
ABSTRACT

Title of dissertation: CLEAR, CORRECT, AND EFFICIENT
DYNAMIC SOFTWARE UPDATES

Christopher M. Hayden
Doctor of Philosophy, 2012

Dissertation directed by: Professor Michael Hicks and
Professor Jeffrey S. Foster
Department of Computer Science

Dynamic software updating (DSU) allows programs to be updated as they

execute, enabling important changes (e.g., security fixes) to take effect immediately

without losing active program state. Most DSU systems aim to add runtime updat-

ing support transparently to programs—that is, all updating behavior is orchestrated

by the DSU system, while avoiding program code modifications. This philosophy of

transparency also extends to existing notions of DSU correctness, which emphasize

generic correctness properties that apply to all runtime updates, such as type safety.

We claim that runtime updating support should be treated as a program fea-

ture, both for implementation and for establishing correctness. For implementing

DSU, this means that the core updating behavior is made manifest in the pro-

gram’s code, exposing the programmer to the application-specific details they need

to understand, while relying on the DSU system for everything else. We argue that

this approach can provide several benefits: simplified developer reasoning about up-

date behavior, modest effort to implement, support for arbitrary program changes,

lightweight tool support, and negligible runtime overhead. For establishing correct-

ness, treating updating support as a program feature means that developers should

specify and check the specific behaviors that an updated program will exhibit as

they do for other program features, rather than relying on overly general notions

of correctness. We argue that developers can write DSU specifications with lit-

tle work—usually by adapting single-version specifications—and check them using

standard methods: testing and verification.

To support this thesis, we present three pieces of work. First, we describe

an empirical study of the techniques used by existing DSU systems to determine

when an update can take place. We find that automatic techniques are unable to

prevent erroneous behavior and conclude that placing update points in developer-

chosen main loops is most effective. Next, we present an approach to specifying and

checking the correctness of program features under DSU. We propose a specification

strategy that can adapt single-version specifications to describe DSU behavior and

a new tool that allows reasoning about DSU specifications using standard checking

tools. We have implemented our approach for C, and applied it to updates to the

Redis key-value store and several synthetic programs. Finally, we present Kitsune,

a new DSU system for C programs, that supports the developer in implementing

runtime updating as a program feature. We have used Kitsune to update five pop-

ular, open-source, single- and multi-threaded programs, and find that few program

changes are required to use Kitsune, and that it incurs essentially no performance

overhead.

CLEAR, CORRECT, AND EFFICIENT
DYNAMIC SOFTWARE UPDATES

by

Christopher Michael Hayden

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Michael Hicks, Co-chair/Advisor
Professor Jeffrey S. Foster, Co-chair/Advisor
Professor Shuvra S. Bhattacharyya, Dean’s Representative
Professor Amol Deshpande
Professor Peter J. Keleher

c© 2012
Christopher Michael Hayden

Dedicated to Kyle, my supportive and loving wife.

ii

Acknowledgments

I owe a debt of gratitude to many people who helped make this dissertation

possible. I could not have performed the research that this dissertation encompasses

without the guidance of my advisors, Mike Hicks and Jeff Foster. I started graduate

school with only a vague understanding of how research is done. Over the seven years

since, Mike and Jeff have taught me how to do thorough research, helped improve

my writing, worked late nights with me prior to paper deadlines, and showed me how

to treat setbacks as valuable opportunities to adjust course. I believe these lessons

and experiences are the most valuable product of my time in graduate school and

will stick with me throughout my future endeavors.

Over the course of my Ph.D. program, I have been fortunate to collaborate

with Iulian Neamtiu, Ted Smith, Eric Hardisty, Stephen Magill, Nate Foster, Yudi

Turpie, and Karla Saur. My collaborators have contributed significantly to this

dissertation and my time working with them and the other members of the UMD

PL research group has enriched my time as a graduate student.

I could not have started or completed my Ph.D. without the patience and

dedication of my wife Kyle. In many ways, this process has been a huge personal

indulgence—I am amazed at Kyle’s willingness to support and even marry me during

my graduate career! I am excited to continue pursuing our mutual and personal goals

together in the future.

I must also thank my parents, Jo and Paul. All through my life, they have

striven to provide me with the opportunities that would enable me to pursue a ful-

filling life. On countless occasions, they managed to nudge me in the right direction

iii

without nudging so hard as to turn me off learning and education. As with all of my

choices and accomplishments, my completion of this dissertation reflects the values

that my parents instilled in me.

iv

Table of Contents

List of Figures viii

List of Abbreviations x

1 Clear, Correct, and Efficient Dynamic Software Updates 1
1.1 Dynamic Software Updating . 2
1.2 DSU as a Program Feature . 8

1.2.1 Motivation . 9
1.3 Overview . 14

1.3.1 Empirical Study . 15
1.3.2 Specifying DSU correctness 17
1.3.3 Verification of DSU CO-specs 18
1.3.4 Updating with Kitsune . 20

2 Evaluation of DSU Timing Restrictions 23
2.1 Empirical assessment of timing effectiveness 27

2.1.1 Results . 28
2.2 Dynamic software updating background 32

2.2.1 Ginseng implementation basics 32
2.2.2 Updating active code in Ginseng 33
2.2.3 Controlling timing in Ginseng 34
2.2.4 Timing controls in other DSU systems 35

2.3 Testing dynamic updates . 37
2.3.1 Testing procedure . 38
2.3.2 Update test suite minimization 40
2.3.3 Implementation . 44

2.4 Experimental setup . 47
2.4.1 Test applications . 47
2.4.2 Test suites . 50
2.4.3 Running tests and tabulating results 52

2.5 Experimental results . 53
2.5.1 Usability . 54
2.5.2 Update Safety . 57
2.5.3 Update Availability . 59
2.5.4 Failure examples . 61

2.6 Limitations . 65
2.7 Related work . 67
2.8 Conclusions . 69

v

3 Specifying DSU Correctness 71
3.1 Prior work on update correctness . 73
3.2 Client-oriented specifications . 75

3.2.1 Backward compatible CO-specs 76
3.2.2 Post-update CO-specs . 76
3.2.3 Conformable CO-specs . 78
3.2.4 Relation to prior notions of correctness 80

3.3 Applications of CO-specs . 81

4 Verifying DSU CO-specs 83
4.1 Verification via program merging . 85

4.1.1 Syntax . 86
4.1.2 Semantics . 86
4.1.3 Program merging transformation 88
4.1.4 Equivalence . 91

4.2 Experiments . 93
4.2.1 Programs . 94

4.3 Related work . 97

5 Kitsune: Efficient, General-purpose DSU for C 98
5.1 Kitsune . 102

5.1.1 Data and Control Migration 104
5.1.2 Multi-threading . 109

5.2 xfgen . 111
5.2.1 Transformer generation . 115

5.3 Experiments . 120
5.3.1 Programmer effort . 121
5.3.2 Performance . 126

5.4 Experience using Kitsune . 131
5.5 Related Work . 136
5.6 Conclusions . 142

6 A Study of DSU Quiescence for Multithreaded Programs 143
6.1 Achieving full quiescence . 146

6.1.1 Basic approach . 146
6.1.2 Avoiding blocking . 147

6.1.2.1 Blocking on I/O . 148
6.1.2.2 Blocking on condition variables 149

6.2 Results . 151
6.2.1 Experimental setup . 151
6.2.2 Quiescence times . 155
6.2.3 Threats to validity . 156

6.3 Prior work . 157
6.4 Conclusions . 159

vi

7 Future Work 160
7.1 Checking Tools for Kitsune . 160
7.2 Kitsune Extensions . 161
7.3 DSU as a Feature for Other Languages 164

8 Conclusion 166

A Comparing failures allowed by different timing mechanisms 168
A.1 Program Phases . 168
A.2 Minimization Effectiveness . 172

B Merging equivalence proof 177
B.1 Overview . 177
B.2 Soundness Lemmas . 183
B.3 Completeness Lemmas . 187
B.4 Auxiliary Lemmas . 189

Bibliography 191

vii

List of Figures

1.1 Network-enabled thermostat server 5

1.2 Compiled-in indirection . 5

1.3 State transformation, ◦F→◦C . 6

1.4 v0→v1 patch . 7

1.5 v2 code modifications . 7

1.6 AS timing error . 10

1.7 Modifications to active code . 11

1.8 Refactorings to update active code 11

1.9 Modified loop structure . 12

1.10 Added update point . 15

1.11 DSU merger output . 19

1.12 Kitsune modifications . 21

2.1 Two versions of a program . 24

2.2 DSU testing framework architecture 44

2.3 Version, patch, and test information 48

2.4 Points allowed/test failures . 57

2.5 Skipped return code . 62

2.6 Skipped initialization error . 63

3.1 Sample C specifications for key-value store. 75

3.2 Transforming new-version specifications 77

4.1 Syntax and semantics. 85

4.2 Merging transformation (partial). 89

viii

4.3 Synthetic examples. 95

5.1 Kitsune build chain . 102

5.2 Example; Kitsune additions highlighted 105

5.3 xfgen specification language and type annotations 112

5.4 State size vs. update time . 129

A.1 Updatability across program phases 171

A.2 Test success and failure (OpenSSH Full) 173

A.3 Test success and failure (vsftpd Full) 174

A.4 Test success and failure (ngIRCd Full) 175

B.1 Merging old version code. 178

B.2 Merging new version code. 179

B.3 Merging combined version code. 180

ix

List of Abbreviations

AS Activeness Safety

CLOS Common Lisp Object System

CO-spec Client-Oriented Specification

CPU Central Processing Unit

DSU Dynamic Software Updating

FTP File Transfer Protocol

GC Garbage Collection

HTTP Hypertext Transfer Protocol

IRC Internet Relay Chat

I/O Input/Output

JVM Java Virtual Machine

KLOC Thousands of Lines of Code

LOC Lines Of Code

PIC Position Independent Code

PC Program Counter

RHEL Redhat Enterprise Linux

OS Operating System

SIQR Semi-Interquartile Range

SSH Secure SHell

VM Virtual Machine

VMM Virtual Machine Manager

x

Chapter 1

Clear, Correct, and Efficient Dynamic Software Updates

Software services have become ubiquitous and essential to the lives of users.

More and more communication takes place through web-based email, on-line chat,

voice-over-IP, and social networking services. Documents and other data are increas-

ingly stored, shared, and even produced on-line. Users are informed and entertained

by services that provide on-line news, movie streaming, and music. On-line retailers

sell hundreds of billions of dollars of goods each year [18]. All of this online activity

is evidence of users’ increasing reliance on the availability of software services. When

these services become unavailable, it disrupts the users who depend on them and

exacts a high cost on the service operators [53, 12, 13].

One source of service downtime is the need to update the software that un-

derlies a service. Software updates allow developers to fix critical security, correct-

ness, and performance problems and introduce valuable new functionality. Hence,

the ability to update software is vital. As evidence, when the NASDAQ stock

exchange was hacked in 2010, investigators attributed much of its vulnerability

to out-of-date software that lacked critical security patches [39]. Similarly, a re-

cent stopbadware.org survey of administrators of hacked websites—often used to

mount phishing and other attacks—indicated that 54% of respondents who knew

how their site was hacked attributed the vulnerability to “out-of-date or insecure

1

software” [62]. In these cases, failure to update costs the website owner in reputation

and computing resources, and is also harmful to targeted Internet users.

The most common approaches to updating software rely on stopping and

restarting it, which disrupts active users and reduces availability to new users. This

forces administrators to make a painful trade-off between availability and securi-

ty/features. Dynamic software updating, where software is updated as it runs, is a

promising technique for effectively balancing these concerns.

1.1 Dynamic Software Updating

Over the last 30+ years, researchers and practitioners have been exploring

means to dynamically update the software of a running system with new code and

data, allowing software patching without disruption. Support for dynamic software

updating (DSU) takes many forms. “Fix-and-continue” development, in which one

incrementally develops and tests an application as it runs, has long been common

for Smalltalk and CLOS, and Sun’s HotSwap VM [37, 21] and Microsoft’s .NET

Visual Studio for C# and C++ [24] both include special support for it. The Erlang

programming language [7], designed by Ericsson for building phone switches and

other event-driven software, provides DSU primitives that are regularly used to hot-

patch fielded systems. Research DSU systems for other languages such as C, C++,

and Java [5, 17, 35, 36, 45, 46, 49, 51, 64] have been able to dynamically update

server programs, tracking changes according to those applications’ release histories.

Ksplice [8] can apply security patches to the Linux kernel at run-time, allowing both

2

service providers and end-users to benefit from recent OS fixes without disruption.

The strength of DSU is its ability to preserve program state during an up-

date. For certain types of programs that are relatively stateless (e.g., because their

state is stored externally in a database) and whose connections are short-lived (e.g.,

some web applications), rolling stop-and-restart upgrades can exploit redundancy to

permit updates with little disruption [3]. In this approach, new client connections

reach newly started, upgraded server instances, and instances still running at the

old version are shut down as they become inactive.

However, many server programs are a poor match for rolling-upgrade–based

techniques because the running instances maintain critical state. For example, this

dissertation considers applying DSU to several programs that maintain connections

for an unbounded length of time, including OpenSSH (an SSH server), vsftpd (an

FTP server), Icecast (a streaming audio server), Tor (a privacy-preserving routing

server), and ngIRCd (an IRC server). DSU allows those active connections to im-

mediately benefit from important program updates, whereas rolling upgrades would

not. This dissertation also considers caching/key-value servers like Memcached and

Redis, which can manage massive amounts of in-memory data. DSU techniques will

maintain this in-memory state across the update, while traditional upgrade tech-

niques might lose the active state (for Memcached) or rely on an expensive disk

reload that would reduce availability (Redis).

3

Motivating Example

In this section, we walk through the use of a DSU system for a simple example

program to show how runtime updates are supported. We first use the example to

show the workings of a DSU system and how it supports a program’s evolution. We

will later use this example to illustrate several problems that affect most current

approaches to DSU. Our running example is a simple server program implementing

a network-enabled thermostat (shown in Figure 1.1). In this example, the program

loops forever, accepting new connections (with get conn) and then handling them

(with handle conn). This server maintains one item of global state, temp, holding the

thermostat’s target temperature in ◦F. The handle conn function processes requests

to SET or READ the target temperature of the room.

We describe a DSU implementation approach based on indirection for this

example, similar to the internal operation of the Ginseng updating system [51].

In particular, we introduce indirection by compiling the program specially so that

all function calls are made through function pointers. Figure 1.2 shows how the

program might look with function-pointer indirection compiled in by the Ginseng

compiler. New code can be installed by redirecting the function pointers at runtime

to newly loaded code.

The developer may also provide state transformation code to update the pro-

gram state to be compatible with the new version. As an example, consider a new

version of this program that receives and stores the temperature in ◦C, for which

the only code change occurs in handle conn (cf., Line 9 of Figure 1.4). In addition

4

1 float temp; /∗ temperature (◦F) ∗/
2 void get conn() { /∗ v0 impl ∗/ ... }
3 void handle conn(conn ∗c) {
4 /∗ v0 impl ∗/
5 if (c→ op == READ) { respond(”TEMP: %f”, temp); }
6 else if (c→ op == SET) {
7 temp = c→ val;

8 /∗ heat room ∗/
9 heater set temp ((temp - 32.0f) / 1.8f); /∗ use Celsius ∗/

10 respond(”OK”);

11 } else { respond(”ERROR”); }
12 }
13 int main() {
14 while (1) {
15 conn ∗c = get conn();

16 handle conn(c);

17 }
18 }

Figure 1.1: Network-enabled thermostat server

1 float temp;

2 void get conn v0() { /∗ v0 impl ∗/ ... }
3 void handle conn v0(conn ∗c) { /∗ v0 impl ∗/ ... }
4 void (∗get conn newest)() = &get conn;

5 void (∗handle conn newest)(conn ∗c) = &handle conn;

6 int (∗main newest)() = &main v0;

7 int main v0() {
8 while (1) {
9 conn ∗c = get conn newest();

10 handle conn newest(c);

11 }
12 }
13 int main() { return main newest(); }

Figure 1.2: Compiled-in indirection

5

1 extern float temp;

2 void user xform() {
3 temp = (temp - 32.0f) / 1.8f ; /∗ Convert to Celsius ∗/
4 }

Figure 1.3: State transformation, ◦F→◦C

to the code change, the developer provides the user xform function in Figure 1.3 to

implement the transformation of temp.

Given the modified program and state transformer, the DSU system’s tools

will detect the changes and construct the patch in Figure 1.4. To apply the patch,

the developer should compile it to a shared library and signal (e.g., via a Unix

signal or other external interface) the DSU runtime system to load it (e.g., with

dlopen). The runtime system will then invoke the apply patch function, which will

redirect the handle conn newest function pointer and execute the user xform state

transformer. Once apply patch has been run, all subsequent calls to handle conn will

reach the updated version. Then, the program can resume running and benefit from

the modifications made in the patch.

This approach, wherein all function calls following an update invoke the most

recent version of the function, makes DSU behavior transparent—the DSU system

orchestrates execution during the update, requiring no developer modification of

the original program. One important concern with the transparent approach is

update safety. Consider what would happen if a patch that adds an additional mode

argument to handle conn (see Figure 1.5) were applied just prior to its invocation.

The resulting execution calls handle conn with the wrong number of arguments since

6

1 extern float temp;

2 void user xform() { temp = (temp - 32.0f) / 1.8f ; }
3 void handle conn v1(conn ∗c) {
4 /∗ v1 impl ∗/ ...

5 if (c→ op == READ) { respond(”TEMP: %f”, temp); }
6 else if (c→ op == SET) {
7 temp = c→ val;

8 /∗ heat room ∗/
9 heater set temp(temp);

10 respond(”OK”);

11 } else { respond(”ERROR”); }
12 }
13 extern void (∗handle conn newest)(conn ∗c);

14 void apply patch() {
15 handle conn newest = &handle conn v1;

16 user xform ();

17 }

Figure 1.4: v0→v1 patch

execution continues in the old version of main following the update. This execution

fails to respect the program’s types and would likely corrupt the program’s state or

produce other erroneous behavior.

A common technique to prevent this problem is to employ an automatic timing

restriction. One common restriction, activeness safety (AS), will not apply a patch

1 void handle conn(conn ∗c, int mode) { /∗ v2 impl ∗/ ... }
2 int main() {
3 while (1) {
4 conn ∗c = get conn newest();

5 handle conn(c, HEAT);

6 }
7 }

Figure 1.5: v2 code modifications

7

if any of the functions that it modifies are active on the stack. This restriction

would disallow our erroneous patch since main is active and was modified to pass

the new argument to handle conn. By preventing a large class of patches from being

applied, AS trades off significant flexibility for safety. However, as we will show in

Chapter 2, timing restrictions like AS do not ensure correctness.

1.2 DSU as a Program Feature

Our thesis is that dynamic updating support should be treated as a program

feature. Specifically, this means that developers need the ability to orchestrate and

reason about the program’s behavior as an update happens and also reason that

the program behaves correctly following the update. Unlike (mostly) transparent

technologies like garbage collection, DSU affects the internal semantics of a program

and often its external behavior. Therefore, we argue that developers need the same

control and reasoning ability over DSU that they require for other program features.

Existing notions of update safety and correctness focus on general properties

(e.g., type safety) rather than the specifics of a patch’s code and data changes.

We argue that developers should specify and check the specific behaviors that an

updating program will exhibit just as they do for other program features. We

will show that developers can write DSU specifications with little work—usually

by adapting single-version specifications—and check them using standard methods:

testing and verification.

Implementing DSU as a feature means that the most important parts of an

8

update’s behavior are made manifest in the program’s code, exposing the program-

mer to the details they need to understand, while relying on the DSU system for

everything else. We argue that this approach can provide several benefits: simplified

developer reasoning about update behavior, modest effort to implement, support for

arbitrary program changes, lightweight tool support, and negligible runtime over-

head.

1.2.1 Motivation

Our thesis that DSU should be treated as a program feature was initially mo-

tivated by an empirical evaluation of DSU timing restrictions that we performed.

Timing restrictions are the checks that DSU systems use to ensure that updates

are not applied at times that might result in erroneous behavior (e.g., the AS check

described earlier). Our study compared AS to con-freeness safety (CFS), a related

check that attempts to prevent type-unsafe updates more precisely, and manual up-

date selection. We exhaustively tested the times that an update could occur during

a system test suite execution for three well-known open source server programs, and

tabulated the number of failing tests that would be allowed under each safety check.

We summarize this study further in the next section and describe it in detail in

Chapter 2. Here, we discuss several problems with transparent updating systems

we discovered in the study.

Type safety is not sufficient. The AS and CFS checks only guarantee that an

updating execution will not use instances of program types in an inconsistent way

9

1 int ∗data = NULL;

2 void get conn() { data = malloc(sizeof(int)); ... }
3 void handle conn(conn ∗c, int mode) { = ∗data; ... }

Figure 1.6: AS timing error

following an update. We found that, for the particular tests we considered, neither

check could prevent all erroneous executions.

To understand why, consider the patch in Figure 1.6 which adds a global

variable data to our running example. data is initialized by get conn and used again

by handle conn. If an update occurs between the calls those functions (between lines

15 and 16 in Figure 1.1), then data will be NULL when handle conn uses it and the

program will crash. By design, AS and CFS will both permit this erroneous update

since the resulting execution does not violate type safety. We observed several

instances of failures like this during our experiments.

Programs must often be refactored. One of the main arguments for trans-

parency and the use of automatic safety checks like AS or CFS is that they support

updates without significant program modification. However, in our experiments,

programs often required refactoring to ensure that typical program changes do not

prevent updates indefinitely. Consider the modifications to main shown in Figure 1.7.

Even ignoring timing restrictions, these code modifications would never take

effect in the running program because the old version of the main function would

always remain on the stack—the changes could only be reached if main were invoked

again following the update. To support those changes, developers would need to have

10

1 int main() {
2 while (1) {
3 conn ∗c = get conn();

4 if (!c) break;

5 handle conn(c);

6 }
7 cleanup ();

8 }

Figure 1.7: Modifications to active code

1 void loop body() {
2 conn ∗c = get conn();

3 if (!c) break;

4 handle conn(c);

5 }
6 void loop return () {
7 cleanup ();

8 }
9 int main() {

10 while (1) {
11 loop body();

12 }
13 loop return ();

14 }

Figure 1.8: Refactorings to update active code

anticipated them and modified their program as shown in Figure 1.8.

In this modified version of the program, a loop and a block of code were pulled

out into new functions. The effect is that each iteration of the loop will invoke the

extracted function (loop body in this case) and so the newest version will be reached

during each iteration. Likewise the updated version of loop return is reached upon

loop termination. Ginseng calls these changes loop extractions [51] and we needed

to use them heavily to support useful updates in our experiments. Interestingly, we

11

1 void main loop() {
2 while (1) {
3 conn ∗c = get conn();

4 handle conn(c);

5 }
6 cleanup ();

7 }
8 int main() {
9 main loop();

10 }

Figure 1.9: Modified loop structure

found that one such extraction caused AS to permit a timing error that it otherwise

would have been prevented.

Program evolution is restricted. Loop extraction can not always enable new

code to be reached. Consider a patch that modifies the loop structure of the orig-

inal thermostat server as shown in Figure 1.9, where the event-handling loop has

been moved into a new function. AS would prevent this update, since main has

been modified. However, even if it were allowed, transparent DSU systems cannot

“inject” the call to main loop onto the stack. During our study, we observed that

the 0.4.3→0.5.0 patch to ngIRCd contained a similar change that we could not sup-

port. We believe developers should be encouraged to improve the overall design of

programs, and that doing so should not prevent dynamic updating.

Manual developer reasoning about correctness may be hard. The devel-

oper must consider all possible times that an update might occur and reason about

whether each combination of old and new code is correct. If a timing restriction is

12

in use, the developer must additionally reason about which updates it will allow.

For instance, the problematic update given in Figure 1.6 will crash for some update

timings but not for others. For larger programs, the vast number of places an update

could occur would make manual reasoning prohibitive.

We now describe two additional concerns that our empirical study revealed

that, while not specifically problems with current DSU mechanisms, make it difficult

for developers to ensure that their dynamic updates are correct.

Need to define correctness of changing semantics. To perform the empirical

study, we used suites of tests targeting functionality whose external behavior was not

changed by the patch. We did so because existing approaches to DSU correctness

did not provide a framework for defining the correctness of updates that change

behavior. Although we argue in Section 2.6 that the tests we used were sufficient

for our study, it is clear that developers using DSU in practice need ways to define

correctness for updates that change program semantics.

Need ways to check update correctness. The testing methodology that we

used for this empirical study was a novel step towards checking DSU correctness.

However, there are many additional tools (e.g., static analysis) that are useful for

checking the correctness of program features, but currently provide no support for

DSU.

13

1.3 Overview

In this dissertation, we present three major contributions that provide evidence

that DSU should be treated as a program feature and that doing so is effective.

First, we describe our empirical study of the techniques used by existing DSU

systems to determine when an update can take place. We find that automatic tech-

niques are unable to prevent erroneous behavior and conclude that placing update

points in developer-chosen main loops is most effective. We also observed and report

several problems with current DSU mechanisms.

Next, we present an approach to specifying the correctness of program features

under DSU. We propose a specification strategy that can adapt single-version spec-

ifications to describe DSU behavior. We also develop a new tool to support DSU

verification that allows reasoning about DSU specifications using standard checking

tools. We have implemented our approach for C, and applied it to updates to the

Redis key-value store and several synthetic programs.

Finally, we present Kitsune, a new DSU system for C programs that supports

the developer in implementing runtime updating as a program feature. We have used

Kitsune to update five popular, open-source, single- and multi-threaded programs,

and find that few program changes are required to use Kitsune, and that it incurs

essentially no performance overhead.

14

1 int main() {
2 while (1) {
3 dsu update();

4 conn ∗c = get conn();

5 handle conn(c);

6 }
7 }

Figure 1.10: Added update point

1.3.1 Empirical Study

Researchers and practitioners have developed several strategies for determining

when an updating can be applied to a running program. Three that are in use in

DSU systems are AS, CFS, and placing explicit update points in developer-chosen

main loops. This last strategy would have the developer add an update point to

thermostat example as shown in Figure 1.10. Under this strategy, the update point is

placed such that it is reached in between event-handling operations when there is less

in-flight state (c represents in-flight state if an update occurs after get conn). This

approach to update-point placement makes update timing (a key facet of update

behavior) explicit, and so is part of our strategy to treat DSU as a feature.

