` L ≤ L′. We also
writeC ` e −→ e′ if no value is consumed during reduction (forlet or fix).

Theorem 1 (Soundness).If C;Γ `cp e : τ ande −→∗ e′, thenC ` e −→∗ e′.

Here,−→∗ denotes the reflexive and transitive closure of the−→ relation. The proof is
by induction onC;Γ `cp e : τ and is presented in a companion technical report [20].

3 Our technical report [20] uses an equivalent version ofD that makes the reduction proof easier.

4 CFL-Based Label Flow Inference
The COPY type system is relatively easy to understand and convenient for proving
soundness, but experience suggests it is awkward to implement directly as an infer-
ence system. This section presents a label flow inference system CFL based on CFL
reachability, in the style of Rehof et al [14, 15]. This system uses a single, global set
of constraints that characterize flow graphs, as shown in Figs. 1 and 2. Using the flow
graph, we can answer queries “Does any value labeledl1 flow to a destructor labeled
l2?”, written l1 l2, by using CFL reachability. We first present type checking rules
for CFL and then explain how they are used to interpret the flow graph in Fig. 2. Then
we explain how the rules can be interpreted to yield an efficient algorithm for inferring
flow graphs automatically, and we prove that CFL reduces to COPY and thus is sound.

Types in CFL differ from COPY as follows:

types τ ::= intl | τ →l τ | τ ×l τ | ∃l~α.τ schemes σ ::= (∀~α.τ,~l) | τ

In contrast to COPY, universal types(∀~α.τ,~l) do not include a constraint set (since
we generate a single, global flow graph) and instead contain a set~l of labels that are
not quantified [14, 21]. For clarity universal types also include~α, the set of labels that
are quantified, but it is always the case that~α = fl(τ) \ ~l. Existential types do not
include a set~l, because we assume that the programmer has specified which labels are
existentially quantified. We check that the specification is correct when existentials are
unpacked (more on this below).

Typing judgments in CFL have the formI;C;Γ ` e : τ , whereI andC describe
the edges in the flow graph.C has the same form as in COPY, consisting of subtyping
constraintsl ≤ l′ (shown as unlabeled directed edges in Figs. 1 and 2).I contains
instantiation constraints[14] of the form l �i

p l′. Such a constraint indicates thatl
is renamed tol′ at instantiation sitei. (Recall that each instantiation site corresponds
to apack or a use of a universally quantified type.) Thep indicates apolarity, which
describes the flow of data. Whenp is + then l flows to l′, and so in our examples

we draw the constraintl �i
+ l′ as an edgel

)i−→ l′. Whenp is − the reverse holds,

and so we draw the constraintl �i
− l′ as an edgel′

(i−→ l. Instantiation constraints
correspond to substitutions in COPY, and they enable context-sensitivity without need
to copy constraint sets. A full discussion of instantiation constraints is beyond the scope
of this paper; see Rehof et al [14] for a thorough description.

The monomorphic rules for CFL are presented in Fig. 7. With the exception of
[Sub] and the presence ofI, these are identical to the rules in Fig. 4. Fig. 8 presents
the polymorphic CFL rules. In these type rulesI ` l �i

p l
′ means that the instantiation

constraintl �i
p l

′ is in I. We definefl(τ) to be the free labels of a type as usual, except

fl(∀~α.τ,~l) = (fl(τ) \ ~α) ∪ ~l. Rules [Let] and [Fix] bindf to a universal type. As is
standard we cannot quantify label variables that are free in the environmentΓ , which we
represent by setting~l = fl(Γ) in type(∀~α.τ1,~l). The [Inst] rule instantiates the typeτ
of f to τ ′ using an instantiation constraintI; ∅ ` τ �i

+ τ ′ : φ. This constraint represents
a renamingφ, analogous to that in COPY’s [Inst] rule, such thatφ(τ) = τ ′. All non-
quantifiable labels, i.e., all labels in~l, should not be instantiated, which we model by
requiring that any such label instantiate to itself, both positively and negatively.

[Id]
I; C; Γ, x : τ `cfl x : τ

[Int]
C ` L ≤ l

I; C; Γ `cfl nL : intl

[Lam]

I; C; Γ, x : τ `cfl e : τ ′

C ` L ≤ l

I; C; Γ `cfl λLx.e : τ →l τ ′
[App]

I; C; Γ `cfl e1 : τ →l τ ′

I; C; Γ `cfl e2 : τ C ` l ≤ L

I; C; Γ `cfl e1@
Le2 : τ ′

[Pair]

I; C; Γ `cfl e1 : τ1 I; C; Γ `cfl e2 : τ2

C ` L ≤ l

I; C; Γ `cfl (e1, e2)
L : τ1 ×l τ2

[Proj]

I; C; Γ `cfl e : τ1 ×l τ2

C ` l ≤ L j = 1, 2

I; C; Γ `cfl e.Lj : τj

[Cond]

I; C; Γ `cfl e0 : intl C ` l ≤ L
I; C; Γ `cfl e1 : τ I; C; Γ `cfl e2 : τ

I; C; Γ `cfl if0L e0 then e1 else e2 : τ
[Sub]

I; C; Γ `cfl e : τ1

C; ∅; ∅ ` τ1 ≤ τ2

I; C; Γ `cfl e : τ2

Fig. 7. CFL Monomorphic Rules

Rule [Pack] constructs an existential type by abstracting a concrete typeτ ′ to ab-
stract typeτ . In COPY’s [Pack], there is a substitution such thatτ ′ = φ(τ), and thus
CFL’s [Pack] has a corresponding instantiation constraintτ �i

− τ ′. The instantiation
constraint has negative polarity because although the substitution is from abstractτ to
concreteτ ′, the direction of flow is the reverse, since the packed expressione flows
to the packed value. In [Pack] the choice of what~α to quantify is non-deterministic.
As in other systems for inferring first-class existential and universal types [22–25], we
expect the programmer to choose this set. In contrast to [Inst], we do not generate any
self-instantiations in [Pack], because we enforce a stronger restriction for escaping vari-
ables in [Unpack].

Rule [Unpack] treats the abstract existential type as a concrete type for the scope
of the unpack, and thus any uses of the unpacked value place constraints on the exis-
tential type. The last premise of [Unpack] ensures that abstract labels not escape, and
moreover abstract labels may not constrain any escaping labels in any way. Specifically,
we require that there are no flows (see below) between any labels in~α and any labels
in ~l, which is the set of labels that could escape. If this condition is violated, then the
existentially quantified labels~α chosen by the programmer are invalid and the program
is rejected. Note that this restriction forbidding interaction between free and bound la-
bels is not present in the [Unpack] rule of COPY, and therefore CFL is strictly weaker
than COPY. However, without this restriction we can produce cases where mixing ex-
istentials and universals produces flow paths that should be valid but have mismatched
parentheses. Appendix A contains one example. In practice we believe the restriction
is acceptable, as we have not found it to be an issue with LOCKSMITH. We leave it as
an open question whether the restriction can be relaxed while still maintaining efficient
CFL reachability-based inference.

Fig. 9 defines the subtyping relation used in [Sub]. The only interesting differ-
ence with COPY arises because of alpha-conversion. In COPY alpha-conversion is im-
plicit, and only trivial constraints are allowed between bound labels (by [Sub-Label-

[Let]

I; C; Γ `cfl e1 : τ1 I; C; Γ, f : (∀~α.τ1,~l) `cfl e2 : τ2

~α = fl(τ1) \~l ~l = fl(Γ)

I; C; Γ `cfl let f = e1 in e2 : τ2

[Fix]

I; C; Γ, f : (∀~α.τ,~l) `cfl e : τ ~α = fl(τ) \ fl(Γ) ~l = fl(Γ)

I; ∅ ` τ �i
+ τ ′ : φ I ` ~l �i

+
~l I ` ~l �i

− ~l

I; C; Γ `cfl fix f.e : τ ′

[Inst]
I; ∅ ` τ �i

+ τ ′ : φ I ` ~l �i
+

~l I ` ~l �i
− ~l

I; C; Γ, f : (∀~α.τ,~l) `cfl f i : τ ′

[Pack]
I; C; Γ `cfl e : τ ′ I; ∅ ` τ �i

− τ ′ : φ dom(φ) = ~α C ` L ≤ l

I; C; Γ `cfl packL,i e : ∃l~α.τ

[Unpack]