To determine which of the strategies is most effective, we performed an empiri-

cal study, described in Chapter 2, that considered several real-world updates to three

widely used, open-source server programs, vsftpd, OpenSSH, and ngIRCd. We used

the standard OpenSSH test suite and developed custom tests for vsftpd and ngIRCd,

and exhaustively tested updating at all possible times during their execution.

To perform this experiment, we developed DSUTest, a testing methodology

15

for DSU that logs all of the possible update points reached during the execution

of a system test and then exhaustively tests each of those points. However, for

checks like AS and CFS, thousands of update timings may be possible during the

execution of a system test. We observed that many distinct updates would yield

provably identical behavior, so we developed an analysis that operates over program

traces, dividing update tests into classes of equivalent tests. DSUTest only runs one

test from each equivalence class. This allows us to test all the distinct behavior that

could result from an update during a test, while running the minimum number of

update tests.

The results of this study (described in detail in Section 2.5) showed that all

three timing restrictions prevented the majority of failures that might have occurred

without any restriction. While AS and CFS both prevented most failures, only man-

ual point selection prevented all of the failing updates. Further, for both AS and

CFS, a large number of distinct update timings were possible, suggesting that the

reasoning burden for developers to ensure update correctness might be prohibitive.

Complicating matters, even if developers were to identify a bug through manual

reasoning, systems using AS and CFS often do not provide effective ways for devel-

opers to use this knowledge to avoid erroneous timings. In summary, we conclude

that manual selection of long-running loops is the best approach.

16

1.3.2 Specifying DSU correctness

Chapter 3 presents our approach for specifying the correctness of dynamic

updates. Our approach allow developers to reason about correct DSU behavior as

a program feature, instead of relying on generic notions of correctness.

We present client-oriented specifications (or CO-specs for short) as a way to

specify execution properties from clients’ points of view, to show that a dynamic

update does not disrupt active sessions. Recall that our thermostat server allows a

client to issue requests that READ or SET a stored temperature. The developer may

expect that a READ that follows a SET will return the set temperature. CO-specs

permit developers to specify these types of external behavior. Here, we provide an

example CO-spec that specifies that, for any temperature set, the same temperature

will be read.

1 float written = ?, read;
2 SET(temp);
3 read = READ();
4 assert (written == read);

Note that a specification for this property may hold for most patches, but it would

not hold for the patch that transformed the target temperature to Celsius (if that

update occurs between the SET and READ). Our approach would allow the devel-

oper to detect this inconsistency, which they could address by modifying the patch

or adapting the specification.

We have identified several categories of CO-specs that capture most proper-

ties of interest and can be derived from single-version specifications. However the

17

strategy is flexible enough to express behaviors that do not match either individual

version, and we have encountered program changes for which this ability is useful.

1.3.3 Verification of DSU CO-specs

Chapter 4 presents the first system for automatically verifying dynamic-software-

update (DSU) correctness, which we express using CO-specs. Rather than propose a

new verification algorithm that accounts for the semantics of updating, we developed

a novel program transformation that produces a program suitable for verification

with off-the-shelf tools. Our transformation merges an old program and an update

into a program that simulates running the program and applying the update at any

allowable point. Figure 1.11 shows the merged program for the first patch to our

running example that switched temp to Celsius.

This merged program models all possible updating executions. The updated

variable indicates whether the program has updated. Calls to dsu update nonde-

terminstically determine whether to apply a patch. (The condition on ? on line 3

denotes nondeterministic choice). Calls to each function reach a wrapped version

that consults the updated flag and calls the appropriate version.

We have implemented our merging transformation for C programs and used it

in combination with two types of checking tools, verification and symbolic execution,

to check actual updates. We have used this approach to check properties of Redis

and several synthetic benchmarks inspired by real changes.

18

1 int updated = 0;

2 void dsu update() {
3 if (!updated && ?) { updated = 1; user xform() }
4 }
5 float temp;

6 void user xform() {
7 temp = (temp - 32.0f) / 1.8f ;

8 }
9 void handle conn old(conn ∗c) { /∗ v0 impl ∗/ ... }

10 void handle conn new(conn ∗c) { /∗ v1 impl ∗/ ... }
11 void handle conn(conn ∗c) {
12 if (updated) hand conn new(c);

13 else handle conn old(c);

14 }
15 int main() {
16 while (1) {
17 dsu update();

18 conn ∗c = get conn();

19 handle conn(c);

20 }
21 }

Figure 1.11: DSU merger output

19

1.3.4 Updating with Kitsune

Chapter 5 presents Kitsune, a DSU system for C programs that developers

can use to implement DSU as a feature. To do so, the developer modifies the initial

version of the program to make updating behavior explicit. Kitsune addresses each of

the problems with transparent DSU systems that we identified earlier, and operates

in harmony with the main reasons developers use C (e.g., performance and low-level

control), due to three key design and implementation choices.

1. Kitsune gives the programmer explicit control over the following important

facets of DSU behavior: when an update happens, what program state is

migrated to the new version, and where in the program execution resumes

when the update completes. The code the developer writes to exert this control

makes DSU support a first-class program feature, which the developer can

easily reason about or modify.

2. Kitsune performs whole-program updating. Each version of the program is

compiled as a shared library. Kitsune provides a driver program that starts

execution by loading the initial-version library, and each subsequent update

longjmps back to the driver, which loads the new version library and invokes

its main function. This implementation strategy places no restrictions on the

structure of the program, its data, or how either may be modified by an update.

3. Kitsune supports state transformation by providing a tool called xfgen that

allows the developer to express the interesting parts of state transformation as

simple specifications, and xfgen generates code to do the rest. The generated

20

1 float temp;

2 void get conn() { /∗ v0 impl ∗/ ... }
3 void handle conn(conn ∗c) { /∗ v0 impl ∗/ ... }
4 int main() {
5 kitsune do automigrate ();

6 while (1) {
7 kitsune update(”main”);

8 conn ∗c = get conn();

9 handle conn(c);

10 }
11 }

Figure 1.12: Kitsune modifications

code can traverse the heap to perform type transformation where needed.

Figure 1.12 shows our networked thermostat server modified to work with

Kitsune. Examples in Chapter 5 give a more complete impression of Kitsune’s use,

but this example demonstrates the approach at a high level.

Line 7 contains an explicit update point. When an update is requested and

this line is reached, kitsune update will save certain program state, including the

name of the update point taken (“main” in this example), and longjmp back to the

driver. The driver loads the new version and calls its main function. Because we

enter the new version of main we know that we will never return to old-version code

so there is no risk of type-unsafe execution. The call to kitsune do automigrate will

pull the values of old-version global variables forward to the new version, performing

transformation where needed. When execution reaches the kitsune update call on

line 7, which has the same name as the update point taken in the previous version,

the update is complete and the program resumes handling requests.

21

For our example patch that converts to Celsius (Figure 1.3), the developer

would provide the following spec to xfgen:

temp → temp: { $out = ($in - 32.0f) / 1.8f ; }

This code specifies that, to initialize the new-version variable temp (the symbol on

the right-hand size of the arrow), run the provided code block with $out bound

to temp at the new version and $in bound to the old version. In general xfgen is

much more powerful than this: It produces C code that performs transformations

for types wherever they are needed in the heap (see Section 5.2 for examples). The

code that xfgen generates to perform this tranformation would be automatically

called by kitsune do automigrate .

We have implemented Kitsune and used it to update three single-threaded

programs—vsftpd, Redis, and Tor—and two multi-threaded programs—memcached

and icecast. For each application, we considered from three months’ to three years’

worth of updates. We found that we could support updates with a small number

of modifications (on par for a typical program feature), virtually no steady-state

overhead, and short delays at update time.

Chapter 6 describes an additional experiment we performed to measure loss of

availability due to Kitsune’s handling of multi-threaded updates. This study mea-

sured time spent waiting for all threads to update for six programs. We describe

implementation strategies for minimizing the updating delay for multi-threaded pro-

grams, and report our findings which show that all threads reached update points

quickly for each of our benchmark programs.

22

Chapter 2

Evaluation of DSU Timing Restrictions

While DSU can significantly improve application availability, it is not without

risk. Even if the new version of an application runs correctly when started from

scratch, the application could behave incorrectly when patched on the fly, depending

on when the update takes effect. To see why, consider the example in Figure 2.1,

which shows two versions of a simplified HTTP server. There are two semantics-

preserving changes in the new version. First, the escape function used to take a

single argument, but now has been changed to take two arguments (and the call

to it from parse is updated accordingly). Second, the global cnt, which counts the

number commands processed, is now updated in get file prior to logging, rather

than in parse.

Suppose the old program is running and a dynamic patch (a patch to be applied

at runtime) based on the new program is ready to take effect as control enters parse,

at the point marked /∗∗1∗∗/. In many DSU systems, functions running at the time

of an update continue executing the old code, while subsequent function calls invoke

the new version [7, 52, 16, 65, 36]. Thus, we would have a type error: the old parse

would call the new escape with a single parameter, instead of two parameters as

expected, which could lead to surprising behavior.

To avoid these and other problems, most DSU systems support mechanisms

23

1 main() { ...

2 while (1) { /∗∗2∗∗/
3 byte∗ packet = network read();

4 struct event ∗e = parse(packet); /∗∗3∗∗/
5 switch (e→ kind) {
6 case GET: get file (e→ gete.fname); break;

7 case PUT: put file (e→ pute.data); break;

8 }
9 }

10 struct event∗ parse(byte∗ pkt) { /∗∗1∗∗/
11 pkt = escape(pkt);

12 ... cnt++;

13 }
14 void get file (char∗ name) {
15 log (..., cnt ,...); ...

16 }
17 char∗ escape(char∗ buf) { ... }

1 main() { ...

2 /∗
3

4

5 as before

6

7

8 ∗/
9 }

10 struct event ∗parse(byte∗ pkt) {
11 pkt = escape(pkt,METHOD 1);

12 ...

13 }
14 void get file (char∗ name) {
15 cnt++; log (..., cnt ,...); ...

16 }
17 char∗ escape(char∗ buf, int mode) { ... }

(a) Old version (b) New version

Figure 2.1: Two versions of a program

that constrain when a dynamic patch may be applied. In this work, we evaluate

the effectiveness of the most well-studied approaches to controlling update timing.

We characterize effectiveness as having three facets. The primary criterion is safety :

an effective approach to controlling DSU timing should rule out incorrect behavior,

such as the type error described above. The flip side is availability : timing cannot be

restricted so much as to preclude a dynamic update for an extended period. Finally,

there is usability : an effective approach will not require a developer to perform

difficult reasoning or work to add DSU support to her program.

For our evaluation, we considered three approaches from among the most com-

mon and/or mature systems in the literature, and we evaluated their effectiveness

on real programs undergoing dynamic updates that correspond to actual releases.

The approaches are:

Activeness safety (AS) In this approach, an update may be performed only if

24

those functions changed by the update are not active, i.e., if changed functions are

not on the activation stack of a running thread. AS prevents the update at location

/∗∗1∗∗/ in our example by forbidding the update from taking effect in parse since

it has changed. AS is probably the most popular approach, used by the commercial

DSU system Ksplice [8]; the research systems Dynamic ML [66], K42 [38], OPUS [5],

and Jvolve [65]; and advocated by Bracha [11] for web-based end-user apps.

Con-freeness safety (CFS) Stoyle et al. [63] observed that AS may be overly

restrictive, and proposed a condition called con-freeness that allows updates to

active code if the old code that executes after the update will never access data or

call a function whose type signature has changed. As such, it would rule also out the

problematic update point /∗∗1∗∗/ in the example, since escape’s type signature has

changed and escape would be called after the update takes place in parse. Unlike

AS, however, CFS would allow an update after the call to escape since subsequent

actions in parse do not involve code or data whose type has changed, e.g., cnt is

still a variable of type int. In general, it has been proved that AS and CFS both

guarantee that no updating execution will exhibit a type error [63]. CFS is used

by Ginseng, a research system that has successfully supported dozens of dynamic

updates to realistic programs [52].

Manually identified update points Several DSU systems, including Erlang [7],

UpStare [45], POLUS [16], DLpop [36], DYMOS [41], and Ekiden [35] impose no

automatic timing restrictions. Instead, these systems rely on the programmer to

identify legal update points, and thus put her firmly in the driver’s seat to balance

25

safety and availability. A common approach, e.g., advocated by Armstrong for

Erlang [7], which we call manual identification, is to permit updates only at the

start or end of event processing loops (e.g., at position /∗∗2∗∗/ in the example). In

fact, doing so would help avoid a problem that both AS and CFS allow. Consider

if the example update were performed at /∗∗3∗∗/, which is permitted by AS and

CFS because main is the only active function, and is unchanged. By this point the

program has called the old version of parse, which runs the statement cnt++. After

the update, the program will call the new version of get file , which contains the

statement cnt++ where the old version did not. Thus the execution has increased

cnt one too many times, resulting in the call to log being incorrect. The manually

chosen point at /∗∗2∗∗/ avoids this problem by ensuring calls to functions will always

go to the same code version when processing a single command. Identification of

the event-processing loops for adding update points is a straightforward, almost

mechanical process. The developer just finds the event loops that correspond to

places where updates should be supported and adds an update point.

Author Contributions. The testing strategy that we use for this work was pub-

lished in HotSWUp ’09 [30], and the empirical evaluation was published in TSE [34].

I was lead author on both papers, and was the lead contributor to all facets of this

work. My collaborators, Eric Hardisty and Edward K. Smith, contributed by writ-

ing application tests and helping modify the subject programs to support updating.

The implementation was built on the Ginseng DSU system created by Neamtiu et

al [51].

26

2.1 Empirical assessment of timing effectiveness

Our evaluation of timing controls is empirical : we studied how these ap-

proaches would fare for real systems with real updates applied to them, derived

from the systems’ actual evolution. Our results are important because they pro-

vide quantitative evidence for assessing arguments that, to this point, have been

essentially qualitative.

To perform our study, we considered dynamic updates to three mature, open-

source applications: vsftpd, a popular FTP server, OpenSSH daemon, a secure shell

server, and ngIRCd, an IRC server. The first two applications have already been

studied by several DSU systems [52, 16, 45], while the third is new to this study.

Each of these programs is single-threaded, although both OpenSSH and vsftpd use

multiple processes. For each application we selected a streak of releases, and for each

release (after the first) we constructed a dynamic patch using Ginseng, adjusting

it as needed for the timing approach under study. For OpenSSH we chose eleven

straight releases over a three year period; for vsftpd we chose nine releases over three

years; and for ngIRCd we chose eight releases over eight months. Though we use

Ginseng for this study, we argue (in Section 2.2.4) that our results generalize to

many other DSU systems, since most adopt similar models and mechanisms.

For each release and patch, we executed a suite of system tests (either provided

with the application or written by us) and observed whether a test passed when a

dynamic update was applied during the test’s execution. Each system test induces

many update tests, with one update test for each distinct moment during the test’s

27

execution at which the update could be applied. By exhaustively running all update

tests we can directly assess effectiveness. In particular, we can assess whether an

approach to controlling timing would permit a particular update test (availability),

and if so, whether that test passes (safety). We can also look holistically at the

allowed update points to assess whether they occur often enough at execution time

to provide availability. We observe that even a few syntactic update points may be

sufficient in practice as long as they are executed suitably often.

Running a test for every possible update point would be prohibitively expen-

sive. Fortunately, many update tests are provably redundant: Suppose a dynamic

patch does not change the code of function f. Then a test with an update point just

before a call to f will behave identically to the same test with an update point just

after that call to f. Therefore, we only need to run one of these two possible update

tests, rather than both possible tests. In the implementation of our systematic test-

ing framework, we built on this intuition to produce a test minimization algorithm

that dramatically reduces the number of tests we have to run while retaining the

same coverage [30]. For our experiments in particular, we found that 95% of the

update tests from OpenSSH, 96% of points from vsftpd, and 87% of points from

ngIRCd could be eliminated.

2.1.1 Results

The results of our study convince us that the approach of manual update

point identification is the most effective. In particular, this approach eliminates all

28

failures, provides sufficient availability, and is relatively easy to use. The two auto-

matic mechanisms we considered do not preclude all failures and required substantial

manual effort.

Assessing usability, all three methods required some manual effort to extract

certain blocks of code into separate functions. In particular, each server program

contained a potentially infinite main loop that processed client requests. Since

updates to functions do not take effect until the next time the function is called,

any updates to the loop-containing function would never be realized. To remedy this

problem, we extract the body of the loop into a separate function, so that changes

to the loop itself effectively take effect on the next loop iteration [52].

AS required several additional extractions to be effective. In particular, be-

cause it precludes updates to active functions, dynamic patches that contain an

update to main (or any other function on the stack when the infinite loop is execut-

ing) will never be applied. As it turns out, without further change to the program,

every update to every program we considered would be disallowed by AS. To avoid

this problem, we extracted the bodies of functions up to the ones containing main

loops so that the extracted parts are not on-stack at update time. This transforma-

tion does not affect semantics because extracted code portions are never executed

again by the server.

CFS required additional work of a different sort. Because it relies on a static

analysis, conservatism in the analysis may preclude updates to certain data struc-

tures or prohibit updates at certain program points even when they are safe. It

sometimes took considerable effort to identify the root of such problems and work

29

around them by refactoring the code in various ways.

The manual approach required the least additional work. Following the direc-

tion of Armstrong mentioned above [7], we simply prescribed that an update may

take place at the beginning of each event processing loop (prior to calling the ex-

tracted body). Indeed, we needed to identify such positions to extract loop bodies,

so adding the manual update point required no additional work.

As for safety, we find that both AS and CFS are highly effective at avoiding

failures, though AS does this better than CFS, and neither is perfect. With no safety

checking, many updates fail: in total, 1.87M of the total 14.2M tested executions

failed (13%). Using either AS or CFS dramatically reduces the number of failures

to about 495 for AS (0.003%) and 49K for CFS (.34%). For the manual approach,

we observed no failures whatsoever.

As for availability, we found that both AS and CFS are fairly permissive,

though CFS is more permissive than AS. In total, CFS permitted 68% of the passing

update points, while AS permitted 59% of them, a difference of about 2.1M update

tests; roughly 55% of passing update points are allowed by both. Thus, AS’s lower

failure rates come at the cost of higher restrictiveness, compared to CFS. The manual

approach admitted the least number of update points: about 17.7K, or 0.14% of the

passing update points.

While the more allowed update points the better, in general we only need

updates to occur reasonably often. We measured the potential delay to updating

that would be introduced by updating only at manual points using our test suite and

benchmark programs. We found that while AS or CFS may allow an update to occur

30

more quickly than manual points (since they permit more potential update points),

this delay is typically quite short, usually less than 1ms for our tests (although the

delay can be longer for certain requests, e.g., large file downloads). In cases where a

developer decides that manual update points are reached too infrequently, she can

allow faster updates by adding a manual point to the loops that cause the delay. We

also categorized the update points in each program by the program phase they occur

in—startup, connection loop, transition, command loop, or shutdown—and found

that a significant number of the failures occur in the startup and transition phases,

providing further support that update points in loops seem the most reliable.

In summary, this work is the first substantial study of several proposed DSU

timing restrictions. While others have argued for [63, 52, 49, 8, 66, 38, 5, 65, 11]

and against [45, 7, 16, 36, 41, 35] these approaches, these arguments have previously

been qualitative. This work is the first to empirically consider the safety, availabil-

ity, and usability of these approaches when applied to realistic applications. Our

in-depth analysis of the data—including a characterization of the failures allowed

and disallowed by the checks and where those failures tend to occur—provides a

valuable source of information for judging and motivating ongoing DSU research.

In particular, our DSU verification work and the Kitsune updating system were both

heavily motivated by the findings of this empirical study.

31

2.2 Dynamic software updating background

We used Ginseng for our empirical study because it has proven to be quite

effective; e.g., published work describes how Ginseng has been used to update six

open-source server programs, where updates correspond to actual releases taken

from several years’ worth of development [52, 49]—upwards of 60 dynamic updates

in all. Moreover, Ginseng’s updating semantics are quite similar to the semantics

of many other DSU systems. As such, we believe that results for Ginseng have

broad applicability. Finally, we had ready access to Ginseng expertise since it was

developed, in part, by one of the author’s collaborators on this work.

The next three subsections describe how Ginseng works, first considering its

basic mechanisms, then discussing how it handles updates to active code via ex-

traction, and finally considering how it implements timing controls. The updating

approach that we described for the example in the Introduction (c.f., Section 1.1) is

quite similar in operation to Ginseng. Here we describe the differences and provide

some additional details. We close this section by considering how our results could

be interpreted with respect to other DSU systems.

2.2.1 Ginseng implementation basics

We noted that Ginseng supports type transformation functions to effect type-

level conversions, but did not describe how they work. Under Ginseng, if the old pro-

gram contained definition struct entry { int key; void ∗value ; } and the new ver-

sion modified this definition to be struct entry { int key; int priority ; void ∗value ; },

32

then the developer must provide a function that can initialize a value of the new

version’s type given a value of the old version’s type, e.g., by copying the values

from unchanged fields key and value, and initializing the new field priority . The

program is compiled so that type transformers are invoked on demand: each access

to data is prefaced by a check of whether the data is up-to-date, and if not, the

representation is converted. The Ginseng compiler inserts padding in updateable

values so that their representation can grow over time. A patch that modifies a

data type to be larger than the running version’s padded representation cannot be

applied. See Neamtiu et al. for more details [52].

2.2.2 Updating active code in Ginseng

As we noted in the Introduction (Section 1.2.1), functions that are active

during an update will complete execution at the same version at which they were

initially invoked, and we sometimes need to refactor the program to allow active

code to be updated more readily. Ginseng provides annotations that can be used to

automatically extract blocks of code within a long-running function into new func-

tions whose arguments include a struct containing all the local variables mentioned

in the extracted block. A drawback of using code extraction is that developers must

anticipate which code to extract before deploying the program.

33

2.2.3 Controlling timing in Ginseng

Ginseng supports all three timing control mechanisms described in the intro-

duction: activeness, con-freeness, and manual. In Ginseng, a program calls the

function DSU update() to initiate an update if one is available. We refer to such

calls as update points. If an update is available and is compatible with the safety

check in use (AS, CFS, or neither), it is applied at this point; otherwise, it is delayed

until the next update point is reached. Thus, to implement the manual approach

for our evaluation we simply inserted calls to DSU update() at the desired program

points and disabled additional safety checks.

To implement AS in Ginseng, the developer can specify activeness as the

additional safety check; activeness is implemented by walking the stack to find

the current active functions and ensuring they are not changed by the available

update (note that Ginseng only supports single-threaded programs). To simulate

asynchronous updates (i.e., those that could take effect at any time), the Ginseng

compiler accepts an option that will insert update points automatically according

to some policy, e.g., one prior to each non-system function call in the program.

Ginseng implements CFS as a static analysis. The Ginseng compiler analyzes

the program source code to determine, for each update point,1 those definitions that

could be used concretely beyond that point (function calls, dereferences of global

variables, field accesses of structured types, etc.) by the current function or any

function that could be on the stack. Then it stores the set of names of those defini-

tions in a data structure at that point. At run-time when control reaches that point

1Update points could be inserted manually or automatically

34

and an update is available, the patch will be compared against the set: if definitions

changed by the update appear in the set but have not changed their type signature

then the update is permitted, and otherwise it is delayed. In effect, this check allows

updates to active functions, but only if Ginseng can prove those functions will not

subsequently call functions or access any data whose type signatures have changed.

2.2.4 Timing controls in other DSU systems

Because we evaluate the effectiveness of various timing mechanisms using Gin-

seng, an important question is whether our results generalize. Here we argue that

they do, and explain exactly how behavior similar to what we observe for Ginseng

would manifest in the other systems, based on how they differ semantically from

Ginseng.

It is easy to argue that our results generalize to the approaches used by

Ksplice [8], Jvolve [65], K42 [38], DLpop [36], Dynamic ML [66] and Bracha [11]. In

terms of updating semantics, the main difference between these systems and Ginseng

is that Ginseng applies type transformations lazily rather than all at update-time,

and so timing-related errors could manifest in Ginseng that would not manifest in

the other systems. However, for our experiments all type transformers are pure func-

tions, so the effects of type transformation would be the same if they were applied

at update-time.

POLUS [16] and Erlang [7] employ a slightly different updating model than

Ginseng: after an update in these systems, the programmer can partially control

35

whether a function call should reach the newest version or the contemporaneous

one. If the programmer were to specify that all calls are to the most recent version,

the results would be the same as those for Ginseng given here. We note that the

use of versioned function calls can encode the manual approach. For example, the

programmer could avoid the problems that occur due to updates at /∗∗1∗∗/ and

/∗∗3∗∗/ in Figure 2.1 by specifying all calls but those to the extracted loop body to

be contemporaneous calls; this is essentially the approach recommended by Erlang.

Our results confirm the effectiveness of this approach.

UpStare [45] is strictly more expressive than Ginseng in that it permits a

dynamic patch to transform the execution state (i.e., the PC and stack) of the

program. An UpStare patch developer provides a mapping between PC locations in

each changed function’s old and new versions and writes a function to initialize the

stack of the new version based on the stack of the running version. At update time,

if a changed function is active at a PC specified in the mapping, the transformation

function is used to initialize the stack, and then execution proceeds at the new

version’s corresponding PC. UpStare’s execution state transformations are akin to

code extractions for Ginseng and similar systems: they are used to ensure that the

correct new code is reached following an update. Thus the failures due to timing

that we observe in our Ginseng-based experiments would correspond to failures using

UpStare assuming the developer wrote the stack mapping in a way that corresponded

with our loop extraction. Although UpStare supports changes that Ginseng cannot

(e.g., changing the ordering of functions on the stack), the patches in our experiments

did not require its extra expressiveness and so we believe that UpStare mappings

36

would aim to achieve the same results for these programs as our code extractions. As

a result, developers using UpStare could use the manual identification strategy we

evaluate here by limiting the mapped points to those at event loops. Any additional

points allowed by the developer’s mappings may or may not correspond to the AS,

CFS, or unrestricted approaches that we evaluate, depending on the developer’s

choices. Many of the failures we observed, particularly those allowed by AS, could

also occur under UpStare, and reflect the hazards of constructing mappings for it.