I; C; Γ `cfl e1 : ∃l~α.τ I; C; Γ, x : τ `cfl e2 : τ ′

~l = fl(Γ) ∪ fl(∃l~α.τ) ∪ fl(τ ′) ∪ L ~α ⊆ fl(τ) \~l C ` l ≤ L

∀l ∈ ~α, l′ ∈ ~l.(I; C 6 `l l′ andI; C 6 `l′ l)

I; C; Γ `cfl unpackL x = e1 in e2 : τ ′

Fig. 8. CFL Polymorphic Rules

2] of Fig. 6). We cannot use implicit alpha-conversions in CFL, however, because we
are producing a single, global set of constraints. Thus instead of the singleD used
in COPY’s[Sub] rule, CFL uses twoDi, which are sequences of ordered vectors of
existentially-bound labels, updated in [Sub-∃]. In the rules, the syntaxD ⊕ {l1, ..., ln}
means to append vector{l1, ..., ln} to sequenceD. Rule [Sub-Ind-2] in Fig. 9, which
corresponds to [Sub-Label-2] in Fig. 6, does allow subtyping between bound labelslj
andl′j—but only if they occur in exactly the same quantification position. Thus these
subtyping edges actually correspond to alpha-conversion. We could also allow this in
the COPY system, but it adds no expressive power and complicates proving soundness.

Fig. 10 defines instantiation constraints on types in terms of instantiation constraints
on labels. Judgments have the formI;D ` τ �i

p τ
′, whereD is the same as in Fig. 6—

we do not need to allow alpha-conversion here, because we can always apply [Sub]
if we wish to alpha-rename. Thus [Inst-Ind-1] permits instantiation of unbound labels,
and rule [Inst-Ind-2] forbids renaming bound labels. For example, if we have an∃ type
nested inside a∀ type, instantiating the∀ type should not rename any of the bound
variables of the∃ type. Aside from this the rules in Fig. 10 are standard, and details can
be found in Rehof et al [14].

Given a flow graph induced by constraintsI andC, Fig. 11 gives inference rules to
compute the relationl1 l2, which means labell1 flows to labell2.4 Rule [Level] states
that constraints inC correspond to flow (these are represented as unlabeled edges in the

4 Our relation corresponds to the m relation from Rehof et al [14], wherem stands for
“matched paths,” which are distinguished from the so-called “PN” flow paths they also support.
In our system we concern ourselves only with constants, which always produce matched paths,
and hence we have no need for more than one relation.

[Sub-Ind-1]
C ` l ≤ l′

C; ∅; ∅ ` l ≤ l′
[Sub-Int]

C; D1; D2 ` l ≤ l′

C; D1; D2 ` intl ≤ intl′

[Sub-Ind-2]
C ` lj ≤ l′j

C; D1 ⊕ {l1, . . . , ln}; D2 ⊕ {l′1, . . . , l′n} ` lj ≤ l′j

[Sub-Ind-3]
C; D1; D2 ` l ≤ l′ l 6= li l′ 6= l′j ∀i, j ∈ [1..n]

C; D1 ⊕ {l1, . . . , ln}; D2 ⊕ {l′1, . . . , l′n} ` l ≤ l′

[Sub-Pair]
C; D1; D2 ` l ≤ l′ C; D1; D2 ` τ1 ≤ τ ′1 C; D1; D2 ` τ2 ≤ τ ′2

C; D1; D2 ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

[Sub-Fun]
C; D1; D2 ` l ≤ l′ C; D1; D2 ` τ ′1 ≤ τ1 C; D1; D2 ` τ2 ≤ τ ′2

C; D1; D2 ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

[Sub-∃]

D′
1 = D1 ⊕ ~α1 D′

2 = D2 ⊕ ~α2 φ(~α2) = ~α1

C; D′
1; D

′
2 ` τ1 ≤ τ2 C; D1; D2 ` l1 ≤ l2

C; D1; D2 ` ∃l1 ~α1.τ1 ≤ ∃l2 ~α2.τ2

Fig. 9. CFL Subtyping

graph). Rule [Trans] adds transitive closure. Rule [Match] allows flow on a matched

pathl0
(i→ l1 l2

)i→ l3. Intuitively, this rule corresponds to “copying” the constraint
l1 l2 to a constraintl0 l3 at instantiation sitei. Rule [Constant] adds a “self-loop”
that permits matching flows to or from any constant label in the program; intuitively, we
generate these edges because constants are global names, and thus context-insensitive.