UpStare also provides some support for AS-like timing restrictions [44]. Patch

developers can specify update constraints that preclude updates when particular

changed functions are active. The UpStare manual indicates that these constraints

are useful to reduce the effort in mapping program states between versions. We

believe that our findings apply directly to the use of these constraints.

2.3 Testing dynamic updates

To evaluate the effectiveness of DSU timing controls, we need to establish

which program executions in which an update takes place can be deemed correct,

and which cause misbehavior. For the purposes of our experiments, we do so using

testing. While testing is an incomplete measure of correctness, tests typically cover

the most important program behaviors, and provide an easy-to-measure, practical

assessment of whether an updated execution is valid.

We begin by outlining the basic testing procedure. Next we present the intu-

ition behind our minimization algorithm, which eliminates tests of update timings

37

whose outcome is provably equal to the outcome of other tests. Finally, we present

details of our testing framework’s implementation.

2.3.1 Testing procedure

Our approach to update testing is as follows. Let P0 and P1 be two program

versions, and let π be a patch that updates P0 to P1. To dynamically test π, we must

run P0, apply π at the allowable update points, and then decide whether the ensuing

behavior is acceptable. We do this by deriving update tests, one per allowable update

point, from selected test t in the system test suites of P0 and P1. Here, we use the

term update point in a dynamic sense: each time the same call to DSU update()

is reached during execution we consider it a separate update point. Assuming we

have a deterministic, single-threaded program, the update points for an execution

can be numbered unambiguously. Thus, we define tiπ to be the update test that

executes P0 on t and applies π at the ith update point; if the test passes, then we

deem π to be correct for point i. Since t should terminate, there will be a finite

number of induced update tests tiπ for a fixed π. To run update tests, we modify the

Ginseng runtime to delay patch application to the ith update point reached. Our

implementation handles some forms of non-determinism and multi-process (but not

multi-threaded) programs, which we describe in Section 2.3.3.

We select the system tests t from which to derive update tests from the test

suites of the old and new program version. Let Ti be a suite of system tests for Pi,

for i ∈ {0, 1}. We use all t ∈ (T0 ∩ T1): since they should pass for both P0 and P1,

38

we expect all tiπ for all i should pass no matter when the update happens during the

test execution.

On the other hand, we cannot generally use tests t ∈ (T1−T0), which consider

functionality relevant only to the new version, or tests in t ∈ (T0 − T1), which

likely consider deprecated functionality. For these tests, not all update points will

necessarily make sense. For example, suppose P0 is an FTP server, P1 adds support

for a new command qux, and t tests the proper functioning of qux, by logging into the

server and then performing the command. For update tests tiπ where update point

i occurs prior to the login procedure finishing, then we can imagine the test will

pass. This is because the login procedure has not changed between the two versions

and should work identically in both. On the other hand, for update points j that

occur after that point, applying the update will be too late: the old version, which

does not support qux, will by that point have rejected the command and terminated

the test. In general, tests in (T1 − T0) may have some preamble during which a

dynamic update is legitimate. Likewise, tests in (T0−T1) may have some legitimate

post-amble during which an update could occur. Either way, we cannot identify this

preamble automatically, so for simplicity we simply do not consider these tests. In

Chapter 4, we develop approaches for DSU specification and checking that can cope

with changing program semantics.

39

2.3.2 Update test suite minimization

The procedure just described lets us systematically derive update tests from

existing system tests. Unfortunately, we have found this procedure vastly multiplies

the number of tests to run. For example, our experiments with roughly 100 system

tests applied for 10 patches of OpenSSH yielded more than 8 million update tests.

We mitigate this increase in test suite size by developing an algorithm that eliminates

all provably redundant tests, sometimes yielding a dramatic reduction in test suite

size.

To illustrate our algorithm, consider the following code, assuming that f, g,

and h call no other functions:

1 void main() { DSU update();
2 f ();
3 DSU update();
4 g ();
5 DSU update();
6 h(); }

Suppose a dynamic patch π1 to this program contains only a modification to

function h. Then whether the update is applied at line 1, 3, or 5, the behavior of

the program is the same: the calls to f and g will be to the old version, which is

the same as the new version, and the call to h will be to the new version. Thus, for

patch π1, update points {1, 2, 3} form an equivalence class, and we need only test

one of the three to cover the whole class.

However, suppose dynamic patch π2 modifies f, g, and h. In this case, none

of the update points are equivalent. If we update at line 1, we will call the new

40

versions of all three functions. If we update at line 3, we will call the old version of f

and the new versions of g and h. If the update happens at line 5, we will call the old

f and g and the new h. All of these executions may produce reasonable behavior,

but we have to test them to find out.

We take the following approach to find equivalence classes of update points

with respect to a given patch π . We instrument the program so that when it runs it

produces an update trace ν of relevant events; among other things, the trace contains

functions called, global variables read or written, and update points reached (but

not taken). We run the instrumented program as part of some test t, but do not

update it. The resulting trace νt contains some number n of update-point events,

which in turn induce a set of update tests t1π . . . t
n
π. Our goal is to determine which

of these update tests produce equivalent traces for a given patch π. By equivalent,

we mean that although they vary in the update point taken, they read and write

the same values to and from the same variables, call the same functions with the

same parameters, etc.—in other words, their behavior is identical except for update

timing. Then we can run a single representative test from each equivalence class

while retaining full update coverage.

For each event in the trace, we determine whether it conflicts with patch π.

In particular, if the event is a call, read, or write to F (where F is a function, global

variable, or a value of named type) then the event conflicts with π if and only if F is

changed by the patch. If F is a function, any change to its text constitutes a change

to F . (Note that a change to a function called by F does not render F itself changed,

by this definition). If F is a global variable, then either a change to its nominal type

41

or a modification of its contents during state transformation constitutes a change.

Finally, if F is a named type, then a modification of F ’s definition (e.g., changing

a struct’s set of fields or their nominal types, or changing the nominal type that

underlies a typedef) constitutes a change. If there is no conflict, then the update π

could be applied before or after the event and the semantics of the overall program

trace would be the same. This makes intuitive sense: if we call a function G, but the

patch does not change G, then whether we apply the update before or after calling

G makes no difference; we will execute the same code for G. 2 On the other hand,

if we did update G, then applying the update before the call will result in calling

the new G, whereas applying the update after the call will result in calling the old

G.

We compute the set S of update points to consider as follows. We start with

the empty set S and analyze the trace. In addition, we maintain the index i of

the most recently reached update point. When analyzing the trace, if we reach a

conflicting event e we add i to our set of update points to test, since the semantics

of e could change if the update happens before it. On the other hand, if we reach

another update point i+1 without having found a conflicting event for update point

i, then we merely update the index to i+1; thus we have determined that i need not

be tested. The reason should be clear: none of the events between update points i

and i + 1 conflict with the patch, so applying the update at i would be equivalent

to applying it at i+ 1.

2Note that if G itself called some function that would be affected by the update, then this event
will also appear in the trace subsequent to the call for G, and it would serve as the source of a
conflict.

42

Let us reconsider the example at the start of this subsection. Running the

program will produce the following trace:

ν = update1; call(f); update2; call(g); update3; call(h)

Consider patch π1 in which only f is changed. Then the outcome of our minimization

algorithm will be the set S = {1}: only the first update point needs to be tested.

On the other hand, patch π2 changed all three functions, so all three calls conflict,

and thus each update point would be added to S, resulting in S = {1, 2, 3}.

We have formalized this minimization algorithm and proven it correct [30, 31].

In practice, the reductions for the three benchmark programs we assess in Section 2.5

were substantial: 95% of update points from OpenSSH, 96% of points from vsftpd,

and 87% of points from ngIRCd could be eliminated as redundant. The absolute

reduction in update tests was also significant: the initial number of update tests

was very large, with over 8M for OpenSSH, 3.9M for vsftpd, and 2.2M for ngIRCd.

Running the reduced test suite was time consuming, and would have been prohibitive

without reduction. For example, testing OpenSSH with the minimized test suite still

required approximately 600 CPU hours to complete. Extensive experimental results

assessing the effectiveness of update test minimization for our benchmark programs

are given in Appendix Section A.2.

43

Program
Source

Instrumenting/
updating
compiler

Tracing/
updateable
executable

Test 1

Trace 1

Test n

Trace n

...

...

Update point
minimization

Update
set 1

Update
set n...

(a) Instrumentation and trace gathering

Tracing/
updateable
executable

Test i

Patch j

Update
point k

Pass/
fail

Trace and
update set i

(b) Running a test case

Figure 2.2: DSU testing framework architecture

2.3.3 Implementation

We extended Ginseng to implement our testing framework. Our extended

implementation, called DSUTest, works in two phases, illustrated in Figure 2.2(a)

and (b), respectively. In the first phase, the DSUTest compiler instruments the

program to log relevant events to a trace file, and then processes each file to find the

minimal set of update points to test. In the second phase, the instrumented program

replays a given test once per update point identified during the test’s minimization,

44

and tabulates the results.

The implementation was largely straightforward, except for two wrinkles: han-

dling programs that fork child processes that themselves must be updated, and

coping with non-determinism that arises during tracing.

Handling multiple processes So far, we have assumed we could identify an up-

date point by its position in the trace. However, this approach does not accommo-

date server programs that fork independent subprocesses that could themselves be

updated. Even when forked processes do not communicate with each other in an

interesting way, their logging output will be interleaved in the shared log file, and

the particular interleaving can vary from run to run.

To compensate, we include the current process number when logging events,

and count update points relative to a particular process. Since OS-supplied process

identifiers vary between runs, we use our own process numbering scheme, being

careful to deterministically choose numbers that are unique among related processes.

We log the parent and child at each fork, and when we minimize a child process’s

trace, we may equate some of its initial update points with the parent’s update point

before the fork in the absence of intervening conflicting events in the child.

Non-determinism Our basic methodology presumes that tests are determinis-

tic. However, most programs, including our benchmark servers, exhibit some non-

determinism, and thus different runs of the same test may produce slightly different

traces. We have encountered non-determinism arising from three main causes. The

first is I/O handling by the OS. The main connection loops of our servers block

45

until they receive a command on a socket, carry out the appropriate behavior, and

then continue with the loop. Sometimes the server can wake unpredictably though

no I/O is available. In this case, the server “stutter steps” back to the top of the

loop, but in doing so may call functions or access data, affecting the trace. Second,

the exact timing of any signal handlers can vary between runs. Thus, trace events

that occur within a signal handler could be spliced into a trace at different positions

in different runs. Finally, some common functionality depends on the environment,

such as the current system time, random numbers, and (for vsftpd) process IDs and

memory addresses used as hash keys.

To keep update tests consistent with the initial trace, we check that each

update test trace matches the original trace up to the chosen update point, and

replay it if not. However, this approach fails to converge in the presence of highly

non-deterministic events, e.g., the timing of signal handling and, in some cases, the

occurrence of loop stutter steps. To compensate, we designate ignore regions of code

in which the test trace need not match the original and within which updates are

not tested. We still note accesses to changed code and data within ignore regions

to ensure that update points separated by a region are not erroneously equated.

For the programs in our experiments, we found that it was usually straight-

forward to designate the code to include in ignore regions. The process entailed

comparing several traces produced by executions of a system test. We found that

the traces would largely match, except in a few places, as mentioned above. We

would then look at the source code that produced the non-determinism and decide

whether enclosing the code in an ignore region might mask interesting update be-

46

havior. In some cases we would add an ignore region; in others, we elected to leave

in the non-determinism and rely on match-checking/replay to produce consistent

executions. In some cases, several rounds of experimentation were required to get

the ignore regions right. To be sure that our experiments are meaningful, we took

pains to minimize the size and use of these regions.

Note that we currently limit our focus to single-threaded programs, making no

attempt to account for non-determinism that would arise from thread scheduling. In

future work, we may explore integrating our framework with techniques for system-

atically testing under different thread schedules [47, 54] to handle multi-threading.

2.4 Experimental setup

This section describes our experimental setup: which applications we consid-

ered, which test suites we used, and how we ran the tests and gathered the data.

2.4.1 Test applications

We tested updates to three long-running server applications: OpenSSH, a

widely used SSH server; vsftpd, a popular FTP server; and ngIRCd, an IRC server.

Figure 2.3 summarizes the versions of each application that we consider. We largely

re-use the OpenSSH and vsftpd dynamic patches used by Neamtiu et al. in their

Ginseng work [52], with some changes that we describe in the next section. The

OpenSSH releases range from Oct. 2002 to Sept. 2005, and the vsftpd releases range

from July 2004 to Feb. 2008. We also developed patches for seven ngIRCd releases

47

Tests ∆ to next ver

Line Func.

Version LoC Ct. Cov. % Cov. % Sig Fun Type

O
p
e
n
S
S
H

0 3.5p1 46,735 75 46.1 61.4 3 98 5

1 3.6.1p1 48,459 75 46.6 62.0 0 6 0

2 3.6.1p2 48,473 76 46.4 61.4 5 238 11

3 3.7.1p1 50,448 91 46.2 61.8 0 18 0

4 3.7.1p2 50,460 91 46.3 61.8 13 172 10

5 3.8p1 51,822 104 44.4 59.3 0 24 1

6 3.8.1p1 51,838 104 44.4 59.4 6 257 10

7 3.9p1 53,260 104 44.8 59.3 4 179 12

8 4.0p1 56,068 105 44.5 59.9 0 72 3

9 4.1p1 56,104 104 44.4 60.1 10 157 7

10 4.2p1 57,294 (Not patched)

v
sf
tp

d

0 2.0.0 13,048 27 61.1 75.5 0 6 0

1 2.0.1 13,059 27 60.8 74.8 1 12 0

2 2.0.2pre2 13,114 27 60.7 74.7 0 21 0

3 2.0.2pre3 14,293 27 59.4 74.3 0 76 0

4 2.0.2 16,970 27 60.8 74.7 0 10 1

5 2.0.3 12,977 27 60.9 74.6 0 25 1

6 2.0.4 14,427 27 60.5 74.5 0 100 2

7 2.0.5 14,482 27 60.7 74.5 0 93 2

8 2.0.6 14,785 (Not patched)

n
g
ir
c
d

0 0.5.0 8,157 34 60.5 82.2 0 6 0

1 0.5.1 8,160 34 60.5 82.2 0 23 1

2 0.5.2 8,161 34 60.4 82.2 12 28 2

3 0.5.3 8,178 34 60.6 82.2 1 17 2

4 0.5.4 8,211 34 56.4 75.6 4 104 8

5 0.6.0 9,302 34 56.0 75.6 0 24 0

6 0.6.1 9,333 34 53.3 72.3 2 79 4

7 0.7.0 10,043 (Not patched)

Figure 2.3: Version, patch, and test information

48

that range from Sept. 2002 to May 2003.

The patches to OpenSSH vary considerably in scope, from bug-fix–only re-

leases (3.6.1p2, 3.8.1p1, 4.0p1) to ones that add significant functionality. Examples

of added features include: new ciphers (3.7.1p1, 4.2p1), limits to the number of

failed authentication attempts (3.9p1), and advance warning of account/password

expiration (4.0p1). Many bugs were fixed over this stretch including memory leaks

(3.7.1p1, 3.8p1) and buffer management errors (3.7.1p1). The Ginseng OpenSSH

patches include state and type transformation code (see below) to add data for new

features to tables of configuration options, ciphers, and command dispatch. Trans-

formation code is also used to account for changes to implementation details, e.g.,

copying over the values of global integers that were moved into a global struct

(2.6.1p2).

The patches to vsftpd also introduce many new features, which include: ter-

minating a session after too many failed logins (2.0.5), locking of files being up-

loaded (2.0.4), and receiving connection options (OPTS) prior to login (2.0.6).

These patches also contained a variety of bug-fixes, such as: corrected handling

of * (match anything) in commands (2.0.4) and not sending duplicate responses to

the “store unique” (STOU) command (2.0.6). State transformation for the vsftpd

Ginseng patches required initializing fields added to the structure representing a

session with a connected user and, as with OpenSSH, initialization of global tables

of configuration operations.

Likewise, the patches to ngIRCd added new features, such as support for IRC

commands, TIME to display the server time (0.6.0) and HELP to list available

49

commands (0.7.0), as well as new configuration options, e.g., a configurable limit to

the number of active connections (0.6.0). These patches also fixed bugs, including

buffer overflows (0.5.2), format string errors (0.5.2), and attempts to write on a

closed socket (0.5.1). The dynamic patches that we constructed performed trans-

formations like adjusting the lengths of buffers (0.5.2) and modifying the C repre-

sentation used to hold information about active connections (0.6.0). We also note

that we begin our streak of ngIRCd patches at version 0.5.0 because the 0.4.3→0.5.0

patch modified the loop structure of the program in a way that we could not support

with Ginseng (or any system with Ginseng-like semantics).

To make it easy to refer to the versions in the subsequent discussion, we

number them starting from 0. For each version, Figure 2.3 lists the total lines

of code (measured with SLOCCount [67]), the number of update tests (described

below), and the number of function signature changes, function body changes, and

named type changes (structs, unions and typedefs), that are required to update to

the next version. We provide the latter data as it is useful to help explain some of

the failures we found, described in the next section.

2.4.2 Test suites

To perform our testing experiments, we required test suites for each program’s

core functionality in order to generate update tests. We wrote test suites for vsftpd

and ngIRCd that cover all supported client operations, and reused the set of sys-

tem tests distributed with OpenSSH. Each of the test suites exercise core program

50

features and were developed independently of our evaluation.

We constructed update tests for OpenSSH from the suite of system tests that

are distributed with OpenSSH’s source code. Tests launch a server and communicate

with it via an ssh client, exercising various connection parameters and/or execut-

ing remote commands, and judging success/failure on return codes and command

output. We found that all supplied tests for version n also pass for version n+1.

Thus, we used the full suite of version n’s server tests to develop update tests for

the patch to version n+1.

We made two minor changes to OpenSSH’s test suite for efficiency. First,

we reduced the timeout period of the login-timeout test, which tests that a server

terminates its connection if a client takes too long to log in. Second, we split large

tests with orthogonal components (e.g., the try-ciphers test) into many smaller tests,

to reduce total testing time and permit parallel testing.

As vsftpd is not distributed with any system tests, we constructed 27 tests

for core FTP operations, including connecting, uploading, and downloading files in

binary and ASCII formats, and navigating remote FTP directories. These tests

apply to all versions of the server, and exercise all of the FTP operations supported

by version 2.0.0 of vsftpd.

We also developed a suite of 34 ngIRCd tests, exercising functionality includ-

ing connecting, sending and receiving chat messages, joining and communicating

through IRC channels, and querying the server for information such as the set of

connected users and available channels. These tests exercise all operations that a

client can perform when connected to version 0.5.0 of ngIRCd. All tests in this suite

51

apply to all tested versions of ngIRCd.

Figure 2.3 shows the single-version line and function coverage information for

each tested patch. Line coverage was in the mid-40% range for OpenSSH, and at

around 60% for most versions of vsftpd and ngIRCd. Function coverage was in the

low-60% range for OpenSSH, in the mid-70% range for vsftpd, and varied from the

low-70% range to the low-80% range for ngIRCd. While these figures indicate that

some functionality was not tested (e.g., the SSL capabilities of vsftpd, server-to-

server connections in ngIRCd, and error handling code generally), our test suites

exercise a large number of distinct operations. Even if our test suite does not

exhibit every possible DSU timing error for these patches, each set of update tests

induced by a system test provides a large set of common update points with which

we compare the three timing restrictions. In total, across a variety of real-world

patches and tests, we believe our results provide an extensive and realistic corpus

of update points for comparison (over 14M in all). Since our goal is to uncover any

errors that occur, the test scripts are written to check the correctness of as much

of the external behavior as possible, including return codes, response messages, and

other effects like downloaded files. Of course, more “blunt” criteria were also used,

like ensuring that the program did not crash.

2.4.3 Running tests and tabulating results

As mentioned earlier, updates can take effect at calls to DSU update(), where

these calls can be inserted manually or automatically. For our tests, we directed

52

DSUTest to automatically insert a call to DSU update() prior to each function call,

and systematically tested the outcome of performing an update at each of these

points, with all safety checks disabled. We refer to this set of dynamic update points

as All Pts. We used our test minimization algorithm (Section 2.3.2) to determine

which update tests should actually be performed and then scaled the results back

up to the full set of points. For each test execution, we recorded whether the test

passed or failed. We marked a run as failing if either the system test itself reports

a failure, if the server unexpectedly terminates during the test, or if the test times

out. We set the timeout for each run as the time required to gather the initial trace

plus 10 seconds.

Having determined the effects of updating at all possible points, we can assess

the availability and safety of the three timing control mechanisms by considering

which update tests would have been permitted by each restriction.

2.5 Experimental results

This section presents the results of our empirical evaluation of the AS and

CFS safety checks and manual update point identification. Our experiments seek

to evaluate the effectiveness of these timing restrictions in terms of their usability

(by considering the manual effort required to use them), safety (by judging their

ability to prevent incorrect behavior), and availability (by ensuring that updates are

allowed sufficiently often).

53

2.5.1 Usability

All three methods for controlling timing required some manual changes to

the applications. These fall into two categories: update point selection, and code

refactoring to ensure desired update semantics and availability.

For both AS and CFS, no programmer effort is required to select update

points; these are inserted automatically. For the manual approach, we followed the

recommended pattern of placing them at the outset of long-running event processing

loops [7, 52, 36]. Note that, while we have referred to such update-point placement

as “manually identified,” it may be possible to automate parts of this relatively

systematic procedure. Nevertheless, human judgment is probably necessary to dis-

tinguish event handling loops from other loops and to account for the program’s

update availability requirements. When preparing vsftpd and OpenSSH to support

updating, Neamtiu et al. chose to place a single DSU update() at the beginning of

the loop that accepts new connections [52]. We placed an additional update point

in each per-session command loop of the applications—some patches we consider

add new command handling, and we wanted to allow those to be updated during an

active session. OpenSSH provides two distinct command loops to handle different

ssh protocol versions, while vsftpd uses only one; so vsftpd contained a total of two

calls to DSU update(), while OpenSSH had three. For ngIRCd there is only one event

processing loop, so we placed a single point at its beginning. Following this pattern

was quite straightforward: the only work involved was identifying the main loops.

As mentioned in Section 2.2.2 we must manually extract each connection/-

54

command loop and its cleanup code into separate functions so that each connection

loop iteration executes the most recent code and cleans up the server state appro-

priately when it exits. This task is required for all three timing mechanisms, since

in Ginseng (and indeed in nearly all other DSU systems) updates take effect at

function calls. (UpStare would not require this effort at the outset, but as discussed

in Section 2.2.4, the programmer would have to do something similar when writing

her dynamic patch so as to properly map between versions’ execution contexts.)

AS required some additional manual effort. In particular, after some prelim-

inary testing, we discovered a significant problem with the AS check. Recall that

AS forbids updates to functions that are on the stack. It turns out that this re-

striction forbids all updates from being applied to OpenSSH, vsftpd, and ngIRCd,

because each update included changes to main, which is always on the stack. Even

excluding main, we found that AS very often forbids updates within the command

loop. Schematically, the command loop is reached through a chain of function calls,

starting from main, that look like the following:

1 void f () {
2 ... // startup code
3 g (); // call next function , ultimately reaching
4 // the function containing the main loop
5 }

In many cases updates change the “startup” code in the functions in this chain

(i.e., the code before the call to g() in the schematic), and thus AS would prevent

those updates from being applied during the command loop. However, patches

can be written to contain state transformation code to execute relevant changes

55

to the startup code that would have been executed if the program were started

from scratch. Therefore, we can (and did) reasonably relax the AS check by also

extracting the startup code, so that it is no longer on the stack when the loop

executes.3

CFS required additional effort as well, but of a different sort. To implement

CFS, Ginseng uses a static analysis. Unfortunately, this analysis is conservative,

and so it can overestimate the definitions that can be accessed concretely following

an update point, spuriously preventing updates that are actually safe to allow. This

problem can be overcome with some refactoring. For our experiments, the analysis

over-approximated the set of possible calls through a table of function pointers, and

as such spuriously forbids updates within the OpenSSH command loops. Therefore

we performed some additional code extractions so that updates within the command

loop would pass the CFS check.

Examining these costs in terms of code changed and programmer effort, the

manual approach comes out on top. In particular, while the programmer must iden-

tify manual update points, these exactly coincide with the positions at which loops

must be extracted, a task required by all three approaches. As such, the additional

work required by AS and CFS makes those approaches a bit more expensive, es-

pecially since they require some amount of testing or interaction with the tool to

figure out why certain updates are not being permitted.

3In actual fact, we opted to leave the code as-is and simulate the extraction: When we post-
process the All Pts data set to determine which updates would be allowed by AS, we permit
updates within the command loop even if they modify startup code in the functions leading up to
the loop.