ExampleConsider again the example in Fig. 2. The expressionpacki(f, 1L1) is given
the type∃Lxi, Lyi.(intLxi → ·) × intLyi by the [Pack] rule. [Pack] also instantiates
the pair’s abstract type to its concrete type using the judgmentI;C ` (intLxi →
int) × intLyi �i

− (intLa → int) × intL1. Proving this judgment requires appealing
in several places to [Inst-Ind-1], whose premiseI ` l �i

p l′ requires thatI contain
constraintsLyi �i

− L1 andLxi �i
+ La, among others. These are shown as dashed,

labeled edges in the figure. Notice that the direction of the renaming is opposite the
direction of flow: The concrete labels flow to the abstract labels, but the abstract type
is instantiated to the concrete type. Hence the instantiation has negative polarity. This
instantiated existential type flows via subtyping to the type ofp shown at the center of
the figure; the directed edges between the components of the types are induced by the
subtyping judgment (applying [Sub-∃] at the top level).

The unpack of p is typed by the [Unpack] rule. Within the body of the unpack,
we apply the second part of the pair (p2) to the first (p1). Here,p2 has typeintLy

while p1 has typeintLx → int, and thus to apply the [App] rule, we must first prove
(among other things) thatC; ∅; ∅ ` intLy ≤ intLx. This requires thatLy ≤ Lx be in
C according to [Sub-Ind-1], and is shown as an unlabeled edge in the figure. With this
edge we haveI;C ` L1 L3 andI;C ` L2 L4 (but I;C 6 `L1 L4). The

[Inst-Ind-1]
l, l′ 6∈ D I ` l �i

p l′

I; D ` l �i
p l′ : ∅

[Inst-Ind-2] l ∈ D

I; D ` l �i
p l : φ

[Inst-Pair]

I; D ` l �i
p l′ : φ

I; D ` τ1 �i
p τ ′1 : φ

I; D ` τ2 �i
p τ ′2 : φ

I; D ` τ1 ×l τ2 �i
p τ ′1 ×l′ τ ′2 : φ

[Inst-Fun]

I; D ` l �i
p l′ : φ

I; D ` τ1 �i
p̄ τ ′1 : φ

I; D ` τ2 �i
p τ ′2 : φ

I; D ` τ1 →l τ2 �i
p τ ′1 →l′ τ ′2 : φ

[Inst-Int]
I; D ` l �i

p l′ : φ

I; D ` intl �i
p intl′ : φ

[Inst-∃]

D′ = D ∪ ~α I; D′ ` τ1 �i
p τ2 : φ

I; D ` l1 �i
p l2 : φ

I; D ` ∃l1~α.τ1 �i
p ∃l2~α.τ2 : φ

Fig. 10.CFL Instantiation

[Level]
C ` l1 ≤ l2

I; C ` l1 l2
[Trans]

I; C ` l0 l1 I; C ` l1 l2
I; C ` l0 l2

[Constant]
I; C ` L �i

p L
[Match]

I ` l1 �i
− l0 I; C ` l1 l2 I ` l2 �i

+ l3

I; C ` l0 l3

Fig. 11.Flow

final premises of [Unpack] are satisfied because the bound labelsLy andLx only flow
among themselves or to bound variables in existential types (which are not part of the
free labels).

An inference algorithmCFL has been presented thus far as a checking system in which
the flow graphC andI is assumed to be known. To infer this flow graph automatically
requires a simple reinterpretation of the rules. The algorithm has three stages and runs
in timeO(n3), wheren is the size of the type-annotated program.