56

Update All Pts CFS AS Manual

Total Failed Total Failed Total Failed Total Failed

O
p
e
n
S
S
H

0→1 580,871 19,715 68,044 0 35,314 0 566 0

1→2 705,322 0 705,322 0 587,578 0 630 0

2→3 638,720 306,965 75,307 1,688 20,902 4 568 0

3→4 772,198 0 772,198 0 638,803 0 783 0

4→5 773,086 565,681 110,633 609 21,343 380 782 0

5→6 878,235 10,703 130,000 0 111,950 0 860 0

6→7 879,668 163,333 96,183 44,461 44,278 110 859 0

7→8 918,717 11,380 80,070 1 100,854 1 850 0

8→9 973,364 3 261,885 0 61,724 0 868 0

9→10 933,514 357,919 121,337 24 61,051 0 833 0

Total 8,053,695 1,435,699 2,420,979 46,783 1,683,797 495 7,599 0

v
sf
tp

d

0→1 437,910 0 437,910 0 209,441 0 154 0

1→2 439,983 2,993 198,277 726 186,769 0 154 0

2→3 470,494 0 470,494 0 179,726 0 155 0

3→4 507,071 0 507,071 0 91,993 0 157 0

4→5 486,927 119,922 19,297 1,468 6,365 0 155 0

5→6 511,032 893 65,999 0 215,557 0 155 0

6→7 529,845 1,270 29,339 0 27,020 0 155 0

7→8 549,380 3,246 5,010 0 14,880 0 155 0

Total 3,932,642 128,324 1,733,397 2,194 931,751 0 1,240 0

n
g
IR

C
d

0→1 291,331 0 291,331 0 152,830 0 372 0

1→2 289,558 0 286,310 0 167,372 0 370 0

2→3 289,650 204 2,007 0 443 0 375 0

3→4 289,900 1,086 2,008 0 444 0 376 0

4→5 281,684 138,105 1,987 95 328 0 260 0

5→6 392,219 3 392,219 3 11,711 0 384 0

6→7 392,309 169,064 860 0 452 0 384 0

Total 2,226,651 308,462 976,722 98 333,580 0 2,521 0

Figure 2.4: Points allowed/test failures

2.5.2 Update Safety

Figure 2.4 summarizes the number of update points allowed under each timing

restriction for each patch to OpenSSH, vsftpd, and ngIRCd, and how many of those

points resulted in a failing test.

The All Pts column of Figure 2.4 lists over 1.4M failing update points out of

8M total (17.8%) for OpenSSH, over 128K failing runs out of 3.9M total (3.2%) for

vsftpd, and over 308K failing runs out of nearly 2.2M total (13.9%) for ngIRCd. This

is clear evidence that applying updates indiscriminately is extremely risky, and thus

57

timing restrictions are necessary.

The CFS, AS, and Manual columns of Figure 2.4 illustrate that all three timing

restrictions disallow the vast majority of failing updates; however both automatic

safety checks permit some unsafe updates. For all three programs, CFS allows the

most failures, but manages to reduce the total number of failures from 1.4M to

46.8K (96.7% reduction) for OpenSSH, 128K to 2.2K (98.3% reduction) for vsftpd,

and 308K to 98 (over 99.9% reduction) for ngIRCd. AS performed even better,

allowing only 495 failures (well over 99.9% reduction) for OpenSSH and no failures

for vsftpdand ngIRCd. Significantly, only Manual identification of update points

exhibited no test failures.

Looking at the data we can make several high-level observations about the rela-

tionship between the patches and their failures. Comparing program versions, we see

that updates containing few changes typically induce few failures. One particularly

striking observation is that patches containing no type or function signature changes

(OpenSSH patches 1→2 and 3→4, vsftpd patches 0→1, 2→3, and 3→4, and ngIRCd

patches 0→1 and 5→6) exhibited almost no failures (ngIRCdpatch 5→6 exhibited 3

failures). Since both AS and CFS ensure updates are type-safe, it seems likely that

a large portion of the failures are due to type errors. We manually examined several

of the failures reported in All Pts and found type safety violations to be the most

common cause. We also note that patches containing relatively few overall changes

had fewer failures, while the largest updates, such as OpenSSH patches 2→3, 4→5,

and 9→10, generally resulted in more failures. There are notable exceptions to this

general trend, such as vsftpd patch 4→5, which contained few changes but resulted

58

in the most vsftpd failures.

We investigate the causes of the failures that AS and CFS allow in Sec-

tion 2.5.4. Appendix A tabulates the relationship between failures (and successes)

allowed by both checks.

2.5.3 Update Availability

The most straightforward way to assess update availability to is measure which

timing restrictions permit the most update points. Returning to Figure 2.4 we see

that both AS and CFS allow many update points, though CFS is more permissive

than AS. Both CFS and AS allow several orders of magnitude more update points

than are allowed under Manual update point identification. When we consider

only the passing update points, as shown in the right half of Figure A.1, the trend

continues: In total, CFS permitted 68% of the passing update points, while AS

permitted 59% of them, a difference of about 2.1M update tests; roughly 55% of

passing update points are allowed by both. The manual approach admitted the

least number of update points: about 17.7K, or 0.14% of the passing update points.

Thus, across these three approaches to timing restriction, we observe that the lower

failure rates of manual point identification (and to a lesser extent AS) come at the

cost of fewer correct update points allowed.

Generally speaking, while allowing more correct update points is better than

fewer, it also matters where those update points occur during program execution.

In particular, since the majority of each server’s execution takes place within one

59

of a few long-running loops, it is crucial that a safe update point is reached on

almost every iteration of these loops. Otherwise, we may be unable to update a

program in a timely fashion. Assuming loops complete reasonably quickly, and the

time transitioning between loops is also quick, just updating in loops may well be

sufficient.

To get a more concrete idea how frequently updates would be permitted using

the manual identification strategy, we timed how long server processing took during

each iteration of the main loops for our subject programs (the first version of each)

throughout execution of our test suites. This provides an indication how long an

update might be delayed by server processing. For all three programs, we found

that most loop iterations required less than 1ms to complete. For both vsftpd and

ngIRCd, the longest loop iteration required less than 10ms (for vsftpd, this was the

time required to download a 900kB file locally). The longest overall delays were

OpenSSH tests that performed a sleep operation for 3 seconds on the server. Overall,

we believe the delays to updating that we observed would be unlikely to make any

difference in server operation. However, it is not difficult to imagine less trivial

delays, e.g., large downloads by a remote client could delay an update to vsftpd for

much longer. However, in this example, it is doubtful that updated functionality

would be needed during a download—and if it is, the developer might choose to

add a manual update point to the download loop. Based on this investigation, we

believe that the delay due to manual update point identification will usually be

inconsequential. When developers judge the delay to be significant, we suspect that

it can often be ameliorated by adding manual update points at the long-running

60

loops that cause the delay.

2.5.4 Failure examples

To help understand better where the automated checks fall short, we investi-

gated several of the failures that are still allowed by the CFS and AS checks.

Failures allowed by CFS The property that distinguishes CFS is that it will

execute code that is active at the time of update at the old version, provided

this execution will not violate type safety. However, as we mentioned in Sec-

tion sec:empirical:intro, type-safe executions may nevertheless fail, and indeed we

observed cases of this. We have found that sometimes executing a function (or part

of it) at the old version and then executing a related function at the new version may

induce a failure when the relationship between these two functions changes between

versions. We generically refer to these problems as version consistency errors [50],

since they involve executing the old version of some function and then executing the

new version of another where there is a relationship between the two.

One example occurred while testing upload operations against the 1→2 patch

to vsftpd. Figure 2.5 shows a simplified version of the relevant code. In this patch,

the code that sends the FTP return code 226 indicating a successful transfer was

moved from do file recv to handle upload common. If an update occurs after enter-

ing handle upload common, but before calling do file recv , then the new version of

do file recv executes and then returns to the old version of handle upload common—

and thus the server will never write the return code. Eventually this causes the

61

1 void

2 handle upload common() {
3 DSU update();

4 ret = do file recv ();

5 }
6 void do file recv () {
7 ... // receive file

8 if (ret == SUCCESS)

9 write (226, ”OK.”);

10 return ret ;

11 }

1 void

2 handle upload common() {
3 DSU update();

4 ret = do file recv ();

5 if (ret == SUCCESS)

6 write (226, ”OK.”);

7 }
8 void do file recv () {
9 ... // receive file

10 return ret ;

11 }

(a) Version 1 (b) Version 2

Figure 2.5: Skipped return code

transfer to time out and fail. Though the code executed following the update in

handle upload common is changed by the update, the execution is allowed by CFS

as the function signatures have not changed. On the other hand, AS precludes the

update (and thus, its failure) because handle upload common is active.

Failures allowed by CFS and AS While AS prevents the version-consistency

failure we just saw, it does not prevent such problems entirely. A particularly

interesting example occurs in the 4→5 patch of OpenSSH. This example involves a

problem that was not present in the original code, but was introduced via a code

extraction step that is needed to permit many other, safe updates to occur.

Figures 2.6(a) and (b) show a highly simplified version of the relevant code for

both versions. In version 4, a global pointer is initialized in the serverloop2 function,

prior to entry into the command loop. Version 5 moves this initialization earlier into

maincont (a function we added during code extraction), prior to calling serverloop2 .

(In the actual code, the call to serverloop2 is further down the call chain.)

CFS will always allow this update to be applied, because it involves no type

62

1 void maincont() {
2 DSU update();

3 serverloop2 ();

4 }
5 void serverloop2 () {
6 global ptr = init ;

7 tmp = (∗global ptr).pw;

8 }

1 void maincont() {
2 global ptr = init ;

3 DSU update();

4 serverloop2 ();

5 }
6 void serverloop2 () {
7 tmp = (∗global ptr).pw;

8 }

(a) Version 4 (b) Version 5

1 void maincont() {
2 extracted ();

3 DSU update();

4 serverloop2 ();

5 }
6 void extracted () {
7 }
8 void serverloop2 () {
9 global ptr = init ;

10 tmp = (∗global ptr).pw;

11 }

1 void maincont() {
2 extracted ();

3 DSU update();

4 serverloop2 ();

5 }
6 void extracted () {
7 global ptr = init ;

8 }
9 void serverloop2 () {

10 tmp = (∗global ptr).pw;

11 }

(c) Ver. 4, after extraction (d) Ver. 5, after extraction

Figure 2.6: Skipped initialization error

63

changes, and hence is type-safe. However, if the update indicated in Figure 2.6(a)

is taken, then global ptr will be uninitialized when dereferenced, leading to a crash.

On the other hand, AS should prevent this update, because maincont is changed by

the update and is active at the update point.

However, recall from Section 2.4 that we extracted the “startup” code in all

functions leading up to the command loops in our subject programs. Consider

Figures 2.6(c) and (d), which show the two versions of the program after code

extraction. Notice that the initialization of global ptr is moved from serverloop2 to

extracted . Thus, the update no longer changes maincont, and when the indicated

update point is triggered in our experiments, AS actually allows the update. This

example illustrates the tension between update availability and safety when applying

AS, and cases like these show the fragility of automatic update safety checks.

In general, AS is also unable to prevent any version consistency problems where

the old version of code involved is executed to completion and so is no longer on

the stack. We observed a set of failures where this occurs in OpenSSH patch 2→3.

This patch included a change to the format of a packet sent from the server to the

client and then later sent back to the server. Version 2 included only a sequence

number in the packet, while version 3 adds a count of blocks and packets. This

change is manifested through a modification to two functions: mm send keystate

and mm get keystate. If an update occurs after a call to mm send keystate but

before a call to mm get keystate, then the new version of mm get keystate is invoked

and is unable to parse a packet generated by the old code version, causing a test

failure.

64

These update points are allowed by CFS, which determines that the update

cannot violate type safety. AS will also allow these failures as this version consis-

tency error can occur at points when neither changed function is on the call stack.

Typically, state transformation can be used to ensure that program state is updated

to work with new code, but in this case the state of the packet is stored on the

client, where it cannot easily be changed when the server is updated.

It is unlikely that an automatic check could effectively avoid failures such as

these, since they are quite specific to the application. On the other hand, the manual

effort required to avoid these errors by placing a few update points in the program

seems quite manageable.

2.6 Limitations

Our study found that manual update point identification maximizes update

safety and requires the least developer effort while providing sufficient update avail-

ability. We now discuss several potential threats to the validity of the study.

• The test suites we used for OpenSSH, vsftpd, and ngIRCd do not exercise all

features of the applications, so we may be undercounting how many patches

introduce failures into the programs. However, we did endeavor to choose tests

that cover the core features of each application, and since we are interested in

what the application is doing when it might be updated, we think these tests

are representative. For this reason, we did not test cases where the program

goes wrong independently of DSU (e.g., error-handling code that only runs

65

prior to shutting the application).

• As we discussed in Section 2.3.1, our experiments used tests that exercise be-

havior that persists across the update (although the implementation of that

behavior may have changed). This introduces the risk that tests for added/re-

moved/changed behavior might have produced different results. However,

defining correct behavior in such cases is not straightforward whereas cor-

rectness for our tests was obvious.

• Update points within ignore regions are not tested, so failures due to such

points may be missed. We have checked for this possibility by minimizing the

size and use of these regions and inspecting their effects. This threat could be

completely mitigated by continuing to prevent updates within ignore regions

after the application is deployed.

• Our empirical study is limited to three applications and a hand-picked set of

updates to them, so the results may not generalize to other applications or

updates. This is always a danger with benchmarks. However, we have striven

to consider a lengthy streak of updates, and have chosen applications that fit

the general mold of single-threaded and/or multi-process server applications

written in C. Our results do not directly speak to multi-threaded applications,

but for these we note that the qualitative case to be made for manual update

points is much stronger than for single-threaded applications, since there are

many more application states the programmer must be concerned with [49].

66

• Our results may be specific to Ginseng, and may not generalize to other up-

dating systems. We think this threat is unlikely, as argued in Section 2.2.4.

• Our evaluation of the relative effort required to use each safety check is qual-

itative, rather than quantitative. This presents the risk that our effort com-

parisons may be biased or fail to generalize. However, it is critical to note

that the effort for AS and CFS was strictly greater than the effort for Manual

identification. Specifically, all three approaches require restructuring the code

around the event loops to work well, but AS and CFS often require additional

restructuring due to over-conservatism. In addition, AS and CFS require man-

ually reasoning about the correctness of updating at many more points than

Manual.

• There is some discretion involved in how a programmer may extract applica-

tion code, write transformer functions, etc. It is possible that different rea-

sonable choices would produce different results. We believe that our manual

modifications to these programs were dictated by the structure of the program

and that other developers would have chosen the same modifications.

2.7 Related work

While there is much prior work in developing DSU systems (much of which

is cited and/or described in Sections 2.2 and 5.5), this work represents the first

empirical study of the effectiveness of DSU controls to timing. Most prior work has

focused on evaluating different implementation mechanisms (e.g., based on compi-

67

lation or binary patching), and relatively little focus has been given to assessing the

effectiveness of timing mechanisms, particularly for ensuring that updates are safe.

Stoyle et al. [63] proved that CFS, and a flavor of AS, prevent type incorrect

executions, but did not evaluate whether the allowed executions may be behaviorally

incorrect, as was done in our study. As described in Section 2.2.4, most practical

DSU implementations use the AS check but do not evaluate its efficacy, or do so only

cursorily. Some systems, such as DyMOS [41] and POLUS [16], permit fine-grained

timing controls, but no means to evaluate their proper use is given. Our study is

the first to provide empirical data on the effectiveness of common timing controls

in a practical setting.

Our approach to generating update tests is related to Chess [47] and Multi-

threadedTC [54], which test multi-threaded programs by intelligently enumerating

a program’s potential thread schedules. At a high level, our technique for test mini-

mization is like partial order reduction in model checking [6], which is used to avoid

consideration of distinct program executions that result in the same states. Our

minimization algorithm on traces is inspired by Neamtiu et al.’s observation that

an update at two program points is equivalent if the activity between those two

points is unaffected by the patch [50]. Neamtiu et al. applied this observation to

a static analysis for implementing update transactions whose execution is version

consistent (i.e., consisting of behavior entirely attributable to only one version),

while we apply it to test case minimization. Our testing experiments use developer

annotations to identify sources of non-determinism in code and compares program

traces to be sure they match. Many other techniques have been proposed to provide

68

deterministic replay including approaches based on libraries [28, 59, 26] and virtual

machines [68, 9, 23].

The failure examples in Section 2.5.4 represent the first careful analysis of

failures allowed by common DSU systems. The notion of version consistency was

identified previously [50], but the relative frequency of version consistency errors was

never studied empirically. Indeed, many DSU systems make an implicit assumption

that version consistency errors are not a problem [38, 8, 5, 11].

2.8 Conclusions

We have presented an empirical evaluation of means to control the timing of

a dynamic update. Such means restrict the application of an update to select pro-

gram points. We evaluated the effectiveness of three ways in which these points

are selected in typical DSU systems: (a) manually, according to a simple design

pattern, (b) automatically, such that points do not occur in functions an update

changes (referred to as activeness safety), or (c) automatically, such that execution

in active code following the update will not access definitions whose type signature

has changed (referred to as con-freeness safety). Our evaluation is based on sys-

tematically testing long streaks of updates to OpenSSH, vsftpd, and ngIRCd, three

substantial, open source server applications. The systematic testing framework we

developed is noteworthy in that it evaluates the effect of an update applied at essen-

tially any point during a program’s execution despite actually testing only a small

fraction of such update points. We tabulated which update points are permitted by

69

which mechanism, and whether tests of updates at these points succeeded or failed.

We also assessed the programmer effort involved to use these mechanisms.

We found that all three timing mechanisms eliminated a substantial number

of failures, but only the manual approach eliminated all failures. Also, while the

automatic approaches allowed many more update points than the manual approach,

updates should still happen often enough even in that case. Finally, we found that

the programmer effort was highest for the automatic approaches, because programs

needed to be refactored slightly to be compatible with them. The manual approach

required programmers to identify update points, but this task was relatively easy,

compared to the needed refactoring.

70

Chapter 3

Specifying DSU Correctness

In this chapter, we present a new way of specifying correct DSU behavior in

terms of a program’s interactions with its clients. The aim of this work is to allow

developers to reason about program behavior under DSU as richly as they reason

about other program features.

In the previous chapter, we described an empirical study that used testing to

ascertain the correctness of dynamic updates. System tests are well-suited to this

task because they express execution properties from clients’ points of view, allowing

them to show that a dynamic update does not disrupt active sessions. For example,

suppose we wish to update a key-value store such as Redis [56] so that it uses a

different internal data structure. To ensure that this update’s transformation code

is correct, we could test that values inserted into the store by the client are still

present after it is dynamically updated.

However, one problem we faced in that work was the lack of a framework for

defining correctness for updates that modify program behavior. For this reason,

we limited our study to tests for external behavior that did not change between

versions. However, the ability to alter program semantics (e.g., fix bugs, modify

behavior, and add features) is an essential feature of DSU, and developers need to

evaluate the effects of such changes.

71

Another shortcoming of using tests as specifications is generality. Tests are

useful for checking that particular program behaviors are correct for specific input

values, but the tests themselves are not specifications—they are instantiations of

specifications.

We propose client-oriented specifications (or CO-specs for short) for specify-

ing correct behavior of event-driven programs and dynamic updates to those pro-

grams. CO-specs specify correct interactions between an event-driven program and

its clients in a more general way than tests (e.g., by requiring that behavior hold for

any input value or for any valid incoming program state). CO-specs may also refer

directly to the version that the server is running to describe correct behavior under

particular update timings.

We have identified three categories of DSU CO-specs that capture most proper-

ties of interest: backward-compatible CO-specs describe properties that are identical

in the old and new versions; post-update CO-specs describe properties that hold

after new features are added or bugs are fixed by an update; and conformable CO-

specs describe properties that are identical in the old and new versions, modulo

uniform changes to the external interface. CO-specs in these categories can often be

mechanically constructed from CO-specs written for either the old or new program

alone. Thus, if a programmer is inclined to specify the behavior of each program

version using CO-specs, there is little additional work to specify a dynamic update

between the two.

CO-specs are more flexible than generic notions of correctness because they

can define an update’s correctness as a collection of CO-specs from these categories

72

as well as others for behavior that does not match that of a single program version.

We describe prior approaches to DSU correctness in the next section and argue that

our approach captures their intent in Section 3.2.4.

In summary, this chapter proposes client-oriented specifications as a means to

specify general DSU correctness properties, and shows how single-version specifica-

tions can be adapted (often mechanically) to specify DSU behavior.

Author Contributions. We presented a paper about our specification approach

at VSTTE ’12 [32]. I was lead author on the paper and contributed, along with my

collaborators Stephen Magill, Michael Hicks, Nate Foster, and Jeffrey S. Foster, to

the development of CO-specs and our approach to applying them to DSU.

3.1 Prior work on update correctness

In this section, we review previously proposed notions of dynamic update

correctness and argue why they are insufficient for our purposes.

Kramer and Magee [40] proposed that updates are correct if they are observa-

tionally equivalent—i.e., if the updated program preserves all observable behaviors

of the old program. Bloom and Day [10] observed that, while intuitive, this is too

restrictive: an update may fix bugs or add new features.

To address the limitations of strict observational equivalence, Gupta et al. [29]

proposed reachability. This condition classifies an update as correct if, after the

update is applied, the program eventually reaches some state of the new program.

Reachability thus admits bugfixes, where the new state consists of the corrected

73

code and data, as well as feature additions, where the new state is the old data plus

the new code and any new data. Unfortunately, reachability is both too permissive

and too restrictive, as shown by the following example. Version 1.1.2 of the vsftpd

FTP server introduced a feature that limits the number of connections from a single

host. If we update a running vsftpd server, we would expect it to preserve any active

connections. But doing so violates reachability. If the number of connections from

a particular host exceeds the limit and these connections remain open indefinitely,

the server will never enter a reachable state of the new program. On the other hand,

reachability would allow an update that terminates all existing connections. This is

almost certainly not what we want—if we were willing to drop existing connections

we could just restart the server!

We believe that the flaw in all of these approaches is that they attempt to

define correctness in a completely general way. We think it makes more sense for

programmers to specify the behavior they expect as a collection of properties, just

as they might do for program features in the absence of DSU. Some properties

will apply to multiple versions of the program while other properties will change as

the program evolves. Because the goal of a dynamic update is to preserve active

processing and state, the properties should express the expected continuity that a

dynamic update is meant to provide to active clients. We therefore introduce client-

oriented specifications (CO-specs) to specify update properties that satisfy these

requirements.

74

1 int get(int k, int ∗v);

2 void set(int k, int v);

3

4 void arbitrary (int k1) {
5 int k2 = ?, v = ?;

6 if (k1 == k2 || ?)

7 get(k2,&v);

8 else set (k2,v);

9 }

10 void back compat spec() {
11 int k = ?, v in = ?;

12 int v out , found;

13 set(k, v in);

14 while(?) arbitrary (k);

15 found = get(k,&v out);

16 assert (found &&

17 v out == v in);

18 }

19 void post update spec() {
20 int k = ?;

21 int v out , found;

22 while(?) arbitrary (?);

23 assume(is updated);

24 delete (k);

25 found = get(k,&v out);

26 assert (!found);

27 }

(a) interface, helper (b) backward-compat. spec (c) post-update spec

Figure 3.1: Sample C specifications for key-value store.

3.2 Client-oriented specifications

We can think of a CO-spec as a kind of client program that opens connections,

sends messages, and asserts that the output received is correct. CO-specs resemble

tests, but certain elements of the test code are left abstract for generality (cf. Fig-

ure 3.1). For example, consider again reasoning about updates to a key-value store

such as Redis. A CO-spec might model a client that inserts a key-value pair into the

store and then looks up the key, checking that it maps to the correct value (even if a

dynamic update has occurred in the meantime). We can make such a CO-spec gen-

eral by leaving certain elements like the particular keys or values used unconstrained.

Similarly, we can allow arbitrary actions to be interleaved between the insert and

lookup. Such specifications capture essentially arbitrary client interactions with the

server.

In our experience writing CO-specs for updates, we have found that they often

fall into one of the three categories that we describe now.

75

3.2.1 Backward compatible CO-specs

Most programs satisfy many of the same properties before and after a dynamic

update—e.g., most of a server’s behavior that the client observes is unchanged be-

tween versions. For instance, in Chapter 2, we observed that OpenSSH’s test suite

only grew between versions—all of the old tests continued to hold as time went on.

This makes intuitive sense: many updates simply add new features, leaving the old

features (and properties about them) unchanged, or refactor the program to improve

non-functional aspects such as performance.

A backward-compatible CO-spec φ is one that holds for both the old and new

versions independently. Such CO-specs are immediately usable. For example, the

CO-spec in Figure 3.1(b) might apply to the old and new program version, and

thus it immediately applies to an updating execution; assuming the update could

take place during calls to get or set, we would verify that the update does not drop

mappings from the store.

3.2.2 Post-update CO-specs

Another common category of properties consists of those that apply to the new

version but not the old version. For example, suppose we added a delete feature

to the key-value store. Then the CO-spec in Figure 3.1(c) verifies that, after the

update, the feature is working properly. The CO-spec employs the flag is updated,

which is true after an update has taken place, to ensure that we are testing the new

or changed functionality after the update.

76

P [[φ]] = while ? do

assume (running p0);

if ? then f0(?) else if ? then f1(?) else . . .

;

assume (running p1);

φ

(a) Post-update function P [[·]]

C[[f(v)]] = if (running p0) then F [[f(v)]] else f(v)

if F [[f(v)]] defined

C[[f(v)]] = assume (running p1); f(v)

if F [[f(v)]] undefined

C[[let x = e in e′]] = let x = C[[e]] in C[[e′]]
C[[while e do e′]] = while C[[e]] do C[[e′]]
C[[φ′]] = φ′ for all other φ′

(b) Conformance function C[[·]]

φ C[[φ]]

let k = ? in

let x = ? in

set(d, k, x);

del(d, k);

let x′′ = get(d, k) in

assert (x′′ = error)

let k =? in

let x =? in

if (running p0) then set(k, v)

else set(d, k, v);

assume (running p1); del(d, k);

let x′′ = (if (running p0) then get(k)

else get(d, k)) in

assert (x′′ = error)

(c) Conforming new-version spec φ using C[[·]] defined in (b)

Figure 3.2: Transforming new-version specifications

77

Given a new-version CO-spec φ, we can mechanically transform it into a post-

update CO-spec φ′, as follows. We can prefix φ with an arbitrary sequence of calls

into the old program version, ending with the assumption assume (running p1) to

ensure the new version p1 is running when φ is checked. Here, and in what follows,

? denotes a non-deterministically chosen (integer) value, assume discards executions

for which its condition does not hold, assume marks executions where its condition

does not hold as failing, and running p is true if the program is currently running

the code from program version p; in this case p1 is the new version. Figure 3.2(a)

formally defines this transformation as the post-update CO-spec P [[φ]], where p0

defines the functions f0, f1, Thus, P [[φ]] can now be checked against an update

from p0 to p1.

Post-update CO-specs often make sense for updates that add features or fix

bugs. However, in general only CO-specs that assume the server could be in an

arbitrary initial state are suitable for the post-update transformation. As a trivial

example, the CO-spec assert (get(?) = error) explicitly checks that our key-value

store starts empty, and may not hold immediately after an update.