First, we type the program according to the rules in Figs. 7-10. As usual the non-
syntactic rule [Sub] can be incorporated into the remaining rules to produce a syntax-
directed system. During typing, we interpret a premiseC ` l ≤ l′ or I ` ~l �i

p
~l as

generatinga constraint; i.e., we addl ≤ l′ (or~l �i
p
~l) to the set of global constraintsC

(or I). Free occurrences ofl in the rules are interpreted as fresh label variables. Thus,
in [Int], we interpretl as a fresh variableα and addL ≤ l to C. When choosing types
(e.g.,τ in [Lam] or τ ′ in [Inst]) we pick a typeτ with fresh label variables in every
position. After typing we have a flow graph defined by constraint setsC andI.

Next, we compute all flows according to the rules in Figure 11. Excluding the final
premise of [Unpack] and theD’s in [Sub] and [Inst], performing typing and computing
all flows takes timeO(n3) [14]. To implement [Sub-Ind-i] efficiently, rather than main-
tainingD sets explicitly and repeatedly traversing them, we temporarily mark each vari-
able with a pair(i, j) indicating its position inD and its position in~α as we traverse an
existential type. We can assume without loss of generality that|~α| ≤ |fl(τ)| in an exis-
tential type, so traversing~α does not increase the complexity. Then we can select among

[Sub-Ind-1] and [Sub-Ind-2] in constant time for each constraintC;D1;D2 ` l ≤ l′,
so this does not affect the running time, and similarly for [Inst-Ind-i].

Finally, we check the last reachability condition of [Unpack] to ensure the pro-
grammer chose a valid specification of existential quantification. Given that we have
computed all flows, we can easily traverse the labels in~α and check for paths to~l and
vice-versa. Since each set is of sizeO(n), this takesO(n2) time, and since there are
O(n) uses of [Unpack], in total this takesO(n3) time. Thus the algorithm as a whole is
O(n3) +O(n3) = O(n3).

SoundnessWe have proven that programs that check under CFL are reducible to COPY.
The first step is to define a translation functionΨC,I that takes CFL types and transforms
them to COPY types. For monomorphic typesΨC,I is simply the identity. To translate a
polymorphic CFL type(∀~α.τ,~l) or ∃l~α.τ into a COPY type∀~α[C ′].τ or ∃l~α[C ′].τ , re-
spectively, we need to produce a bound constraint setC ′. Rehof et al [14, 15] were able
to chooseC ′ = CI = {l1 ≤ l2 | I;C ` l1 l2}, i.e., the closure ofC andI. However,
the addition of first class existentials causes this approach to fail, because, for example,
instantiating a∀ type containing a type∃l~α[C ′].τ could rename some variables inC ′

and thereby violate the inductive hypothesis. Thus we introduce a projection function
ψS , whereψS is the identity on labels inS, andψS replaces any other variableα by the
least-upper bound of the labels inS and constants that flow toα. Then for a universal
type we chooseC ′ = ψ(~α∪~l)(C

I), and for an existential type we chooseC ′ = ψ~α(CI).
By projecting the full constraint systemCI onto the label variables necessary for each
type, we are able to prove reduction [20].

Theorem 2 (Reduction from CFL to COPY). Let D be a normalCFL derivation of
I;C;Γ `cfl e : τ . ThenCI ;ΨC,I(Γ) `cp e : ΨC,I(τ).

By combining Theorems 1 and 2, we then have soundness for the flow relation
computed by CFL. Notice that we have shown reduction in one direction but not equiv-
alence. Rehof et al [14, 15] also only show one direction of reduction, but conjecture
equivalence of their systems. In our case, equivalence clearly does not hold, because of
the extra non-escaping condition on [Unpack] in CFL. We leave it as an open question
whether this condition can be relaxed to yield provably equivalent systems.

5 Related Work
Our work builds directly on the CFL reachability-based label flow system of Rehof
et al [14]. Their cubic-time algorithm for polymorphic recursive label flow inference
improves on the previously best-knownO(n8) algorithm [13]. The idea of using CFL
reachability in static analysis is due to Reps et al [26], who applied it to first-order
data flow analysis problems. Our contribution is to extend the use of CFL reachability
further to include existential types for modeling data structures more precisely.