3.2.3 Conformable CO-specs

In some cases, updates change the behavior of existing features in a systematic

way. For example, the Cassandra distributed database [14] added namespaces to its

key-value store when moving from version 0.3 and 0.4. Thus, the new set of server

functions now take a namespace identifier as an initial parameter, i.e., set(d,k,v)

78

associates key k to value v in namespace d, and likewise get(d,k) retrieves the value

associated with k in namespace d. After making this change, the developer adapts

the existing single-version specifications for the old version to be compatible with

the new version. For example, the specification in Figure 3.1(b) would be adjusted

so that calls to get and set are made using some default namespace identifier.

To perform this update dynamically, the developer must write a patch whose

state transformation function adjusts the key-value store to be compatible with

the new code—e.g., any existing key-value pairs already in the server heap could be

placed in a default namespace. A reasonable choice is to add a default namespace to

each existing key-value pair. To test that this update provides reasonable continuity,

we can take a new-version specification φ that uses this default namespace and adapt

it so that it starts by using the old versions of the changed functions, and then

changes to the new version midstream.

We can mechanize this process as follows. We assume we are given a new

specification φ, as well as a meta-function F [[f(v)]] that takes a call to a new-version

function and transforms it to an appropriate call to an old-version function. As this

may not always be possible, F [[·]] may be partial. Then we can define the meta-

function C[[φ]] that conforms φ as shown in Figure 3.2(b). For our example, the

developer would define F [[get(d, k)]] = get(k) and F [[set(d, k, v)]] = set(k, v). Note

that F [[·]] bears some resemblance to Ajmani et al.’s future simulation objects [4],

which are bits of code added to old-version servers whose aim is to convert calls

from new clients to work with the old code. We are not deploying these conformance

functions on-line, but rather are using them to adjust existing specifications to check

79

proper continuity following an update.

Now suppose that the new version also adds a new function that permits a

client to delete an entry: del(d, k) removes any association with k from namespace

d. Since there is no analogue to del defined in the old version, there is no backward

translation for calls del(d, k) that could appear in new-version specifications. To

see how C[[·]] works in this case, consider the example given in Figure 3.2(c), which

shows φ and C[[φ]] side by side. Here, C[[φ]] permits updates to happen up until the

del call, at which point we assume the update has taken place. (This means that

the running p0 check that follows it will always be false.)

3.2.4 Relation to prior notions of correctness

These categories encompass prior notions of correctness. Backward compat-

ible specifications capture the spirit of Kramer and Magee’s condition, but apply

to individual, not all, behaviors. The combination of backward-compatible and

post-update specifications capture Bloom and Day’s notions of “future-only imple-

mentations” and “invisible extensions”—parts of a program whose semantics change

but not in a way that affects existing clients [10]. The combination of backward-

compatible and conformable specifications match ideas proposed by Ajmani et al. [4],

who studied dynamic updates for distributed systems and proposed mechanisms to

maintain continuity for clients of a particular version.

CO-specs can also be used to express the constraints intended by Gupta’s

reachability while side-stepping the problem that reachability can leave behavior

80

under-constrained. For example, for the vsftpd update mentioned above, the pro-

grammer can directly write a CO-spec that expresses what should happen to existing

client connections, e.g., whether all, some, or none should be preserved. In any of

these cases, the specified behavior does not exactly match either individual version

and does not fall into one of the categories above.

In summary, DSU CO-specs improve on these prior notions by allowing the

various program behaviors of a single dynamic update to be specified using different

classes of specs or specs for arbitrary behavior that does not fit into one of these

classes. The common cases of backward-compatible and post-update properties can

be handled easily, but the developer retains the power to specify other behaviors

when necessary. These advantages demonstrate the utility of a full specification

language over “one size fits all” notions of update correctness.

3.3 Applications of CO-specs

We expect CO-specs to be useful to DSU developers in a variety of ways

and their intended use will determine how they should be expressed. If develop-

ers only use CO-specs for communicating DSU requirements, then they could be

effectively expressed using natural language. Likewise, if they are to be checked

using testing, then they could be written in any programming language capable of

connecting to the updated program1. For testing, what we have written as function

calls to represent external requests to the updated program might, in fact, be calls

1The updated program would additionally need to externalize its updating status (e.g., to a
log) that the test for a CO-spec could reference.

81

to the program’s client API (or even raw network calls reaching the program). Non-

deterministically chosen values within a spec might translate to calls to random() or

uses of fixed, arbitrary values. Special library support could be used to hide some

of these details and support CO-specs as we have written here.

In the experiments we report in the Chapter 4, we aim to verify CO-specs

using off-the-shelf tools by applying the program merging transformation that we

define in Section 4.1. The checking tools that we apply in our experiments only verify

single programs in isolation, so we cannot literally write CO-specs as client programs

that communicate with a server being updated. To verify a CO-spec for a client-

server program using these tools we write the CO-spec in the same programming

language as the updated program, replace the server’s main function with the CO-

spec, and have the CO-spec call the relevant server functions directly. In doing

so, we are checking the server’s core functionality, but not its main loop or any

networking code. For example, suppose our key-value store implements functions

get and set to read and write mappings from the store, and the server’s main loop

would normally dispatch to these functions. We write our CO-specs to call the

functions directly as shown in Figure 3.1. If updates are permitted while executing

either get or set, verifying Figure 3.1(b) will establish that the assertions at the end

of the specification hold no matter when the update takes place.

82

Chapter 4

Verifying DSU CO-specs

This chapter present a methodology for verifying that an dynamic update

conforms to its CO-specs. Rather than propose a new verification algorithm that

accounts for the semantics of updating, we develop a novel program transforma-

tion that produces a program suitable for verification with off-the-shelf tools. Our

transformation merges an old program and an update into a program that simulates

running the program and applying the update at any allowable point. We formalize

our transformation and prove that it is correct (Section 4.1).

We have implemented our merging transformation for C programs and used

it in combination with two existing tools to verify CO-specs for several dynamic

updates (Section 4.2). We chose the symbolic executor Otter [57] and the verification

tool Thor [42] as they represent two ends of the design space: symbolic execution

is easy to use and scales reasonably well but is incomplete, while verification scales

less well but provides greater assurance. We wrote two synthetic benchmarks, a

key-value store and a multiset implementation, and designed dynamic patches for

them based on realistic changes (e.g., one change was inspired by an update to the

storage server Cassandra [14]). We also wrote dynamic patches for six releases of

Redis [56], a popular, open-source key-value store. We used the Redis code as-is,

and wrote the state transformation code ourselves. We wrote CO-specs for each of

83

these updates, similar to the ones described in the last chapter.

We checked all the benchmark programs with Otter and verified several proper-

ties of the synthetic updates using Thor. Both tools successfully uncovered bugs that

were intentionally and unintentionally introduced in the state transformation code.

The running time for verification of merged programs was roughly four times slower

than single-version checking. This slowdown was due to the additional branching

introduced by update points and the need to analyze the state transformer code.

As tools become faster and more effective, our approach will scale with them. This

work presents the first automated technique for verifying the behavioral correct-

ness of dynamic updates. It shows the effectiveness of merging-based verification on

practical examples, including Redis [56], a widely deployed server program.

Author Contributions. We presented a paper about our verification approach

at VSTTE ’12 [32]. I was lead author, implemented the merging strategy that

we applied, wrote the patches to Redis, and applied checking using Otter. My

collaborators, Stephen Magill, Michael Hicks, Nate Foster, Jeffrey S. Foster and I

designed our overall approach. The equivalence proof was performed by Michael

Hicks and Nate Foster and has been included in Appendix B for completeness.

Stephen Magill additionally applied our approach using the Thor verifier. We used

some code from the Ginseng DSU system created by Neamtiu et al. [51] to build the

merger.

84

Prog. p ::= p, (g, λx.e) | ·
Exprs. e ::= v | v1 op v2 | v1(v2) | ? | !v | ref v |

v1 := v2 | if v e1 e2 | update |
let x = e1 in e2 | assume v |
while e1 do e2 | assert v |
running p | error

Values v ::= x | l | i | (v1, v2) | ()
Locs. l ::= a | g

Variables x, y, z
Globals f, g
Operators op
Integers i, j
Addresses a
Heaps σ ∈ Locs ⇀ Values
Patch π ::= (p, e)
Labels ν ::= π | ε

〈p;σ; v1 op v2〉 ; 〈p;σ; v′〉 v′ = [[op]](v1, v2)
〈p;σ; ref v〉 ; 〈p;σ[a 7→ v]; a〉 a 6∈ dom(σ)
〈p;σ; !l〉 ; 〈p;σ; v〉 σ(l) = v and l 6∈ dom(p)
〈p;σ; a := v〉 ; 〈p;σ[a 7→ v]; v〉 a ∈ dom(σ)
〈p;σ; g := v〉 ; 〈p;σ[g 7→ v]; v〉 g 6∈ dom(p)
〈p;σ; ?〉 ; 〈p;σ; i〉 for some i
〈p;σ; let x = v in e〉 ; 〈p;σ; e[v/x]〉
〈p;σ; f(v)〉 ; 〈p;σ; e[v/x]〉 p(f) = λx.e
〈p;σ; if 0 e1 e2〉 ; 〈p;σ; e2〉
〈p;σ; if v e1 e2〉 ; 〈p;σ; e1〉 v 6= 0
〈p;σ; while e1 do e2〉 ; 〈p;σ; let x = e1 in

if x (e2; while e1 do e2) 0〉
x 6∈ fv(e1, e2)

〈p;σ; update〉 ; 〈p;σ; 0〉
〈p;σ; update〉 π; 〈pπ ;σ; (eπ ; 1)〉 π = (pπ , eπ)
〈p;σ; running p〉 ; 〈p;σ; 1〉
〈p;σ; running p′〉 ; 〈p;σ; 0〉 p′ 6= p
〈p;σ; assume v〉 ; 〈p;σ; v〉 v 6= 0
〈p;σ; assert v〉 ; 〈p;σ; v〉 v 6= 0
〈p;σ; assert 0〉 ; 〈p;σ; error〉
〈p;σ; let x = error in e〉; 〈p;σ; error〉

〈p;σ; e1〉
ν; 〈p′;σ′; e′1〉

〈p;σ; let x = e1 in e2〉
ν; 〈p′;σ′; let x = e′1 in e2〉

Figure 4.1: Syntax and semantics.

4.1 Verification via program merging

We verify CO-specs by merging an existing program version with its update,

so that the semantics of the merged program is equivalent to the updating program.

This section formalizes a semantics for dynamic updates to single-threaded pro-

grams, then defines the merging transformation and proves it correct with respect

to the semantics. Many server programs for which dynamic updating is useful are

single-threaded [36, 52, 34]. However, an important next step for this work would

be to adapt it to support updates to multi-threaded (and distributed) programs.

85

4.1.1 Syntax

The top of Figure 4.1 defines the syntax of a simple programming language sup-

porting dynamic updates. It is based on the Proteus dynamic update calculus [63],

and closely models the semantics of common DSU systems, including Ginseng [52]

(which is the foundation of our implementation), Ksplice [8], Jvolve [64], K42 [38],

DLpop [36], Dynamic ML [66] and Bracha’s DSU system [11].

A program p is a mapping from function names g to functions λx.e. A func-

tion body e is defined by a mostly standard core language with a few extensions

for updating. Our language contains a construct update, which indicates a position

where a dynamic update may take effect. To support writing specifications, the lan-

guage includes an expression ?, which represents a random integer, and expressions

assume v, assert v, and running p, all of whose semantics are discussed below. Ex-

pressions are in administrative normal (A-normal) form [25] to keep the semantics

simple—e.g., instead of e1 + e2, we write let x = e1 in let y = e2 in x+ y. We write

e1; e2 as shorthand for let x = e1 in e2, where x is fresh for e2.

4.1.2 Semantics

The semantics, given in the latter half of Figure 4.1, is written as a series of

small-step rewriting rules between configurations of the form 〈p;σ; e〉, which contain

the program p, its current heap σ, and the current expression e being evaluated. A

heap is a partial function from locations l to values v, and a location l is either a

(dynamically allocated) address a or a (static) global name g. Note that while the

86

language does not include closures, global names g are values, and so the language

does support C-style function pointers.1

Most of the operational semantics rules are straightforward. We write e[x/v]

for the capture-avoiding substitution of x with v in e. We assume that the semantics

of primitive operations op is defined by some mathematical function [[op]]; e.g., [[+]]

is the integer addition function. Loops are rewritten to conditionals, where in both

cases a non-zero guard is treated as true and zero is treated as false. Addresses a for

dynamically allocated memory must be allocated prior to assigning to them, whereas

a global variable g is created when it is first assigned to. This semantics allows state

transformation functions, described below, to define new global variables that are

accessible to an updated program.

The update command identifies a position in the program at which a dynamic

update may take place. Semantically, update non-deterministically transitions either

to 0, indicating that an update did not occur, or to 1 (eventually), indicating that a

dynamic update was available and was applied.2 In the case where an update occurs,

the transition arrow is labeled with the patch π; all other (unadorned) transitions

implicitly have label ε. A patch π is a pair (pπ, eπ) consisting of the new program

code (including unmodified functions) pπ and an expression eπ that transforms the

current heap as necessary, e.g., to update an existing data structure or add a new

one for compatibility with the new program pπ. In practice, eπ will be a call to a

1Variables names x are values so that we can use a simple grammar to enforce A-normal form.
The downside is that syntactically well-formed programs could pass around unbound variables and
store them in the heap. The ability to express such programs is immaterial to our modeling of
DSU, and could be easily ruled out with a simple static type system.

2In practice, update would be implemented by having the run-time system check for an update
and apply it if one is available [36].

87

function defined in pπ. The transformer expression eπ is placed in redex position

and is evaluated immediately; to avoid capture, non-global variables may not appear

free in eπ. Notice that an update that changes function f has no effect on running

instances of f since evaluation of their code began prior to the update taking place.

The placement of the update command has a strong influence on the seman-

tics of updates. Placing update pervasively throughout the code essentially models

asynchronous updates. Or, as prior work recommends [40, 4, 52, 34], we could insert

update selectively, e.g., at the end of each request-handling function or within the

request-handling loop, to make an update easier to reason about

The constructs running p, assume v, and assert v allow us to write specifica-

tions. The expression running p returns 1 if p is the program currently running

and 0 otherwise; i.e., we encode a program version as the program text itself. The

expression assert v returns v if it is non-zero, and error otherwise, which by the rule

for let propagates to the top level. Finally, the expression assume v returns v if v is

non-zero, and otherwise is stuck.

4.1.3 Program merging transformation

We now present our program merging transformation, which takes an old

program configuration 〈p, σ, e〉 and a patch π and yields a single merged program

configuration, written 〈p, σ, e〉 � π. We present the transformation formally and

then prove that the merged program is equivalent to the original program with the

patch applied dynamically.

88

[[p′, (g, λy.e)]]p,π ,
[[p′]]p,π, (g, λy.[[e]]p,π),
(gptr , λy.let z = isupd() in if z g′(y) g(y))

[[·]]p,π , (·, (isupd , λy.let z = !uflag in z > 0))

{|p′, (g, λy.e)|}p ,
{|p′|}p, (g′, λy.{|e|}p)

{| · |}p , ·

(a) Old version programs (b) New version programs

[[g]]p,π ,{
gptr if p(g) = λx.e

g otherwise

[[running p′′]]p,(pπ ,eπ) ,
let z = isupd() in z = 0 if p = p′′

isupd() if pπ = p′′

0 otherwise

[[update]]p,(pπ ,eπ) ,
let z = isupd() in
if z 0 (uflag := ?;

let z = isupd() in if z ({|e|}pπ ; 1) 0)

{|g|}p ,{
g′ if p(g) = λx.e

g otherwise

{|running p′′|}p ,{
1 if p = p′′

0 otherwise

{|update|}p , 0

(c) Old version expressions (d) New version expressions

〈p;σ; e〉 � π , 〈p, σ[uflag 7→ i], e〉
where (pπ, eπ) = π p = {|pπ|}pπ , [[p]]p,π e = [[e]]p,π

i ≤ 0 σ = {l 7→ [[v]]p,π | σ(l) = v}
(e) Merging a configuration and a patch

Figure 4.2: Merging transformation (partial).

The definition of 〈p, σ, e〉�π is given in Figure 4.2(e). It makes use of functions

[[·]]· and {| · |}·, defined in Figure 4.2(a)–(d). We present the interesting cases; the

remaining cases are translated structurally in the natural way. For simplicity, the

transformation assumes the updated program pπ does not delete any functions in p.

Deletion of function f can be modeled by a new version of f with the same signature

as the original and the body assert (0).

The merging transformation renames each new-version function from g to g′,

and changes all new-version code to call g′ instead of g (the first rewrite rules in

89

Figure 4.2(b) and (d), respectively). For each old-version function g, it generates

a new function gptr whose body conditionally calls the old or new version of g,

depending on whether an update has occurred (Figure 4.2(a)). The transformation

introduces a global variable uflag (Figure 4.2(e)) and a function isupd to keep track

of whether the update has taken place (bottom of Figure 4.2(a)). All calls to g in

the old version are rewritten to call gptr instead (top of Figure 4.2(c)).

The transformation rewrites occurrences of update in old-version code into

expressions that check whether uflag is positive (bottom of Figure 4.2(c)). If it

is, then the update has already taken place, so there is nothing to do. Otherwise,

the transformation sets uflag to ?, which simulates a non-deterministic choice of

whether to apply the update. If uflag now has a positive value, the update path was

chosen, so the transformation executes the developer-provided state transformation

e, which must also be transformed according to {| · |}· to properly reference functions

in the new program. While this transformation results in multiple occurrences of

the expression e, in practice e is a call to a state transformation function defined in

the new version and so does not significantly increase code size.

Version tests running p are translated into calls to isupd in the old version, and

to appropriate constants in the new code (since we know the update has occurred

if new code is running).

While we focus on merging a program with a single update, the merging strat-

egy can be readily generalized to multiple updates. To see the basic idea, consider

a process 〈p, σ, e〉 and a sequence of two updates π1 and π2. We would first merge

〈p, σ, e〉 and π1, producing 〈p, σ, e〉 � π1. Then we would merge the result with π2,

90

essentially producing (〈p, σ, e〉 � π1) � π2. To do this properly requires some small

changes to the transformation. First, we need additional bookkeeping information

to be passed between iterations of the transformation, e.g., instead of just g and

g′ as the old and new function names, we would have g0, g1, g2, etc., and likewise

uflag becomes uflag1, uflag2, etc. (Interestingly, no changes are needed to transla-

tions of running p, essentially since functions that have not changed are redundantly

included in the patch and distinguished by the transformation.) Second, we must

change {|update|}p to be the identity, i.e., to leave the new version’s update keyword

in place, so that it can be used to update to the next version to be merged.

With a more general merging transformation we can prove properties about

multiple updates. For backward-compatible CO-specs there is no additional work

since they are the same across all versions. For post-update specifications, we could

generalize the transformation in Figure 3.2(a) so that the assumption in the loop

is assume (running p0 ∨ · · · ∨ running pn−1) and the assumption after the loop is

assume (running pn), where the post-update CO-spec spans versions p0 through

pn. We can make a similar generalization of the transformation in Figure 3.2(c)

(composing multiple conformance functions together).

4.1.4 Equivalence

We can now prove that an update to an old-program configuration is correct if

and only if the result of merging that configuration and the update is correct. This

result lets us use stock verification tools to check properties of dynamic updates

91

using the merged program, which simulates updating, instead of having to develop

new tools or extend existing ones.

We say that a program and a sequence of updates are correct if evaluation

never reaches error (i.e., if there are no assertion failures). More formally:

Definition 1 (Correctness). A configuration 〈p;σ; e〉 and an update π are correct,

written |= 〈p;σ; e〉, π, if and only if for all p′, σ′, e′ it is the case that 〈p;σ; e〉 π; ∗

〈p′;σ′; e′〉 implies e′ is not error.

The expression e at startup could be a call to an entry-point function (i.e.,

main). A correct program need not apply π, though no other update may occur.

When no update is permitted we write |= 〈p;σ; e〉.

Theorem 1 (Equivalence). For all p, σ, e, π such that dom(pπ) ⊇ dom(p) we have

that |= 〈p;σ; e〉, π if and only if |= (〈p, σ, e〉 � π).

The proof is by bisimulation and is given in Appendix B along with proof

sketches of key supporting lemmas.

Observe that type errors result in stuck programs, e.g., !1 does not reduce,

while the above theorem speaks only about reductions to error. We have chosen

not to consider type safety in the formal system to keep things simple; adding

types, we could appeal to standard techniques [63, 64, 66, 22]. Our implementation

catches type errors that could arise due to a dynamic update by transforming them

into assertion violations. In particular, we rename functions and global variables

whose type has changed prior to merging, essentially modeling the change as a

deletion of one variable and the addition of another. Deleted functions are modeled

92

as mentioned above, and deleted global variables are essentially assigned the error

expression. Thus, any old code that accesses a stale definition post-update (including

one with a changed type) fails with an assertion violation.

4.2 Experiments

To evaluate our approach to verification, we have implemented the merging

transformation for C programs, with the additional work to handle C being largely

routine. We merged several programs and dynamic updates and then checked the

merged programs against a range of CO-specs. We analyzed the merged programs

using two different tools: the symbolic executor Otter, developed by Ma et al. [57],

and the verification tool Thor, developed by Magill et al. [43]. The tools represent a

tradeoff: Otter is easier to use and more scalable but provides incomplete assurance,

while Thor can guarantee correctness but is less scalable and requires more manual

effort. Overall, both tools proved useful. Otter successfully checked all the COs-

specs we tried, generally in less than one minute. Thor was able to fully verify several

updates, though running times were longer. Both tools found bugs in updates,

including mistakes we introduced inadvertently. On average, verification of merged

code took four times longer than verification of a single version. Since our approach

is independent of the verification tool used, its performance and effectiveness will

improve as advances are made in verification technology.

93

4.2.1 Programs

We ran Otter and Thor on updates to three target programs. The first two are

small, synthetic examples: a multiset server, which maintains a multiset of integer

values, and a key-value store. For each program, we also developed a number of

updates inspired by common program changes such as memory and performance

optimizations and semantic changes observed in real-world systems such as Cassan-

dra [14]. The third program we considered is Redis [56], a widely used open-source

key-value server. At roughly 12k lines of C code, Redis is significantly larger that

our synthetic examples, and is currently not tractable for Thor. We developed six

dynamic patches for Redis that update between each pair of consecutive versions

from 1.3.6 through 1.3.12, and we also wrote a set of CO-specs that describe basic

correctness properties of the updates.

As we mention in Section 3.3, CO-specs are joined with the server code and

the main function invokes the CO-spec after it initializes server data structures. The

new-version source code includes the state transformation code, which is identified

by a distinguished function name recognized by the merger.

Synthetic Examples. Figure 4.3 lists the synthetic benchmarks we constructed for

our multiset and key-value store programs. Each grouping of rows shows a dynamic

update and a list of CO-specs we wrote for that update. The multiset program

has routines to add and delete elements and to test membership. The updates

both change to a set semantics, where duplicate elements are disallowed. The first

(correct) state transformer removes all duplicates from a linked list that maintains

94

Program – change Thor time (s) Otter time (s)
CO-specs old new mrg old new mrg
Multiset – disallow duplicates (correct)

mem-memb 90.11 121.27 1003.22 6.29 9.72 49.37
add-memb 64.17 89.71 537.01 3.26 10.48 50.84
add-add-del-setg – 4.04
Multiset – disallow duplicates (broken)

mem-memb 25.33 57.78 133.68 6.28 9.77 42.5
add-memb 15.68 33.50 80.07 3.25 9.94 33.53
add-add-del-set-failsg 122.71 5.49
Key-value store – bug fix

put-getb 27.01 26.13 41.62 3.28 2.54 18.42
new-def-shadowsg – 4.19
new-def-shadows-bc-failsb 38.97 41.52 117.56 3.88 2.06 19.03
Key-value store – added namespaces

new-def-shadows-postp – – 1.02 2.99
put-getp – – 18.32 228.69
new-def-shadows-confc – – – 1.19 1.93 7.53
put-get-confc – – – 4.23 7.09 61.41
Key-value store – optimization (broken)

put-get-backb 42.133 – – 2.08 11.01 56.44
new-def-shadows-backb 15.344 – – 2.14 11.33 56.03
Key-value store – optimization (correct)

put-get-backb 41.87 – – 2.07 10.87 69.31
new-def-shadows-backb 15.72 – – 2.14 10.96 68.95
b – backward compatible p – post update c – conformable g – general
A dash indicates that the example could not be verified.

Figure 4.3: Synthetic examples.

the current multiset. The second update has a broken state transformer that fails

to remove duplicates.

The key-value store program also implements its store with a linked list. The

updates are inspired by code changes we have seen in practice and include a bug fix

(bindings could not be overwritten), a feature addition (adding namespaces), and an

optimization (removing overwritten bindings), where for this last update the state

transformer was broken at first.

The properties span all the categories of CO-specs that we outlined in Sec-

tion 3.2. Backward compatible specs, such as add-mem, check core functionality

that does not change between versions (add actually adds elements, delete removes

elements, etc.). Post-update and general CO-specs are used to check that function-

ality does change, but only in expected ways. For example, new-def-shadows in the

95

bug-fix update checks that, following the update, new key-value bindings properly

overwrite old bindings (which was not true in the old version).

We wrote specifications to be as general as possible. For example, add-mem,

on the second line of the table in Figure 4.3, checks that after an element is added,

it is reported as present after an arbitrary sequence of function calls that does not

include delete (). The code for our synthetic examples and their associated CO-specs

is available on-line.

Thor. We ran Thor on a 2.8GHz Intel Core 2 Duo with 4GB of memory. The

average slowdown was 3.9 times, and ranged from 1.5 times to 8.3 times. Much

of the slowdown derived from per-update-point analysis of the state transformation

function; tools that compute procedure summaries or otherwise support modular

verification would likely do better. Thor could not verify all our examples, owing to

complex state transformation code and CO-specs that specify very precise proper-

ties. For example, for the multiset-to-set example, Thor was able to prove that the

state transformer preserves list membership (used to verify mem-mem), but not that

it leaves at most one copy of any element in the list (needed for add-add-del-set).

The CO-specs we considered lie at the boundary of what is possible for current

verification technology. To verify all our examples requires a robust treatment of

pointer manipulation, integer arithmetic, and reasoning about collections. We are

not aware of any tools that currently offer such a combination. However, we hope

that the demonstrated utility of such specifications will help inspire further research

in this area.

96

4.3 Related work

This work represents the first approach for automatically verifying the cor-

rectness of dynamic software updates. As mentioned in the introduction, prior

automated analyses focus on safety properties like type safety [63], rather than cor-

rectness. As described in Section 3.2.4, our notion of client-oriented specifications

captures and extends prior notions of update correctness.

Our verification methodology generalizes our prior work [30, 34] on systemati-

cally testing dynamic software updates that we used for the empirical study in Chap-

ter 2. Given tests that pass for both the old and new versions, the tool tests every

possible updating execution. This approach only supported backward-compatible

properties and does not extend to general properties (e.g., with non-deterministically

chosen operations or values).

The merging transformation proposed here was inspired by KISS [55], a tool

that transforms multi-threaded programs into single-threaded programs that fix

the timing of context switches. This allows them to be analyzed by non–thread-

aware tools, just as our merging transformation makes dynamic patches palatable

to analysis tools that are not DSU-aware.

An alternative technique for verifying dynamic updates, explored by Charl-

ton et al. [15], uses a Hoare logic to prove that programs and updates satisfy

specifications expressed as pre/post-conditions. We find CO-specs preferable to

pre/post-conditions because they require less manual effort to verify, and because

they naturally express rich properties that span multiple server commands.

97

Chapter 5

Kitsune: Efficient, General-purpose DSU for C

In Chapter 2, we performed an empirical evaluation of the timing restrictions

used by transparent DSU systems. Over the course of that work, we identified a

set of problems associated with supporting DSU transparently: automatic timing

restrictions are insufficient to ensure correctness; programs must often be refactored

in anticipation of certain changes; program evolution is restricted; and manual rea-

soning about update behavior may be difficult. An additional, crucial problem

is that DSU systems for C make trade-offs that are incompatible with two main

reasons developers choose to use C: performance and control over low-level data

representations.

In this chapter, we present Kitsune, a DSU system for C programs that solves

each of these problem by having the developer implement DSU as a program feature.

Implementation as a program feature means that the developer modifies the program

in simple ways to indicate what should happen during a dynamic update. Kitsune

is the first DSU system to solve all of these problems (we compare against related

systems in Section 5.5.)

Kitsune is able to solve the problems we have identified due to three key design

and implementation choices. First, Kitsune gives the programmer explicit control

over the updating process, which is reflected as three kinds of additions to the orig-

98

inal program: (1) a handful of calls to kitsune update(...), placed at the start of

one or more of the program’s long-running loops, to specify update points at which

dynamic updates may take effect; (2) code to initiate data migration, which is the

transformation of old global state to be compatible with the new program version;

and (3) code to perform control migration, which redirects execution to the corre-

sponding update point in the new version. In our experience, these code additions

are small (see below) and fairly easy to write because of Kitsune’s simple seman-

tics. This approach makes developer reasoning easier because there are fewer update

points to reason about and update behavior is manifest in the code. (Section 5.1

explains Kitsune’s use in detail.)

Second, Kitsune uses entirely standard compilation. After a translation pass

to add some boilerplate calls to the Kitsune runtime, a Kitsune program is compiled

and linked to form a shared object file (via a simple Makefile change). A Kitsune

program is launched using a driver program that loads the first version’s shared

object file and transfers control to it. When a dynamic update becomes available

(only at specific program points, as discussed shortly), the program longjmps back

to the driver routine, which loads the new application version and calls the new

version’s main function. Thus, application code is updated all at once, and as a

consequence, Kitsune places no restrictions on coding idioms or data representations;

it allows the application’s internal structure to be changed arbitrarily from one

version to another; and it does not inhibit any compiler optimizations.

Finally, Kitsune includes a novel tool called xfgen that makes it easy to write

code to migrate and transform old program state to be compatible with a new

99

program version. The input to xfgen is a series of type and variable transformation

specifications, one per changed type or variable, that describe in intuitive notation

how to translate data from the old to new format. The output of xfgen is C code

that performs the transformations wherever they are needed: at a high level, the

generated transformers operate analogously to a tracing garbage collector, traversing

the heap starting at global variables and locals marked by the programmer. When

the traversal reaches data requiring transformation, it allocates new memory cells

and initializes them according to the actions in the transformers, taking care to

maintain the shape of the data structures. The old version’s copies of any migrated

data structures are freed once the update is complete. Kitsune’s approach is easy

to use, relative to other DSU systems; it adds no overhead during the non-updating

portion of execution, and it does not change data layout. (Section 5.2 describes

xfgen.)

We have implemented Kitsune and used it to update three single-threaded

programs—vsftpd, Redis, and Tor—and two multi-threaded programs—memcached

and icecast. For each application, we considered from three months’ to three years’

worth of updates. We found that the number of code changes we needed to make

for Kitsune was generally small, between 53 and 159 LoC total, across all versions

of a program. The change count is basically stable, and not generally related to the

application size, e.g., 134 LoC for 16 KLoC icecast vs. 159 LoC for 76 KLoC Tor.

xfgen was also very effective, allowing us to write state transformers with similarly

small specifications consisting of between 27 and 200 lines in total; the size here

depends on the number of data structure changes across an application’s streak.

100

We tested that all programs behaved correctly under our updates.

We measured Kitsune’s performance overhead, and found it ranged from -2.2%

to +1.8%, which is in the noise on modern environments [48]. We also found that the

time required to perform an update was typically less than 40ms; icecast’s longer,

∼1s update time is due to internal timing constraints and does not adversely affect

the application. (See Section 5.3 for full details.)

Considered as a whole, we think that Kitsune’s design meshes well with C

without limiting the form of dynamic updates, and without imposing an undue

burden on DSU programmers. In short, we find Kitsune to be the most flexible,

efficient, and easy to use DSU system for C developed to date.

Author Contributions. We presented a paper about a prior system, Ekiden,

that influenced Kitsune’s design at HotSWUp ’11 [35], and a paper about Kitsune

is currently under review. The author of this dissertation is lead author on both

papers, was the main designer and implementer of Kitsune (and Ekiden), modi-

fied several of the benchmark programs to work under Kitsune, and performed all

benchmarking. Edward K. Smith contributed to the implementation of Kitsune and

implemented Kitsune support for Tor. Michail Denchev adapted our Ekiden vsftpd

patches to work with Kitune and Jonathan Turpie helped modify Memcached to

support Kitsune. Karla Saur helped implement performance benchmarks.

101

.c
.c

.c
kitc gcc -c

-fPIC
-fvis...=

gcc
-sharedxfgen

.c
.c

.ts

.xf

.c
.c

.c

.c
.c

.o

.so

st.c rt.a

.c
.c

.ts

(old)

Figure 5.1: Kitsune build chain

5.1 Kitsune

The process of building a Kitsune application is illustrated in Figure 5.1. There

are two inputs provided by the programmer: the main application’s .c source files

(upper left) and an xfgen . xf specification file for transforming the running state

during an update (not needed for the initial version). The source files are processed

by the Kitsune compiler kitc to add some boilerplate calls derived from programmer

annotations. Rather than compile and link the resulting .c files to a standalone

executable, these files are compiled to be position independent (using gcc’s -fPIC

flag) and linked, along with the Kitsune runtime system rt .a, into a shared object

library app.so. (For the best performance we also use gcc’s -fvisibility=hidden option

to prevent application symbols from being exported, since exported symbols incur

heavy overhead when called.) When building an updating version of the program,

the . xf file is compiled by xfgen to C code and linked in as well. Processing the . xf

requires . ts type summary files produced by kitc for the old and current versions

(described in detail in Section 5.2.1).

The first version of a program is started by executing kitsune app.so args...,

102

where args... are the program’s usual command-line arguments. The kitsune exe-

cutable is Kitsune’s application-independent driver routine, which dynamically loads

the shared library and then performs some initialization. Among other things, the

driver installs a signal handler for SIGUSR2 1 which is later used to signal that

an update is available. The driver also calls setjmp, and then transfers control to

the (globally visible) kitsune init function defined in rt .a; this function performs

some setup and calls the application’s (non-exported) main function. The kitsune

driver is only 110 lines of C code and is the only part of a program that cannot be

dynamically updated.

When SIGUSR2 is received, the handler sets a global flag. As discussed in more

detail below, the running program is expected to call the function kitsune update

at points at which an update is permitted to take effect; such calls are dubbed

update points [36]. The kitsune update function will notice the flag has been set

and call longjmp to return to the driver, which then dynamically loads the new

program version’s shared object library. Since the longjmp call will reset the stack,

the kitsune update function copies any local variables marked for migration to the

heap before jumping back to the driver. Thus, just after an update, the old version’s

full state (e.g., its heap, open files and connections, process/parent id, etc.) is still

available. At this point, kitsune init is invoked to start the new version.

The new program version now must do two things: (1) migrate and transform

the old version’s data, and (2) direct control to a point in the new version that is

1The exact method for signaling that an update is available is left to the discretion of the
programmer. Kitsune provides support for SIGUSR2 by default, which worked well in most cases.
In our experiments, we only used a different mechanism for Tor, for which we opted to extend its
existing control framework to initiate updates.

103

equivalent to the point at which the update took place in the old version. We call

these activities data migration and control migration, respectively. The programmer

directs the control flow and the timing of state transformation using a few judicious

calls into the Kitsune runtime system, and defines state transformation code itself

using xfgen.

We next illustrate basic data and control migration using an example and

consider xfgen in Section 5.2.

5.1.1 Data and Control Migration

The C program in Figure 5.2 implements a simple key-value server. Clients

connect to the server and send either get i to get the integer value associated

with index i, or set i n to associate index i with value n. In the figure we have

highlighted the extra code we needed to perform data and control migration. Let us

ignore the highlighted code for the moment so that we can discuss the program’s core

operation. Execution of the program begins at main() on line 32. After defining some

local variables, we call load config () (code not shown) to initialize the three global

configuration variables defined on line 2 and then allocate an empty mapping. Then

we call setup connection () (code also not shown) to begin listening on main sock,

and enter the main loop on lines 43–47. Here we simply wait for a connection and

then call client loop () to handle that connection.

The client loop () function repeatedly reads a command from the socket; finds

the handler (a function pointer) for that command in dispatch tab (created on

104

1 /∗ config variables set by load config () (code not shown) ∗/
2 int config foo , config bar , config size ; /∗ automigrated ∗/
3

4 typedef int data;

5 data ∗mapping; /∗ automigrated ∗/
6

7 int op count=0; /∗ automigrated ∗/
8 struct dispatch item

9 { char ∗key; dispatch fn ∗fun; } dispatch tab

10 attribute ((kitsune no automigrate))

11 = { {”get”, &handle get }, {”set”, &handle set } };
12

13 void handle set(int sock) {
14 key = recv int(sock);

15 val = recv int(sock);

16 mapping[key] = val;

17 send response(”%d> ok”, op count);

18 }
19 void handle get(int sock) {
20 key = recv int(sock);

21 send response(”%d> %d=%d”, op count, key, mapping[key]);

22 }
23 void client loop(int sock) {
24 while (1) {
25 kitsune update(”client”);

26 char ∗cmd = read from socket(sock);

27 if (! cmd) break;

28 dispatch fn ∗cmd handler = lookup(dispatch tab, cmd);

29 op count++;

30 cmd handler(sock); }
31 }
32 int main() attribute ((kitsune note locals)) {
33 int main sock, client sock ;

34 kitsune do automigrate();

35 if (! kitsune is updating ()) {
36 load config ();

37 mapping = malloc(config size ∗ sizeof(data)); }
38 if (!MIGRATE LOCAL(main sock))

39 main sock = setup connection();

40 if (kitsune is updating from(” client ”)) {
41 MIGRATE LOCAL(client sock);

42 client loop (client sock); }
43 while (1) {
44 kitsune update(”main”);

45 client sock = get connection(main sock);

46 client loop (client sock); }
47 }

Figure 5.2: Example; Kitsune additions highlighted

lines 9–11); increments a global counter op count that tracks the number of re-

quests; and then dispatches to handle set or handle get. If there was no command

received from the socket, then we exit the loop on line 27.

105

While this code is very simple, many server programs share this same general

structure—a main loop that listens for connections; a client loop that dispatches

different commands; and handler functions that implement those commands. Now

consider the highlighted code, which implements Kitsune control and data migra-

tion.2

Migrating control. A dynamic update is initiated when the program calls kitsune -

update(name), where name identifies the update point, which can be queried when

the new program version is launched. In Figure 5.2 we have added update points

on lines 25 and 44, i.e., we have one update point to start each long-running loop.

These are good choices for update points because the program is quiescent, i.e., in

between events, when there is less in-flight state [51, 34].

The kitsune driver will load the new version and call its main function, so

the programmer must write code to direct execution back to the equivalent spot

in the new program. This code will likely include calls to kitsune is updating (),

which returns true if the program is being run as a dynamic update (or its variant

kitsune is updating from (name) for updates triggered at that named update point),

to distinguish update resumption from normal startup.

In Figure 5.2, the conditional on line 35 prevents the configuration from being

reloaded and mapping from being reallocated when run as an update, since in this

case we will migrate that state from the old program version instead (discussed

below). If the update was initiated from the client loop, then on line 40 we migrate

2We should emphasize that because this example is tiny, the amount of highlighted code is
disproportionately large (see Section 5.3).

106

client sock from the previous version and then go straight to that loop. Notice that

when we return from this call, we will enter the beginning of the main loop, just as

if we had returned from the call on line 46. Also notice we do not specifically test

for an update from the ”main” update point, as in that case the control flow of the

program naturally falls through to that update point.

Migrating state. When a Kitsune program starts as an update, critical state from

the previous version of the program remains available in memory so it can migrate

to the new program version. The programmer is responsible for identifying what

state must be migrated, and specifying how that migration is to take place.

The first step is to identify the global and local variables that should be

migrated. All global variables are migrated by default (that is, “automigrated”),

and the programmer can identify any exceptions. For our example, migration oc-

curs for the configuration variables on line 2 and for mapping on line 5. We use

the kitsune no automigrate attribute on line 10 to prevent dispatch tab from be-

ing automigrated, so that it is initialized normally—with pointers to new version

functions—rather than overwritten with old version data. Local variables are not

automigrated—the programmer must annotate a function with kitsune note locals

(c.f. main()) to support migration of its local variables.

To facilitate data migration, kitc generates a per-file do registration () func-

tion that registers the names and addresses of all global variables, including statics,

and records for each one whether it is automigratable. The do registration () func-

tion is marked as a constructor so it is called automatically by dlopen. Similarly, kitc

introduces code in each of the functions annotated with kitsune note locals to reg-

107

ister (on function entry) and deregister (on function exit) the names and addresses

of local variables (in thread-local storage).

The second step is to indicate when data should be migrated after the new

version starts. Calling kitsune do automigrate() (line 34) starts migration of global

state, calling a state transformation function for each registered variable that is

automigratable. These functions implement data transformation (versus just copy-

ing), and are produced by xfgen from programmer specifications. Each function

follows a particular naming convention, and the runtime finds them in the new pro-

gram version using dlsym(). If no state transformation function is found, the data

is copied. xfgen-generated transformers traverse the heap starting from global and

(programmer-designated) local variables.

Within a function annotated with kitsune note locals , the user calls MIGRATE -

LOCAL(var) to migrate (via the appropriate state transformer) the old version of var

to the new version, e.g., as used on line 41 to migrate client sock . MIGRATE LOCAL()

returns 1 if the program was started as a dynamic update; on line 38 we test this

result to decide whether to initialize main sock.

Our overall design for state migration reflects our experience that we typically

need to migrate all, or nearly all, global variables, whereas we need only migrate

a few local variables—only locals up to the relevant update point are needed, and

of these, most contain transient state. We also assume that all state that might be

transformed is reachable from the application’s local and global variables. In our

experiments, this assumption was only violated in memcached, in which the only

pointers to some application data were stored in a library. This problem is addressed

108

by caching such pointers in the main application; see Section 5.3.1.

Cleaning up after an update. After updating, Kitsune reclaims space taken up

by the old program version. Since control and data migration are under programmer

control in Kitsune, we need to specify the point at which the update is “complete.”

That point is when the new program version reaches the same update point at which

the update occurred (c.f. the branch on line 42 of Figure 5.2, which then reaches

the update point on line 25). Kitsune then unloads the code and stack data from

the previous program version; to be safe, the programmer must ensure there are no

stale pointers to these locations. For example, programmers must ensure any strings

in the data segment that need to migrate are copied to the heap (which can be done

in state transformers, or with strdup in the program text). Kitsune also frees any

heap memory that xfgen-generated transformers have marked as freeable. Finally,

control returns to the new version.

5.1.2 Multi-threading

Updating a multi-threaded program is more challenging since the programmer

must migrate control and data for every thread. We could require the programmer

to write this code manually, but we have observed that when the set of threads

before and after the update is the same, a little additional support can make it

easier to migrate those threads automatically.

To make a pthreads program Kitsune-enabled, the programmer must modify

all thread creation sites to use a wrapper for pthread create called kitsune pthread -

109

create . A thread created with kitsune pthread create (tid , f , arg) has its thread id

tid , the name of thread function f, and the value of f’s argument arg are (atomically)

added to a global list kitsune threads of live threads. When a thread exits normally,

it removes its entry from kitsune threads .

Once an update becomes available, each non-main thread stops itself when it

reaches an update point, recording the name of the update point in its kitsune threads

entry. When all threads have reached their update points, the main thread starts

updating as described in Section 5.1.1, and continues until it finally reaches its

own update point in the new version. Then the run-time system iterates through

kitsune threads and relaunches each thread, calling the new version of the recorded

thread function with its recorded argument. If needed, the developer can provide a

special transformation function to modify the set of threads or transform a thread’s

entry function and argument. Each of those threads then executes, performing

whatever initialization and data migration is needed. Each thread pauses when it

reaches the update point where it was stopped. Once all threads have paused, the

Kitsune runtime cleans up the old program version, releasing its code and data as

usual, and resumes the main thread and all paused threads.

For Kitsune’s approach to work, the program must follow several conventions.

First, each long-running thread must periodically reach an update point. Typically

this means a thread needs an update point in any long running loop and should avoid

blocking I/O and similar operations. Second, threads should not hold resources, such

as locks, at update points, since the thread could be killed and restarted at that

point. This requirement is in keeping with the general criterion for choosing update

110

points, which stipulates that little or no state should be in-flight. Third, the program

should be insensitive to the order in which the threads are restarted in the new

version. We expect this holds because the main thread will likely migrate any shared

state, which would otherwise be the main source of contention between threads.

Finally, recreating threads changes their thread IDs, and so the program should not

store those IDs in memory. (We could extend Kitsune to relax this requirement.)

The programs we considered in our experiments satisfy these requirements, and we

conjecture adapting non-compliant programs to them should be easy.

5.2 xfgen

As mentioned briefly in Section 5.1.1, Kitsune’s runtime invokes state trans-

former functions for each automigrating variable, following a naming convention to

locate the appropriate transformer function. In the general case, the developer can

construct such functions manually. Kitsune also includes xfgen, a tool that produces

state transformation functions from simple specifications. The design of xfgen aims

to make common kinds of state transformers easy to write while maintaining the

flexibility to implement arbitrary transformations.

Figures 5.3(a) and (b) summarize xfgen’s transformer specification language.

Each transformer has one of the forms shown in part (a). The INIT transform-

ers describe how instances of new variables or types should be initialized, and the

→ transformers describe how to transform variables or types that have changed

and/or been renamed. Here {new,old} var is either a local or global variable name

111

INIT new var : {action}
INIT new type : {action}
old var → new var : {action}
old type → new type : {action}
old var → new var

old type → new type

(a) transformers

$in , $out – old/new type or var

$old/newsym(x) – x in old/new prog.

$old/newtype(t) – t in old/new prog.

$base – containing struct

$xform(old, new) – xformer ref.

(b) special variables

KS PTRARRAY(S) – size of ptd-to array

KS ARRAY(S) – size of array

KS OPAQUE – non-traversed pointer

KS FORALL(@t) – polymorphism intro.

KS VAR(@t) – refer to type var

KS INST(typ) – instantiate poly. type

(c) type annotations

Figure 5.3: xfgen specification language and type annotations

and {new,old} type is either a regular C type name or a struct type field (we will

see an example below). The transformer action consists of arbitrary C code that

may reference the special xfgen variables shown in Figure 5.3(b), which refer to en-

tities from the old or new program version. A → transformation without an action

identifies a variable/type renaming.

We next illustrate the specification language through a series of examples, and

then discuss how transformer functions are generated from specifications.

struct list {int key; data val ; struct list ∗next;} ∗mapping;

Then we can specify the following transformer:

112

1 mapping →mapping: {
2 int key;
3 $out = NULL;
4 for(key = 0; key < $oldsym(config size); key++) {
5 if ($in [key] != 0) {
6 $newtype(struct list) ∗cur =
7 malloc(sizeof($newtype(struct list)));
8 cur→ key = key;
9 cur→ val = $in[key];

10 cur→ next = $out;
11 $out = cur;
12 } } }

Here mapping →mapping indicates this is a transformer for the old version of mapping

(the occurrence to the left of the arrow, referred to as $in within the transformer) to

the new version of mapping (referred to as $out). The body of the transformer loops

over the old mapping array (whose length is stored in old version’s config size),

allocating and initializing linked list cells appropriately. In the call to malloc, we

use $newtype(struct list) to refer to the list type in the new program version.

Example 3. Finally, suppose the programmer wants to change type data from int

to long, and at the same time extend mapping with field int cid to note which client

established a particular mapping:

typedef long data;
struct list {

int key; data val ; int cid ; struct list ∗next;} ∗mapping;

The programmer can specify that val should be simply copied over and cid should

be initialized to 1 :

typedef data → typedef data: { $out = (long) $in; }
INIT struct list . cid { $out = 1 }

Because the type of mapping changed, xfgen will use these specifications to generate

113

a function that traverses the mapping data structure, initializing the new version of

mapping along the way. This is possible because there is a structural relationship

between elements in the old list and elements in the new list, and because by default

xfgen-created state transformers stop traversal at NULL, the list terminator. (We

could not use this approach for the previous array-to-list change because the data

elements were not related structurally.)

Other special variables. In the examples so far, we have seen uses of all but the

last two special variables in Figure 5.3(b). The variable $base refers to the struct

whose field is being updated. For example, in

INIT struct s .x: { $out = $base.y }

new field x of struct s is initialized to field y in the same struct. Variable $xform

refers to a particular type transformer. For example, suppose we merged Examples 2

and 3 into a single update that migrated mapping to a list and changed data’s type

to long. Then we could use the transformer from Example 2, changing line 9 to

XF INVOKE($xform(data, data), &$in[key], &cur→ val);

$xform is passed an old and a new type name (here, both are data) and it looks up

(or forces the creation of) the transformer between those types. This transformer

is returned as a closure that takes pointers to the old and new object versions and

can be called using XF INVOKE.

114

5.2.1 Transformer generation

xfgen generates code to perform migration and transformation from the . xf

file and the type summary files (. ts files in Figure 5.1) of the old and new versions.

A type summary file contains all of the type definitions (e.g., struct, typedef) and

global and local variable declarations from its corresponding .c source file, noting

which are eligible for migration (according to the rules given in Section 5.1.1). xfgen

uses type information to generate code that can inspect and manipulate program

data, and it uses migration information to make sure . xf files are complete: an . xf

file is rejected if it fails to define a transformer for a migratable variable or type that

has changed between versions.

Type annotations. xfgen sometimes needs type information beyond what is avail-

able in C. For example, suppose we write a transformer for a variable foo ∗x. Then

xfgen needs to know how to traverse the memory pointed to by x, e.g., whether x is

a pointer to a single foo instance or an array. In Kitsune, this extra information is

provided by the programmer as annotations, shown in Figure 5.3(c). kitc recognizes

these annotations and adds the information supplied by them to the . ts files.

The annotations, inspired by Deputy [19], are fairly straightforward. KS -

PTRARRAY(S) provides a size S (an integer or variable) for a pointed-to array.

KS ARRAY(S) provides a size S for array fields at the end of a struct (which can be

left unsized in C). KS OPAQUE annotates pointers that should be copied as values,

rather than recursed inside during traversals. By default, xfgen assumes that t∗

values for all types t are annotated with KS PTRARRAY(1); explicit annotations

115

override this default.

Finally, xfgen includes annotations to handle some idiomatic uses of void∗

to encode parametric polymorphism (a.k.a. generics). For example, the following

definition introduces a struct list type that is parameterized by type variable @t,

which is the type of its contents:

struct list {
void KS VAR(@t) ∗val;
struct list KS INST(@t) ∗next;
} KS FORALL(@t);

KS FORALL(@t) introduces polymorphism, KS VAR(@t) refers to type variable @t,

and KS INST(@t) instantiates a polymorphic type with type @t. With the above

declaration, we could write struct list KS INST(int) ∗x to declare that x is a list

of ints.

Variable transformers. For each migrated variable listed in the new version’s

. ts file, if that variable is named explicitly in an old var→ new var transformer,

then xfgen generates C code from the given action, substituting references appro-

priately. For example, $in and $out in the action are replaced by values returned

from kitsune lookup old and new, respectively, which return a pointer to a symbol

in the old or new program version, respectively, or null if no such symbol exists.

For each remaining migrated variable x, xfgen will consult the y→ x renaming rule

if one exists to determine the source symbol y; otherwise it assumes x’s name is un-

changed. xfgen then generates C code that migrates the variable by calling the type

transformation from the type of the old-version symbol to x’s type (as described

next).