Existential types can be encoded in System F [27] (p. 377), in which polymorphism
is first class and type inference is undecidable [28]. There have been several proposals
to support first-class polymorphic type inference using type annotations to avoid the

undecidability problem. In MLF [23], programmers annotate function arguments that
have universal types. Laufer and Odersky [22] propose an extension to ML with first-
class existential types, and Remy [24] similarly proposes an extension with first-class

universal types. In both systems, the programmer explicitly lists which type variables
are quantified. Packs and unpacks correspond to data structure construction and pattern
matching, and hence are determined by the program text. Our system also requires the
programmer to specify packs and unpacks as well as which variables are quantified,
but in contrast to these three systems we support subtyping (and therefore we need
polymorphically constrained types), rather than unification. Note that our solution is re-
stricted to label flow, and only existential types are first-class (but we believe adding
first-class universals with programmer-specified quantification would be straightfor-
ward). We conjecture that full first-class polymorphic type inference for label flow is
decidable, and plan to explore such a system in future work.

Simonet [25] extends HM(X) [29], a generic constraint-based type inference frame-
work, to include first-class existential and universal types with subtyping. Simonet re-
quires the programmer to specify the polymorphically constrained type, including the
subtyping constraintsC, whereas we infer these (we assume we have the whole pro-
gram). Another key difference is that we use CFL reachability for inference. Once again,
however, our system is concerned only with label flow.

In ours and the above systems, both existential quantification as well aspack and
unpack must be specified manually. An ideal inference algorithm requires no work
from the programmer. For example, we envision a system in which all pairs and their
uses are considered as candidate existential types, and the algorithm chooses to quantify
only those labels that lead to a minimal flow in the graph. It is an open problem whether
such an algorithm exists.

6 Conclusion
Existential quantification can be used precisely characterize relationships within ele-
ments of a dynamic data structure, even when the precise identity of those elements
is unknown. This paper aims to set a firm theoretical foundation on which to build
efficient program analyses that benefit from existential quantification. Our main con-
tribution is a context-sensitive inference algorithm for label flow analysis that supports
existential quantification. Programmers specify where existentials are introduced and
eliminated, and our inference algorithm automatically infers the bounds on their flow.
Our algorithm is efficient, employing context free language (CFL) reachability in the
style of Rehof et al [14], and we prove it sound by reducing it to a system based on
polymorphically-constrained types in the style of Mossin [13]. We have adapted our
algorithm to improve the precision of LOCKSMITH, a tool that aims to prove the ab-
sence of race conditions in C programs [4] by correlating locks with the locations they
protect. We plan to explore other applications of existential label flow in future work.

References
1. Das, M.: Unification-based Pointer Analysis with Directional Assignments. In: Proceedings

of the 2000 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Vancouver B.C., Canada (2000) 35–46

2. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transactions on
Programming Languages and Systems10 (1988) 470–502

3. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: Proceedings of the 26th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, Texas (1999) 214–227

4. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-Sensitive Correlation Analysis
for Race Detection. In: Proceedings of the 2006 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Ottawa, Canada (2006) To appear.

5. Flanagam, C., Abadi, M.: Types for Safe Locking. In Swierstra, D., ed.: 8th European Sym-
posium on Programming. Volume 1576 of Lecture Notes in Computer Science., Amsterdam,
The Netherlands, Springer-Verlag (1999) 91–108

6. Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: Proceedings of
the 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, Florida (1996) 271–283

7. Fähndrich, M., Rehof, J., Das, M.: Scalable Context-Sensitive Flow Analysis using Instanti-
ation Constraints. In: Proceedings of the 2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation, Vancouver B.C., Canada (2000) 253–263

8. Das, M., Liblit, B., F̈ahndrich, M., Rehof, J.: Estimating the Impact of Scalable Pointer Anal-
ysis on Optimization. In Cousot, P., ed.: Static Analysis, Eighth International Symposium.
Volume 2126 of Lecture Notes in Computer Science., Paris, France, Springer-Verlag (2001)
260–278

9. Myers, A.C.: Practical Mostly-Static Information Flow Control. In: Proceedings of the 26th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, Texas (1999) 228–241

10. Kodumal, J., Aiken, A.: The Set Constraint/CFL Reachability Connection in Practice. In:
Proceedings of the 2004 ACM SIGPLAN Conference on Programming Language Design
and Implementation, Washington, DC (2004) 207–218

11. Johnson, R., Wagner, D.: Finding User/Kernel Bugs With Type Inference. In: Proceedings
of the 13th Usenix Security Symposium, San Diego, CA (2004)

12. Palsberg, J.: Type-based analysis and applications. In: Proceedings of the ACM SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
Snowbird, Utah (2001) 20–27

13. Mossin, C.: Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, Department
of Computer Science, University of Copenhagen (1996)

14. Rehof, J., F̈ahndrich, M.: Type-Based Flow Analysis: From Polymorphic Subtyping to CFL-
Reachability. In: Proceedings of the 28th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, London, United Kingdom (2001) 54–66

15. F̈ahndrich, M., Rehof, J., Das, M.: From Polymorphic Subtyping to CFL Reachability:
Context-Sensitive Flow Analysis Using Instantiation Constraints. Technical Report MS-
TR-99-84, Microsoft Research (2000)

16. Flanagan, C., Felleisen, M.: Componential Set-Based Analysis. In: Proceedings of the 1997
ACM SIGPLAN Conference on Programming Language Design and Implementation, Las
Vegas, Nevada (1997) 235–248

17. F̈ahndrich, M., Aiken, A.: Making Set-Constraint Based Program Analyses Scale. In: First
Workshop on Set Constraints at CP’96. (1996) Available as CSD-TR-96-917, University of
California at Berkeley.

18. F̈ahndrich, M.: BANE: A Library for Scalable Constraint-Based Program Analysis. PhD
thesis, University of California, Berkeley (1999)

19. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: Scalable threads
for internet services. In: ACM Symposium on Operating Systems Principles. (2003)

20. Pratikakis, P., Hicks, M., Foster, J.S.: Existential Label Flow Inference via CFL Reachabil-
ity. Technical Report CS-TR-4700, University of Maryland, Computer Science Department
(2005)

21. Henglein, F.: Type Inference with Polymorphic Recursion. ACM Transactions on Program-
ming Languages and Systems15 (1993) 253–289

let g = λz.
let f = (λx. unpack y = x in y) in

let p = packk z in

f i p
in

(gm 1L1) +L2 · · ·

→

Lz

(k

int∃

Lp

Louti

Lz'

→

int∃

Lx

Lout

)i ffi

L1 L2
(m)m

(a) Source program (b) Flow graph

Fig. 12.Example with Mismatched Flow

22. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM Trans-
actions on Programming Languages and Systems16 (1994) 1411–1430

23. Botlan, D.L., Ŕemy, D.: MLF —Raising ML to the Power of System F. In: Proceedings of
the eighth ACM SIGPLAN International Conference on Functional Programming, Uppsala,
Sweden (2003) 27–38

24. Ŕemy, D.: Programming objects with MLART: An extension to ML with abstract and record
types. In: Proceedings of theInternational Symposium on Theoretical Aspects of Computer
Science, Sendai, Japan (1994) 321–346

25. Simonet, V.: An Extension of HM(X) with Bounded Existential and Universal Data Types.
In: Proceedings of the eighth ACM SIGPLAN International Conference on Functional Pro-
gramming, Uppsala, Sweden (2003) 39–50

26. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph
Reachability. In: Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Francisco, California (1995) 49–61

27. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
28. Wells, J.B.: Typability and type checking in System F are equivalent and undecidable. Ann.