116

As an example, xfgen will produce the following C code from Example 1,

above:

void kitsune transform get count () {
int ∗o op count = (int∗) kitsune lookup old (”op count”);
int ∗n get count = (int∗)kitsune lookup new(”get count”);
∗n get count = ∗o op count;
}
void kitsune transform set count () { /∗ as above ∗/ }

Type transformers. Generating C code for manually specified type transformers

is analogous to what is done for manually specified variable transformers. We also

generate transformation functions for all (unchanged) types t of migratable data,

i.e., for the following cases: (1) when a migrated variable has type t but no manual

transformer (as with struct list in Example 3, above); (2) when traversed data

references values of type t (e.g., if an unchanged global variable had type struct s

where s’s definition includes a value of type t); and (3) when a transformer for

t is referenced directly in a manual transformer (e.g., as with $xform(data, data)

mentioned above). For these cases, the functions merely recursively invoke transfor-

mation functions on the immediate children of the type in question (skipping NULL

values); no values of that type are copied, but pointers may be redirected to values

that are.

Whenever a type transformer migrates a pointer, it performs several steps.

First, if the pointer is NULL, it does nothing. Otherwise, it checks a global map to

see if the pointer has been migrated before; if so it returns the old target. Doing this

maintains the shape of the heap and avoids infinite loops during traversal of cycles.

If neither of these two conditions apply, it calls the appropriate transformer for the

117

P
ro

g
ra

m
#

V
e
rs

L
o
C

U
p

d
C

tr
l

D
a
ta

K
S
∗

O
th

Σ
v→

v
t→

t
Σ

x
f

L
o
C

vs
ft

p
d

14
(1

.1
.0

–2
.0

.6
)

12
,2

02
6

26
17

+
8

6+
14

28
+

8
83

+
30

9
21

30
10

1

R
ed

is
5

(2
.0

.0
–2

.0
.4

)
13

,3
87

1
2

3
43

4
53

0
4

4
37

T
or

13
(0

.2
.1

.1
8–

0.
2.

1.
30

)
76

,0
90

1
39

37
+

6
19

57
15

3+
6

16
15

31
18

9

M
em

ca
ch

ed
∗

3
(1

.2
.2

–1
.2

.4
)

4,
18

1
4

9
13

20
66

11
2

12
10

22
27

Ic
ec

as
t∗

5
(2

.2
.0

–2
.3

.1
)

15
,7

59
11

+
1

22
+

3
14

+
9

32
+

3
39

11
8+

16
25

50
75

20
0

∗ M
u

lt
i-

th
re

ad
ed

T
ab

le
5.

1:
K

it
su

n
e

b
en

ch
m

ar
k

p
ro

gr
am

s,
an

d
m

o
d
ifi

ca
ti

on
s

to
su

p
p

or
t

u
p

d
at

in
g

118

pointer’s target. If the pointer is to a global or local variable, it stores the result in

the corresponding new-version variable’s space. If the pointer target’s type has truly

changed (and so must have a manual transformer with an action), it mallocs space

and stores the result there, remembering the result’s address in the global map. It

also stores the old-version pointer on a list of addresses to be reclaimed once the

update is complete.

Following the above procedure, xfgen will generate transformer/traversal code

that will deeply explore the heap and ensure that all pointers to the data and stack

segment are transformed to work once the old program is unloaded. If the program-

mer knows that a particular data structure contains only pointers into the heap (and

not to global or local variables) and no pointed-to objects require transformation,

she can create transformers that truncate the traversal to reduce update time (we

used this trick for redis-mod in Figure 5.4).

The transformers generated by xfgen assume there are no pointers into the

middle of transformed objects. To help check this assumption, we provide an ex-

ecution mode in which the created transformers use an interval tree to record the

start and end of each object they transform. A transformer reports an error if it is

ever asked to migrate an object that overlaps with, but does not exactly match the

bounds of, a previously migrated object.

119

5.3 Experiments

To evaluate Kitsune, we used it to develop updates for five widely deployed

server programs. We found that few code changes are required to support updating:

between 53 and 159 LOC, the lion’s share of which were made to the initial version.

Likewise, xfgen specifications were generally small, at around 3-4 lines per changed

variable/type. These numbers are comparable to, or better than, prior work. Kit-

sune performance is uniformly better, with essentially no steady-state overhead. We

found that the time required to apply an update ranges from 2ms up to 1s, depend-

ing on the program; in all cases, however, the times seem acceptable for typical

use.

Benchmarks. We chose a suite of benchmark programs that maintain in-process

state that would be beneficial to preserve during an update. Vsftpd is a popular

open-source FTP server 3. Redis is a key-value database used by several high-traffic

services, including guardian .co.uk and digg .com. Tor is a popular onion-router

that provides anonymous Internet access 4. Memcached is a widely used, high-

performance data caching system employed by sites such as Twitter and Wikipedia.

Icecast is a popular music streaming server. All of these programs maintain persis-

tent network connections that an offline update would interrupt. Redis and mem-

cached also maintain potentially large volumes of in-memory data that would either

be would be lost (memcached) or expensive to restore (redis) following an update.

Vsftpd also serves as a useful benchmark because several other DSU systems have

3The updates to vsftpd were adapted from Ekiden [35] updates by one of the author’s collabo-
rators.

4The updates to Tor were written by one of the author’s collaborators.

120

used it for evaluation [51, 45, 17, 35].

The left portion Table 5.1 lists for each program the length of the version streak

we looked at (for n versions, there are n−1 updates), which versions we considered,

and the number of source lines of the last version as computed by sloccount. We

consider at least three months of releases per program; for Tor we cover two years

and for vsftpd we cover three.

5.3.1 Programmer effort

Here we describe the manual effort that was required to prepare these programs

for updating with Kitsune, and to craft updates corresponding to releases of these

programs. In all cases, the versions we updated behaved correctly before, during,

and after updates were applied.

The center portion of Table 5.1 summarizes the Kitsune-related changes we

made to these programs, tabulating the number of update points added; the number

of lines of code needed for control migration, e.g., kitsune is updating (), and data

migration, e.g., kitsune do automigrate (); the number of type annotations for xfgen,

e.g., KS PTRARRAY; the number of lines changed for other reasons; and their sum.

Each column shows the number of changes in the first version, followed by +n

where n is the sum of changes in all subsequent versions; if this is omitted, no

further changes were needed.

One striking trend in the table is that most required changes occurred in the

first version. Control flow migration and update points were particularly stable, es-

121

sentially because the top-level control flow structure of the programs rarely changed.

We also found control flow migration code relatively easy to write. Data migration

code and annotations were occasionally added along with new data structures. An-

other interesting trend is that the magnitude of the changes required is not directly

proportional to either the code size or number of versions considered, e.g., 134 LoC

for 16 KLoC icecast vs. 159 LoC for 76 KLoC Tor. On reflection, this trend makes

sense. Changes to support control migration depend on the number and location

of update points, and data annotations depend on the type and number of data

structures; none of these characteristics scales directly with code size. Together,

these numbers show that with Kitsune, DSU is a stable program feature that is

straightforward to add and easy to maintain.

The rightmost columns of the table describe the xfgen specifications we wrote

for each program’s updates. In particular, we list the number of variable transform-

ers (v→ v) and type transformers (t→ t), across all versions, and their sum. We also

list the total number of lines of transformer code we wrote, across all versions. We

can see that, on average, 3–4 lines of xfgen code were needed for each transformer.

Most state either required no (or very simple) transformation. One of the largest

transformations was a 19-line redis rule to choose the right transformation for a

void∗ field based on an integer key indicating the field’s type. When transformation

annotations were necessary, they were either obvious (specifying generic types or

bounded arrays) or prompted by xfgen.

Now we consider the particulars of each program, and when possible measure

the magnitude of these changes against those required by prior systems. In general

122

we find the number of required changes to be comparable.

Vsftpd. Many of the changes we made to vsftpd were typical across our bench-

marks: we added type information for generics and inserted control flow changes

to avoid overwriting OS state when updated. We added one update point for each

of the five long-running loops in the program, e.g., the connection listener, login

processor, command processor, etc.

The most interesting change we made to vsftpd was to handle I/O. Vsftpd

replaces calls to recv with calls to a wrapper that restarts the actual read if it is

interrupted, e.g., by the receipt of a signal. We inserted one update point in the

wrapper so that interruption can initiate an update. To simplify the control-flow

changes needed, the update point need not be given its own name, but can reuse

the name of the update point in the loop that initiated the wrapped call; this is

because this loop will reinitiate the call when the update completes.

Other DSU systems. Neamtiu et al. [51] applied Ginseng, another DSU system,

to vsftpd. They updated a subset of the version streak we did (finishing at version

2.0.3). Even though their changes support just one update point (versus our six,

which permit updating in many more situations), the effort was comparable: They

report 50 LOC changed and 162 lines for state transformation, compared to 127

LOC changed and 101 lines of state transformation for Kitsune.

Makris and Bazzi [45] also updated vsftpd using UpStare for a shorter streak.

They say that “some manual initialization of new variables and struct fields” was

required, along with “11 user-defined continuation mappings,” but provide no detail

as to their overall size.

123

Redis. Redis required few modifications to support updating. We placed a single

update point in its main event loop and added one check to avoid some reinitial-

ization. The vast majority of Redis’s state is stored in a single global variable,

server , so few variables needed migration. Redis makes extensive use of linked lists

and hash tables, and we used xfgen’s generics annotations to model their types pre-

cisely. The version streak we considered included only code modifications, but we

still needed xfgen to migrate data structures that contain global variable addresses

(which change with updates). Finally, redis uses custom memory management func-

tions that xfgen does not support, so we modified these functions to directly call the

standard malloc and free . We leave support of custom allocators to future work.

We are unaware of prior work applying DSU to redis.

Tor. Tor is the largest of our benchmark programs, at ∼76 KLoC. Adding DSU

support required one update point in Tor’s main loop, and a small number of control

flow modifications to prevent reinitialization of updated state. The small size of the

latter is particularly surprising given the very large amount of state in Tor. We

did need to add code to migrate one object (representing the network consensus)

manually, because it cannot be refreshed correctly until the rest of the state has been

migrated. The bulk of Tor’s changes served to expose DSU functionality in Tor’s

“control port” interface, e.g., so that updates could be triggered using standard

tools.

One challenge was that Tor uses libevent for event processing, and that library

stores function pointers inside event structs. Tor maintains a list of those structs,

and we wrote state transformers that update those pointers when a new version

124

is loaded. These transformers, along with similar transformers updating function

pointers used by either Tor or the OpenSSL library, comprised the majority of xfgen

rules.

We are unaware of prior work applying DSU to Tor.

Memcached. Memcached is a multi-threaded server that uses libevent, like Tor.

As with Tor, we needed to make some minor changes to memcached so the updating

signal properly reaches the Kitsune library to initiate the update process. We also

needed to reinstall new function pointers in libevent after an update. More interest-

ingly, we needed to add code to memcached to maintain a list of active connections,

so that xfgen properly generates code to transform these connections at update-time;

in the ordinary implementation of memcached, connection objects are not otherwise

reachable from global and local variables once they are passed to libevent.

Other DSU systems. Neamtiu and Hicks [49] updated memcached using Gin-

seng. They needed 26 lines of program changes and 12 lines for state transformation.

Kitsune required more changes in part because we did not change libevent itself,

which in Neamtiu and Hicks’ setup was merged into the main program (and thus

was updatable). Their changes also created a problem with reaching update points

suitably often due to intervening blocking calls; placing the update point outside

libevent avoided this issue.

Icecast. Icecast is another multi-threaded program, with separate threads for con-

nection acceptance, connection handling, file serving, receiving a stream from an-

other server, sending statistics, and more. Thus, it needed more than the usual

number of update points. We added annotations to migrate local variables or skip

125

Program Orig (siqr) Kitsune Ginseng

64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd 2.0.6 6.55s (0.04s) +0.75% –

memcached 1.2.4 59.30s (3.25s) +0.51% –

redis 2.0.4 46.83s (0.40s) -0.31% –

icecast 2.3.1 10.11s (2.27s) -2.18% –

32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10

vsftpd 2.0.3 5.71s (0.01s) +1.79% +8.05%

memcached 1.2.4 101.40s (0.35s) -0.49% +18.44%

redis 2.0.4 43.88s (0.16s) -1.21% –

icecast 2.3.1 35.71s (0.68s) +1.18% -0.28%

Table 5.2: Steady-state performance overhead

initialization within the entry functions of each thread, as needed. The most com-

plex icecast patch added a new thread to handle authentication (requiring an added

update point) and reduced the number of connection threads. Kitsune provides

programmatic access to the set of threads during transformation to support these

changes.

Other DSU systems. Neamtiu and Hicks [49] also considered updates to the

same streak of icecast versions (plus one earlier version). They changed 154 LOC

and wrote 80 lines of state transformation code. For Kitsune we changed 134 lines

of the main program, and wrote 200 lines of xfgen specifications.

5.3.2 Performance

Steady-state performance overhead. We measured the steady-state overhead of

Kitsune on all programs except Tor, discussed separately below. For comparison, we

also measured the overhead of Ginseng for the three programs (vsftpd, memcached,

and icecast) for which Ginseng updates were available.

126

We used the following workloads: For memcached, we ran memslap (2.5M

operations using memslap’s default workload). For redis, we used redis-benchmark

(1M GET and 1M SET operations), and for a fair comparison, we modified the

non-updating version of redis to use the standard memory allocation functions,

as we had done to support xfgen. For vsftpd, we measured the time to perform

the following interaction 2K times: connect to the server, change directories, and

retrieve a directory listing. For icecast, we used a benchmark originally developed for

Ginseng [49] that measures the time taken for 16 simultaneous clients to download

7 music files, each roughly 2MB in size. For all programs, we ran the client and

server on the same machine.

Table 5.2 reports the results. We ran each benchmark 21 times and report the

median time for the unmodified programs along with the semi-interquartile range

(SIQR), and the slowdowns for Kitsune and Ginseng (the median Kitsune or Ginseng

time compared to the median original time). The top of the table gives results on a

24 core, 64-bit machine, and the bottom gives results on a 2 core, 32-bit machine;

Ginseng only works in 32-bit mode.

From this data, we can see that Kitsune has essentially no steady-state over-

head: the performance differences range from -2.18% to 1.79%, which is well within

the noise on modern environments [48]. In contrast, for two of the three programs

(vsftpd and memcached), the Ginseng overhead is more significant. While we have

not ourselves benchmarked UpStare, the authors of that system report overhead of

16.0% for vsftpd (version 2.0.5) [45].

Tor. While we did not measure the overhead of Kitsune on Tor directly, we

127

Program Med. (siqr) Min Max

64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd →2.0.6 2.99ms (0.04ms) 2.62 3.09

memcached →1.2.4 2.50ms (0.05ms) 2.27 2.68

redis →2.0.4 39.70ms (0.98ms) 36.14 82.66

icecast →2.3.1 990.89ms (0.95ms) 451.73 992.71

icecast-nsp →2.3.1 187.89ms (1.77ms) 87.14 191.32

tor →0.2.1.30 11.81ms (0.12ms) 11.65 13.83

32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10

vsftpd →2.0.3 2.62ms (0.03ms) 2.52 2.71

memcached →1.2.4 2.44ms (0.08ms) 2.27 3.12

redis →2.0.4 38.83ms (0.64ms) 37.69 41.80

icecast →2.3.1 885.39ms (7.47ms) 859.00 908.87

tor →0.2.1.30 10.43ms (0.46ms) 10.08 12.98

Table 5.3: Kitsune update times

did test it by running a Tor relay in the wild. We dynamically updated this relay

from version 0.2.1.18 to version 0.2.1.28 as it was carrying traffic for Tor clients.

We initiated several dynamic updates during periods of load, when as many as four

thousand connections carrying up to 11Mb/s of traffic (up and down) were live. No

client connections were disrupted (which would have been indicated by broken or

renegotiated TLS sessions). Over the course of this experiment, our relay carried

7TB of traffic.

Time required for an update. We also measured the time it takes to deploy

an update, i.e., the elapsed time from when an update is signaled as available to

when the update has completed. Table 5.3 summarizes the results for the last

update in each streak, giving the median, SIQR, minimum, and maximum update

times. For each program, we picked a suitable workload during which we did the

update. For vsftpd, we updated after an FTP client had connected to and interacted

128

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000

u
p
d
at

e
ti
m

e
(m

s)

key-value pairs

redis v0->v1
redis v1->v2
redis v2->v3
redis v3->v4

redis-mod v0->v1
redis-mod v1->v2
redis-mod v2->v3
redis-mod v3->v4

memcached v0->v1
memcached v1->v2

Figure 5.4: State size vs. update time

with the server; for redis and Memcached, we inserted 1K and 15K key-value pairs,

respectively, prior to update; and for icecast, we established one connection to a

music source and 10 clients receiving that stream prior to updating. For Tor, we

fully bootstrapped as a client, establishing multiple circuits through the network

and communicating with directory servers, and then applied the update.

For all programs except icecast, the update times are quite small. For ice-

cast, most of the nearly 1 second delay occurs while the Kitsune runtime waits for

each thread to reach an update point. This time was lengthened by one-second

sleeps sprinkled throughout several of these threads. The line in the table labeled

icecast-nsp measures the update time when these sleeps are removed, and shows the

resulting time is much shorter. Because the sleeps are there, we conjecture icecast

can tolerate the pause for updates; we did not observe a noticeable stop in the

129

streamed music during the update. In recent work [33], we have developed tech-

niques to support faster update times, showing significant improvements for icecast

in particular. We plan to port these ideas to Kitsune in the near future.

We also recorded the time taken for the unmodified versions of the benchmark

programs to reach their main loops after entering main. Restarting the program in

this way fails to maintain important in-process state, so we provide this comparison

only as a point of reference for the Kitsune update times that we measured. For our

64-bit benchmarking environment (the 32-bit environment showed the same trend),

we observed median startup times that were typically a few milliseconds (with the

exception of Tor’s), ranging from 0.56ms for vsftpd to 2.35ms for Icecast. While

these startup times were often close to the Kitsune update times, Icecast took much

longer (990.89ms) to update. Conversely, Tor took 566.05ms to start up, which was

significantly longer than the 11.81ms time taken to update. Note that the startup

times described here do not include code loading (which is reflected in the Kitsune

update times), so they slightly underestimate the true time.

Recall from Section 5.2.1 that xfgen-generated transformers may traverse sig-

nificant portions of the heap, and thus for some updates the update time may vary

with the size of the program state. Among our programs, the most likely to ex-

hibit this issue are redis and memcached, as they may accumulate significant state.

Figure 5.4 graphs the update time for these two programs versus the number of key-

value pairs stored. For redis, the update time grows linearly because we traverse

each of the data items on the heap, since some contain pointers to global variables

that must be redirected to the new version’s data segment. On the other hand,

130

memcached’s update times remain relatively constant because it stores its data in

arrays that we treat opaquely, removing the need to traverse each instance.

Examining redis more closely, we observed that the pointers that force us to

traverse the heap in fact point to a small, finite set of static locations. Thus, we

created a modified (42 LOC changed) version of redis, labeled redis-mod, that stores

integer indices into a table in place of those pointers. This obviates the need for

a full heap traversal for all the updates in our streak, allowing updates times to

remain constant for the tested heap sizes. Programs that use Kitsune may benefit

from a similar transformation if they maintain a large amount of state containing

static pointers.

5.4 Experience using Kitsune

In this section, we describe our experience performing the manual work re-

quired to modify a program to be updateable with Kitsune and the process we used

to debug errors.

Debugging. To develop and test the modifications that we make to a program to

support updating, we found it useful to start out by developing a self update that

updates to the same version. This technique is useful because the modifications

made to the program to support updating with Kitsune are typically independent

of the patch being applied. Once control flow, data migration, and update points

are in place, those changes will also apply when the program is updated from other

versions. Likewise, we found that, because changes for Kitsune were quite stable,

131

the modifications to support a self update only needed to be tweaked slightly across

later versions of the program in response to its evolution.

Control flow modifications. We found that modifying control flow to reach the

correct loop after startup was straightforward for every program. Making these

changes for the main thread required the most work, but the process was not prone

to errors. One exception was that testing (e.g., self-update testing) sometimes re-

vealed the need to run particular parts of the startup code both during normal

startup and during an update. For example, we needed to reinstall signal-handling

functions following each update to use the new-version function address. Alterna-

tively, we could have handled such problems using state transformation, e.g., by

either automatically updating signal-handler callbacks or having the developer do

so in a state transformer function. We often chose to implement them as control-flow

changes because the same code change would apply for every patch.

We also needed to make control flow modifications for the startup of each

program thread. However, we found that these modifications were far simpler than

the ones for the main thread since thread-entry functions typically perform less work

before entering long-running loops.

Local variable annotations. While Kitsune will automatically migrate global

variables, it requires the developer to add code to migrate locals. Some local vari-

ables contain important state (e.g., listen sockets) that must be migrated while oth-

ers contain the results of intermediate computations that are no longer needed. We

found that, after taking the time to understand the work performed by a program

132

during startup, it was clear which local state required migration.

Kitsune also requires the developer to use the kitsune note locals annotation

to identify the functions containing local state that the next version can access. In

our experience, these annotations were always added to the functions containing

calls to MIGRATE LOCAL. While the function annotation ensures that every local

variable from an annotated function is available to new-version transformers, we have

not needed this flexibility thus far—our practice of beginning each updating streak

with a self update has enabled us to find all the needed locals from the start. If this

observation continues to hold, we may consider only supporting migration of locals

used in calls to MIGRATE LOCAL to eliminate the need for the kitsune note locals

annotation.

Placement of update points. We found that placement of update points was

straightforward and almost entirely dictated by the structure of the program for

most of our benchmark programs. As we noted earlier, vsftpd required some special

handling because it wraps calls to I/O functions inside new functions. This wrapping

required us to add an additional update point to one of these functions to support

updating while the server is idle.

Memcached differs from the other benchmark programs in that its main loop

is implemented inside the libevent library; this presented a challenge because we

wanted to permit updates within that loop without modifying libevent. To achieve

this, we changed memcached to handle SIGUSR2 (the update signal) using libevent.

The main thread’s libevent callback for this signal notifies each child thread to

133

return to application code from libevent and then does so itself. Interestingly, this

approach required us to “sandwich” the invocation of libevent’s loop between two

update points:

kitsune update(”upd”); /∗ complete any active update ∗/
event base loop (libevent base , 0); /∗ pass control to libevent ∗/
kitsune update(”upd”); /∗ a new update upon return ∗/

When an update is signaled, the event base loop call returns and initiates the up-

date. Then, when the program restarts, execution will reach the update point just

prior to the event base loop call in the new code; since this update point is given

the same label as the one initiating the call, the update completes.

xfgen experience. Overall, we found that xfgen provided an elegant way to express

transformation and avoid writing boilerplate traversals. However, we did encounter

some challenges applying it, which we discuss next to motivate future improvements.

As we have described, the developer may annotate data structures with type

information to help xfgen generate traversal code for transformation. This process

requires the developer to ensure that all pointers contained in migrated data types

are correctly annotated. In some cases, for example when data contains void point-

ers, xfgen will produce error messages directing the developer to the places in the

code requiring annotation. However, if the developer forgets to annotate that a

field points to an array rather than a single instance, xfgen will silently generate

incomplete traversal code. We encountered this problem at some points during our

experiments and it was often tricky to diagnose. The visualization tool that we

propose in Chapter 7 is intended to identify such errors more readily.

134

There are some code constructs, including tagged void pointers and unions,

for which annotations are insufficient for xfgen to generate traversal code. In those

cases, the developer must write a manual transformation rule to show how to traverse

that field, which they must include in every patch. Redis required one of these rules

and implementing it was fairly straightforward.

The most common source of problems when modifying existing programs to

work with Kitsune were pointers in the heap to static addresses, e.g., addresses of

global variables, functions, and string literals. Once the old-version code is unloaded

following an update, these pointers (if they have not been updated to point to new-

version addresses) become invalid and dereferencing them will crash the program.

xfgen generates code to transform pointers to global variables or functions when

they are encountered during traversal. The generated code was usually sufficient,

except when handling pointers to static C strings (which xfgen does not currently

transform to new-version addresses) or when static pointers are maintained inside of

library code. We encountered problems with static C strings in Tor; to fix them, we

realized that the data structure containing them was initialized at startup, but never

written to afterwards, so we annotated it to not be migrated during an update. Both

Tor and Memcached required some manual code to ensure that function pointers

inside the libevent library are reinitialized at the new version. We discuss potential

solutions for supporting state in libraries in Chapter 7.

135

5.5 Related Work

Table 5.4 characterizes the mechanisms used to implement Kitsune and other

recent C/C++ DSU systems; most of these systems target applications, while

Ksplice, K42, and DynaMOS support (or are) OS kernels. We discuss tradeoffs

resulting from these mechanism choices, and argue that Kitsune provides the great-

est flexibility and best performance with modest programmer effort. The footnotes

in the table summarize the discussion below.

Code updates. Most systems effect code updates at the level of individual func-

tions (or objects). As noted in the first column, Ksplice [8], OPUS [5], DynaMOS [46],

and POLUS5 [17] insert, at run-time, a trampoline in the old function to jump to the

function’s new version. As noted in the second column, Ginseng [51] and K42 use

indirection: Ginseng compiles direct function calls into calls via function pointers,

while the K42 OS’s object handles are indirected via a hand-coded object transla-

tion table (OTT); updates take effect by redirecting indirection targets to the new

versions.

There are several drawbacks to using these mechanisms. Trampolines require

a writable code segment, which makes the application more vulnerable to code

injection attacks. Trampoline-based updating may break programs optimized using

inlining, since it presumes to know where the start of a function is, so POLUS and

OPUS both forbid inlining. (Ksplice is able to account for the compiler’s inlining

decisions.) Using indirect calls adds overhead to normal (“steady state”) execution

5LUCOS is from the same research group that produced POLUS, and is essentially a version
of POLUS that uses VMMs to effect changes in operating systems. All comments we make about
POLUS apply equally to LUCOS, so we do not mention it further in this section.

136

Code upd Data upd Timing

tr
am

p

in
d

p
ro

g

re
p

l

sh
d

w

w
ra

p

n
o
n

a
ct

v

u
p

d
p

ts

DynaMOS4 × ×
Ekiden × × ×
Ginseng12345 × × ×
K4225 × × ×
Kitsune × × ×
Ksplice × × ×
OPUS2 × – – – ×
POLUS245 × ×
UpStare23 × × (×)

1needs deep analysis
2inhibits optimizations
3pervasive instrumentation

4mixes old and new code
5relaxed thread sync.