Pure Appl. Logic98 (1999) 111–156
29. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. Theory and

Practice of Object Systems5 (1999) 35–55

A Differences betweenCOPY and CFL

As mentioned in Section 4, if we weaken the [Unpack] rule in CFL to not prevent exis-
tentially bound labels from interacting with free labels, then we can construct examples
with mismatched flow. One such example program is shown in Figure 12(a). In this pro-
gram, the functiong takes an argumentz, packs it into an existential, and then returns
the result of calling functionf with it. Functionf simply unpacks the existential and
returns the contents. Thusg is the identity function, but with complicated control flow.
The functiong is then applied to the value 1, labeledL1, and the result ofg is added at
+L2. Thus clearly we should have thatL1 flows toL2. Let us assume that atpackk, the
programmer wishes to quantify the type of the packed integer, and then compare COPY

and CFL as applied to the program.
The COPY types rules assignf the following type scheme:

∀Lout[∅].
(
∃Lx[Lx ≤ Lout].intLx

)
→ intLout

Notice that there is a constraint between the existentially-bound variableLx and the
universally quantified variableLout (which itself is free in the existential type). This

constraint arises because at theunpack site the abstracted integer escapes by flowing
out of the unpack and is then returned by the function. Notice that this is allowed be-
cause by using [Sub] with a constraintLx ≤ Lout just beforey escapes the scope of the
unpack, we prevent the labelLx itself from escaping. Then at the call site, we instan-
tiate the type off to

(
∃Lx[Lx ≤ Louti].intLx

)
→ intLouti whereLouti is returned

by g, and thusLouti ≤ Lz′, whereLz′ is the label on the return type ofg. Notice
that this instantiation (i) renamedLout but leftLx alone, since the latter was not free.
Moreover,p has the same type as the domain off i, and atpackk we instantiate the
abstractLx to concreteLz, yielding the constraintLz ≤ Louti. HereLz is the label
on the parameter type ofg. Notice that this instantiation (k) renamedLx but notLouti.
Finally, g has type∀Lz, Lz′, Louti[Lz ≤ Louti, Louti ≤ Lz′].intLz → intLz′

and
thus when we instantiate this type atgm, apply it to1L1, and apply+L2 to the result,
we getL1 ≤ Lzm ≤ Loutim ≤ Lz′m ≤ L2, and thus we have flow fromL1 toL2.

Now consider what happens if we apply CFL to the same program. Fig. 12(b)
shows the resulting flow graph. The type off , shown at the right of the figure, is
(∀Lout.(∃Lx.intLx) → intLout, ∅) where in the global flow graph there is a con-
straintLx ≤ Lout. As before, this is a constraint between an existentially bound and
free variable, which is forbidden by the strong non-escaping condition in [Unpack] from
Fig. 8. However, assume for the moment that we ignore this condition. Then the type
of f i, shown in the left of the figure, is

(
∃Lp.intLp

)
→ intLouti where we have an

instantiation constraintLout �i
+ Louti, drawn as a dashed, labeled edge in the figure.

Note that we have also applied an extra step of subtyping to make the figure easier to
read and drawn an edgeLp ≤ Lx, although we could also setLp = Lx. Since the result
of the function is returned, we haveLouti ≤ Lz′, where againLz′ is the label on the
return type ofg. Moreover, atpackk, we instantiate the abstract type ofp to its concrete
type, resulting in the instantiation constraintLp �k

− Lz, as shown in the figure, where
Lz is the label on the parameter type ofg. Finally, at the instantiation ofg we generate
constraintsLz �m

− L1 andLz′ �m
+ L2 as shown in the figure. (We omit the structure

of g in the figure for clarity.)
Notice that there is no path fromL1 to L2, because(k does not match)i. The

problem is that instantiationimust not renameLp, and instantiationk must not rename
Louti. In CFL, we prevent instantiations from renaming labels by adding “self-loops,”
as in [Inst] in Fig. 8. In this case, we should haveLp �i

± Lp andLouti �k
± Louti. We

expended significant effort in trying to discover a system that would add exactly these
self-loops, but we were unable to discover a solution that would work consistently in
all cases. For example, adding a self-loop onLouti seems particularly problematic,
since the labelLouti is created only afterf i is instantiated, and not at the pack nor the
unpack points. Moreover, because we have an(m and)m to the left and right of the
mismatched path, the self-loops onL1 andL2 do not help.

Thus in [Unpack] in Fig. 8, we require existentially-quantified labels to not have
any flow with escaping labels, which forbids this example.