Table 5.4: Comparing DSU systems for C/C++

and also inhibits inlining. Most onerously, neither trampolines nor indirections

support updating functions that never exit, such as main, which changes relatively

frequently [34], or the scheduling loop in the OS. In the best case, programmers must

refactor the program so that long-running loop bodies are in separate functions [51].

The remaining three systems, UpStare [45], Ekiden [35],6 and Kitsune support

more general changes by updating at the granularity of the whole program rather

than individual functions. UpStare loads in code for the new program and then

performs stack reconstruction: the running program unwinds the current stack one

function at a time back to main, and then rewinds the stack to a new-version program

point specified by the programmer. In contrast, Kitsune relies on the programmer

to migrate control to the equivalent new-version program point.

6Ekiden is the precursor of Kitsune and works by transferring state to an updated process; the
programmer API is roughly the same, but Ekiden induces slower update times and requires more
memory.

137

Kitsune’s manual approach pays dividends in both better performance and

simpler semantics. To allow updates to happen at any program point, UpStare’s

compiler adds unwinding/rewinding code to all functions; while convenient, this

imposes performance overhead on normal execution. Moreover, to exploit UpStare’s

flexibility, a developer must carefully define how to map from all possible old-version

thread stacks to new-version equivalents. UpStare reduces this burden allowing the

programmer to limit updates to fewer program points, just as Kitsune does. But

then the value of general-purpose stack reconstruction is less clear. Kitsune allows all

compiler optimizations, and code to support control migration imposes no overhead

during normal execution since such code only appears on program paths leading to

update points, and these paths tend not to intersect with normal execution paths.

Moreover, expressing control migration in the code rather than in a specification to

the side is arguably advantageous: with only a few update points there is very little

code to write, and its presence in the program makes the update semantics explicit

and easier to understand.

Data updates. Returning to the table, we can see that most systems handle

changes to data structure representations employing object replacement, in which

the programmer can allocate replacement objects and initialize them using data

from the old version. Ksplice and DynaMOS leave the old objects alone but allocate

shadow data structures that contain only the new fields. Ginseng uses an approach

called type wrapping : programs are compiled to use mediator functions to access

updatable objects, and these functions initiate transformation of objects that are

not up to date.

138

Shadow data structures have the benefit that fewer functions are changed by

an update: if we add a new field to a struct, then only code that uses that field

is affected, rather than all code that uses the struct. But programmers must write

additional code to deal with shadow fields and manage their lifetimes, which imposes

run-time overhead and clutters the software over time. Type wrapping has the

benefit that there is no need to find objects in order to update them; rather, object

transformation will occur lazily as the new version executes. But type wrapping has

several limitations: (1) mediator functions slow normal execution; (2) objects must

be compiled to have extra “slop” space for future growth which hurts performance

(e.g., cache locality) and may prove insufficient for some changes; (3) the change

in representation forbids certain coding idioms (e.g., involving typecasts to/from

void∗), which Ginseng identifies using a whole-program analysis that has trouble

scaling.

Object replacement offers the best steady state performance, but there must

be a way to find all instances of changed objects (e.g., by chasing pointers from

global variables) and redirect these pointers to newly allocated, transformed objects.

K42’s coding style makes this easy—the system can just traverse the OTT—but

most applications are not written this way. Kitsune’s xfgen tool is able to generate

traversal code given relatively small specifications and some type annotations; in

other systems, the programmer burden is higher. Note that DSU for type-safe

languages can avoid xfgen’s traversal generation: the garbage collector can be used

to automatically find and initiate transformation of changed objects [64, 27] without

need of further type annotations.

139

Timing. Returning to the table, we consider how systems determine when an

update may take effect. Ksplice, K42, and OPUS only permit an update when

no thread is running code that will be changed. While this restriction reduces

post-update errors, it does not eliminate them [34], and moreover imposes strong

restrictions on the form of an update and how quickly it can be applied.

For increased flexibility, other systems allow updates to active code. Kitsune

and UpStare updates take place when all threads reach a programmer-designated

update point (for UpStare, such points may be system-determined). We have found

this simple approach works quite well in practice. In contrast, Ginseng allows an up-

date to take effect so long as it appears as though it occurred when all threads were

at update points [49]. This approach does accelerate update times, but the static

analysis that underlies it scales poorly and is conservative, requiring awkward code

restructurings. POLUS allows threads to update immediately, and thus because

POLUS updates take effect at function calls, after an update a program may wind

up running bits of old and new code at the same time; a study using Ginseng showed

mixing code versions substantially increases the odds of errors [34]. Moreover, PO-

LUS data structures are versioned, with version N of the code accessing version N

of the data, so the programmer defines callbacks (invoked via virtual memory page

protection support) to keep the copies in sync. We imagine this could be tricky.

Our experience with the simple barrier approach suggests these more sophisticated

approaches, with higher programmer demands, may be unnecessary.

Checkpointing. Checkpoint-and-restart systems [58] allow programs to be re-

launched “in the middle” of execution from a checkpoint. At a high-level this bears

140

some similarity to DSU, but checkpointing systems do not provide support for chang-

ing code or data representations on restart. As mentioned above, in earlier work we

developed Ekiden, a system that serializes and transfers state between processes—

i.e., Ekiden works like a checkpointing system that does permit code and data

modification. However, we found that the cost of transferring state in Ekiden was

significant, and hence moved to the Kitsune model, which allows in-process code

and data changes.

Dynamic updating in other languages. Compared to C/C++, DSU for higher-

level languages is a cleaner affair. In particular, such languages use garbage collec-

tion (GC) and can delegate the task of finding and transforming changed objects

to the GC [64, 27]. Moreover, these languages are type-safe, so added metadata for

managing DSU can be safely hidden from the application (avoiding the problems

experienced in Ginseng). For VM-based languages like Java and C#, the JIT avoids

any limitation on the use of optimizations. For example, the JIT can track its prior

inlining decisions and undo them when an inlined function is updated, redoing them

once the update takes effect [64]. Kitsune was designed specifically for C, which lacks

such high-level features and places a higher premium on performance and low-level

control.

Stewart and Chakravarty implement a whole-program updating system for

Haskell that, like Kitsune, makes updating behavior explicit [61]. Haskell is a purely-

functional language and so it does not support mutable state scattered throughout

the program as C does; as such they provide no special support for transforming

program state. They do not report how many lines needed to be changed to add

141

updating support or how much steady state overhead their approach introduces.

5.6 Conclusions

We have presented Kitsune, a new system for dynamically updating C pro-

grams. Kitsune works by updating the entire program at once, thus avoiding the

restrictions imposed by other DSU systems on data representations, programming

idioms, and compiler optimizations. Kitsune’s design allows program changes for

updatability to be simple and informative, and xfgen makes writing state trans-

formers much easier. Our results applying Kitsune to single- and multi-threaded

benchmarks show that Kitsune has essentially no performance overhead, and code

changes required to use Kitsune are comparable to, or only slightly more than, prior

systems. We believe that Kitsune’s careful balancing of flexibility, efficiency, and

ease-of-use makes it a major step forward in practical dynamic software updating

for C.

142

Chapter 6

A Study of DSU Quiescence for Multithreaded Programs

This chapter describes an experiment we performed to evaluate the effective-

ness of Kitsune’s handling of multithreaded updates. This study measured the

period of reduced availability due to time spent waiting for all threads to update

for six programs. Here, we report our findings, and describe the implementation

strategies we used to reduce the delay.

Finding ways to apply multithreaded updates with minimal delay has been

a fruitful topic for the research community, and a variety of solutions have been

proposed. Most of this research has followed a common theme: updates should

be supported at as many points during program execution as possible. However,

this goal has a serious drawback: developers must reason about the correctness of

all possible update timings, and that task becomes harder to do the more update

points and threads there are. Moreover, many of the proposed techniques also

employ complex program analyses or other mechanisms that are difficult to use,

scale poorly, and/or impose run-time overhead.

As we have seen, Kitsune takes the opposite point of view: it only support

updates at a few, developer-identified quiescent points, i.e., program locations that

are reached between iterations of event-processing loops and at which there is typi-

cally less in-flight state. For example, the code below shows a typical thread body

143

to which we have added an update point.

1 void ∗thread entry (void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 qbench update(); /∗ update point ∗/
5 /∗ loop body: typically handles a single program event ∗/
6 }
7 }

We refer to the state in which all program threads have reached an update point as

full quiescence. While full quiescence is attractive because it reduces the program-

mer’s reasoning burden, one concern is that reaching full quiescence may significantly

delay the application of an update, and may degrade the program’s performance in

the process.

We present a small empirical study that shows that, for many programs, sim-

ple modifications allow quiescent points to be reached sufficiently often to support

updates with little delay. This result suggests that rather than use mechanisms that

are hard to implement and hard to reason about, we can instead ask programmers

to modify programs in simple ways to make DSU more effective.

For our study, we added quiescent update points to Apache httpd, icecast,

memcached, suricata, iperf, and space tyrant. We chose programs covering a wide

range of domains including media streaming, caching, intrusion detection, and gam-

ing. We chose the quiescent points using the manual strategy we evaluated in

Chapter 2 and applied to Kitsune. We linked each modified program with a library,

QBench, with which we measured the time the program took to reach full quiescence

under various workloads.

144

Reaching quiescence may be delayed by blocking calls, e.g., those that perform

I/O. We found that two simple program changes could effectively overcome this

delay. First, the DSU runtime can interrupt some blocked calls by sending a signal

to the thread; several updating systems do this “for free” since signals are used to

alert the program that an update is available. Second, for the remaining blocking

calls, we changed the programs to use alternative, interruptible implementations of

some system functions (specifically, pthread cond wait and sleep) and added code to

redirect control flow back to an update point when a blocking call is interrupted.

All of these changes, and the implementation of QBench, are described in detail in

Section 6.1. On average, programs needed 22 lines of code to be changed including

adding update points. With these changes, the median time to quiescence with

workload was 0.200ms (0.169ms w/o load), with a worst case of 107.558ms (w/o

load) for icecast, and a best case of 0.078ms (w/o load) for space tyrant. These

results are described in detail in Section 6.2.

In summary, we found that, for a representative suite of benchmark programs,

reaching full quiescence can be done quickly given proper run-time support and a

small number of program changes. While more experience is needed to see if this

result generalizes, we believe it suggests that simple mechanisms may be sufficient

to properly balance the safety and timeliness of dynamic updates.

Author Contributions. This work will appear in HotSWUp ’12 [30]. I was lead

author, designed QBench, and modified roughly half of the benchmark programs to

support benchmarking. My collaborator, Karla Saur, modified the other benchmark

145

programs and ran the experiments.

6.1 Achieving full quiescence

To test our hypothesis that full quiescence permits sufficiently timely dynamic

updates, we modified several multithreaded programs to include appropriate update

points, and then measured the time it took to reach full quiescence. We describe our

approach here, along with the QBench library we developed to implement quiescence

and measure the time required to achieve it.

6.1.1 Basic approach

For each program we must add a handful of calls to qbench update to identify

legal update points. The semantics of qbench update is simple: if no update has

been requested, it is a no-op; otherwise, the calling thread blocks until all other

threads have also called qbench update. In detail, we request an update by sending

a program the SIGUSR2 signal. QBench installs a signal handler that sets a flag

indicating that an update has been requested. A qbench update call blocks if the

flag is set. Once all threads have blocked, the system has reached full quiescence.

In an actual DSU system, the update would take effect at this point. For our study,

QBench instead reports the quiescence time, which is the elapsed time from when

the first thread reaches an update point (marking the start of reduced program

availability) to when the last thread has. Then it simply unsets the flag and releases

all of the threads to continue their execution, so we can verify the program operates

146

as expected.

Quiescence is achieved when all threads have reached an update point, which

we track by maintaining a thread count and ensuring that each thread hits an update

point. To determine when all threads have reached qbench update (and to store other

thread-specific metadata described later), we replace calls to pthread create with

calls to QBench’s qbench pthread create, which tracks the lifetime of each thread.

QBench maintains a count of threads and stores the metadata for all threads in

a doubly linked list. Each thread also stores a pointer to its own metadata using

thread-local storage, which permits constant time access. When a thread dies,

a callback is invoked to clean up thread-local data. QBench provides a cleanup

function for a thread’s metadata that unlinks it from the global list and decrements

the global thread count.

6.1.2 Avoiding blocking

Achieving full quiescence may be delayed or thwarted by blocking calls. For

example, a call to qbench update may be preceded by a call that reads from a socket.

If this call blocks, the thread will not reach its update point until data is available.

Worse still, one thread could hold a mutex when it reaches its update point, but

then another thread could block on the same mutex prior to reaching its own update

point, delaying full quiescence indefinitely.

To avoid these problems, the programmer must ensure that all blocking calls

that appear on any path to an update point are interruptible. This requirement

147

immediately rules out the second situation above: the program is not permitted to

hold any locks when it reaches an update point, because pthread mutex lock is not

interruptible (nor would it be sensible to make it so). Fortunately, we found that

no quiescent points in the programs we considered ever held a lock.

For the benchmark programs in our study, blocking calls that could inhibit

quiescence fell into two categories: blocking I/O calls and calls to pthread mutex wait.

We found that in both cases, we could interrupt the call and the program would

either behave correctly with no changes, or we could make it behave correctly with

a few small modifications.

6.1.2.1 Blocking on I/O

Mature server programs are often written to deal with interrupted blocking

calls, so adding update points to such programs requires little or no change. Consider

the following example.

1 void ∗thread entry (void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 qbench update();
5 res = accept(sockfd, addr, addrlen);
6 if (res == 1 && errno == EINTR)
7 continue;
8 /∗ ... handle connection ∗/
9 }

10 }

Under normal circumstances an accept call will block until a connection is accepted.

However, if a signal is received the call will be interrupted, returning 1 and setting

148

the errno to EINTR.1 In the above code snippet, the programmer has accounted for

this possibility by returning control to the start of the loop so as to retry the accept.

Because an operator initiates a program update by sending the process a SIGUSR2

signal, adding the update point to line 4 in the example ensures the blocked accept

call will be released and will reach the update point quickly when the update is

signaled.

Note that signals are normally handled by a program’s main thread, so only

that thread’s blocking calls are interrupted. To interrupt blocking I/O calls in all

threads, QBench’s main signal handler sends a signal to any other thread that has

not already reached its update point and is not waiting on a condition variable; how

we handle the latter situation is described next.

6.1.2.2 Blocking on condition variables

We observed that the threads in our benchmark programs often coordinate

using condition variables, blocking on calls to pthread cond wait. As a matter of

good style, programmers guard against spurious wake-ups of such calls by placing

them in loops, as the following non-highlighted code on lines 6–7 shows:

1 void ∗thread entry (void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 qbench update();
5 pthread mutex lock(&mutex);
6 while (! input is ready () && !qbench update requested()) {
7 qbench pthread cond wait(&cond, &mutex);

1POSIX supports auto-restarting interrupted, “slow” system calls [60] (i.e., without returning
EINTR), which would defeat our scheme. We disable that feature by excluding SA RESTART
from the configuration mask used when installing the signal handler.

149

8 }
9 pthread mutex unlock(&mutex);

10 if (qbench update requested())
11 continue; /∗ reaches qbench update ∗/
12 /∗ ... handle connection ∗/
13 }
14 }

To allow an update to interrupt this idiomatic use of condition variables, we first

modify the condition to check whether an update has been requested, as shown

in the highlighted code on line 6. We also modify the code following the condition

variable loop to jump back to the start of the loop if an update is requested (lines 10-

11). This changes ensures that an update is reached if pthread cond wait wakes. One

straightforward way to force the pthread cond wait call on line 7 to wake up would

be to replace it with pthread cond timedwait with a short timeout. But this approach

incurs some unnecessary delay and potentially expensive polling overhead. There-

fore, we replace the pthread cond wait call with a call to qbench pthread cond wait,

which (before calling pthread cond wait) notes the condition variable argument in

the global list of threads so that it can later be signaled by another thread once an

update has been requested.

These solutions for waking a thread blocking on I/O or condition variables

require that another thread be available to signal the process or condition variable

(e.g., since pthread cond signal cannot safely be called from a signal handler). This

presents a problem if the thread that receives the initial updating signal is blocked

on a condition variable and so may not wake up to signal other threads. For this

reason, QBench launches one additional thread that sleeps during the vast majority

150

of execution, but periodically wakes and checks the update-requested flag. If an

update was requested, it will attempt to signal any threads that have not yet reached

an update point.

While the above two circumstances cover the vast majority of blocking calls,

we note that one of our benchmark programs, Suricata, required custom code to

be called from a signal handler to unblock one of its threads (as we describe in

Section 6.2.1). POSIX requires that the same signal handler function be used

for all threads in a process. To compensate, QBench provides a library function,

qbench thread update callback that allows the developer to provide a callback func-

tion to be executed for the current thread when an update signal is received.

6.2 Results

This section presents the results of a study in which we used QBench to mea-

sure the quiescence behavior of six multithreaded programs. We found that the

changes required to support full quiescence were small (an average of 22 lines per

program), and quiescence could be achieved fairly quickly (in less than 1ms in most

cases).

6.2.1 Experimental setup

The first three columns of Table 6.1 describe the size and thread structure of

our subject programs. This subsection describes each program briefly, the workload

that we used to test it, and how we needed to modify it to achieve full quiescence

151

L
o
C

U
p

d
C

h
a
n
g
e
d

R
e
q
u
ir

e
d

w
/
L

o
a
d

(m
s)

w
/
o

L
o
a
d

(m
s)

P
ro

g
ra

m
T

o
ta

l
#

o
f

T
h
re

a
d
s

P
o
in

ts
L

o
C

(†
)

M
a
n
u
a
l

C
h
g
s

A
ll

C
h
g
s

U
p
d

o
n
ly

A
ll

C
h
g
s

U
p
d

o
n
ly

ht
tp

d-
2.

2.
22

23
26

51
2

+
c,

c
=

3
5

7
(5

)
3

(C
o
n

d
.

V
a
r.

L
o
o
p

)
0.

18
5

0.
23

0
0.

12
3

0.
15

0

ic
ec

as
t-

2.
3.

2
17

03
8

6
12

3
(3

)
1

(T
h

re
a
d

S
le

ep
s)

10
5.

15
2

95
4.

32
10

7.
55

8
98

6.
26

5

ip
er

f-
2.

0.
5

39
96

3
+
n
◦ ,

n
=

1
5

8
(3

)
1

(C
o
n

d
.

V
a
r.

L
o
o
p

)
0.

19
3

D
N

Q
0.

16
9

D
N

Q

m
em

ca
ch

ed
-1

.4
.1

3
94

04
2

+
c,

c
=

4
4

27
(4

)
2

(l
ib

ev
en

t
ch

a
n

g
es

)
0.

16
6

D
N

Q
0.

15
5

D
N

Q

sp
ac

e-
ty

ra
n

t-
0.

35
4

87
21

3
+

2n
◦ ,
n

=
5

6
8

(6
)

1
(T

h
re

a
d

S
le

ep
s)

0.
42

6
20

.5
83

0.
07

8
20

.3
04

su
ri

ca
ta

-1
.2

.1
26

03
44

8
+
c,

c
=

3
7

11
(6

)
1

(l
ib

p
ca

p
b

re
a
k
)

0.
50

3
68

.0
98

0.
37

8
D

N
Q

∗ C
on

fi
gu

ra
b
le

:
c

w
or

ke
rs

◦ V
ar

ie
s

b
y
n

co
n
n
ec

te
d

cl
ie

n
ts

† C
al

ls
to

Q
B

en
ch

ex
cl

u
d
in

g
u
p

d
at

e
D

N
Q

=
D

o
es

n
ot

q
u
ie

sc
e.

T
ab

le
6.

1:
T

h
re

ad
In

fo
rm

at
io

n

152

rapidly.

Apache httpd. Apache httpd is a widely used web server. We configured httpd

to use thread-based concurrency with 3 worker threads. To achieve full quiescence

quickly, we first needed to make the standard changes described in Section 6.1 and

summarized in columns 4–6 of Table 6.1. We report the number of update points

and lines of code changed for each program and keep a separate count of the changes

that include calls to our library. In the remainder of this section, we describe only

the changes given in the Manual Changes column, i.e., those that tweak existing

program code beyond adding/substituting calls to QBench.

For httpd, the only such change was modifying a loop written to immediately

retry an interrupted poll operation to break out of the loop if an update is requested.

For our experiments with httpd, we used a workload of downloading a large

file from the server.

Icecast. Icecast is a streaming audio server that is popular for hosting Internet

radio stations. In its standard configuration, it runs with 6 threads, all of which

quiesce without modification. Several of the threads use sleep operations to reduce

polling; it turns out these sleep times are the dominant component of the time to

reach full quiescence.

For icecast, we selected a workload that corresponds to receiving an audio

stream from an outside source and forwards it to connected clients. We used the

Ezstream command-line tool to generate a source mp3 stream, connected 5 mplayer

clients, and requested an update mid-stream.

153

Iperf. Iperf is a program that measures the network performance (e.g., bandwidth,

delay jitter, and datagram loss) between two machines. Although the same exe-

cutable is used for both client and server modes, we only modified the server code

to reach update points during execution. Iperf has 3 threads at startup and an

additional thread for each connected client. The main thread has a conditional wait

in a while loop. We added an additional update-request–flag check to jump back to

the update point when needed. We measured iperf quiescence times while a client

(running on the same machine) performed a network measurement.

Memcached. Memcached is a high-performance, distributed caching server that

uses libevent to drive its main thread and a configurable number of worker threads.

We added an additional libevent handler for the main-thread event loop to respond

to SIGUSR2 and break out of libevent. Upon return, the main thread sends a

byte on the notification sockets for each worker and then reaches an update point.

The notifications cause each worker thread to enter its event handler, where it sees

that an update was requested ands returns from libevent to reach an update point.

Effectively, these update points were placed at quiescent points, although the style

is different from the other programs.

Our test requests an update to a Memcached instance under load from the

memslap Memcached benchmark.

Space Tyrant. Space Tyrant is a server for a text-based, multiplayer space strategy

game. At startup, Space Tyrant has 3 threads and creates 2 more for each connected

player. Space Tyrant implements long sleep operations using loops that check for

154

server-shutdown events between shorter sleeps. We added an additional update-

request–flag check to jump back to the update point when needed. Space Tyrant’s

threads required no additional modification. We updated Space Tyrant with 5

concurrent telnet client connections.

Suricata. Suricata is a network intrusion detector that monitors the packets that

pass through a network interface. By default, Suricata is configured to use 11

threads. One thread required special treatment: It calls into libpcap’s blocking

pcap dispatch function to process packets. libpcap provides a function pcap breakloop

that can be called from a signal handler to interrupt pcap dispatch. We install a

thread-specific handler function (cf. Section 6.1.2.2) to break out of the loop when

an update signal is received.

In our tests we ran Suricata with a default set of 7,946 packet analysis rules.

We requested an update as Suricata processed the packets produced by a constant

stream of 10 concurrent http requests and one large file download.

6.2.2 Quiescence times

The four rightmost columns of Table 6.1 report the median quiescence times

of 11 benchmark runs. All tests were run on a machine with an Intel Core 2 Duo

T5550 processor with 2GB of memory. For each program, we measured the time

taken to reach full quiescence under two workloads: while the server was idle (i.e., no

connected clients) and while performing the (program-dependent) work described

in the previous section. The idle workloads were used to reveal problematic cases

155

where threads block indefinitely waiting for input. We also measured the quiescence

times when using only update points and no other QBench calls.

The table shows we were able to reach full quiescence quickly for both work-

loads when using QBench; limiting ourselves only to update points would fail to

quiesce some programs. Without using our library with Suricata, the quiescence

time is variable depending on the rate of traffic filling the input buffers. Nearly all

programs quiesced in under 1ms (for both workloads); Icecast’s longer times are due

to sleep operations inserted by the programmers.

6.2.3 Threats to validity

For this study, we did not actually apply dynamic updates to the benchmark

programs, so we cannot be sure that the quiescent points inserted are the ones that

would be used in practice. However, the choice of quiescent points is largely dictated

by the structure of the code (usually at the beginning of each thread’s event loop),

so it is unlikely that we might find a preferred point that would be reached less

often.

In our study, we ensured that blocking operations that occur at the beginning

of event handling, when it is safe to immediately jump back to the beginning of the

loop, are interruptible. A blocking I/O operation in the middle of event-handling

could delay full quiescence if clients are extremely slow or stalled. Our current

experiments do not attempt to force this situation to occur, so we do not know

whether this is a problem in practice for these programs.

156

It is also possible that our observations for this particular selection of programs

do not generalize to most other programs. To avoid this risk, we have attempted to

consider a wide variety of program types. It may also be useful to specifically look

for programs that are implemented in such a way that they would not work well in

this approach.

6.3 Prior work

Here we summarize prior work on multithreaded program updates, focusing

on how that work controls update timing. We find that while some prior work is

insufficiently flexible, much prior work is perhaps overly concerned with minimizing

update times. The results of our study suggest that such concerns may not be

warranted.

Several systems [8, 38, 64] forbid updates to any code that is actively running.

Some synchronization is needed to ensure that all threads satisfy this condition.

Unfortunately, as we have observed in Chapter 2, this safety condition is insufficient

to ensure update safety, and it provides no guarantee that an update is applied in a

timely manner. For example, if a program’s main function is modified by an update,

the update will be delayed indefinitely because main is always running.

STUMP [49] lifts the restriction against updates of active code: instead, any

update may take effect when all threads have reached programmer-identified update

points. To potentially reduce delay at update time, STUMP implements a relaxed

synchronization protocol that permits an update whenever it appears as if the up-

157

date took effect at legal update points. A static analysis determines which program

points are equivalent to update points [50] and incorporates this information into

the synchronization protocol. Unfortunately, in the worst case, there is no guarantee

that meaningful opportunities for updating will be created. Moreover, it may be

difficult for a developer to understand the results of the analyses, e.g., to under-

stand why it did not permit more update points. Finally, the static analysis itself is

fairly intricate, and may not scale to large programs. The reported update times for

STUMP for the same programs used in our study (icecast, space tyrant, and mem-

cached) are higher—1,068ms, 6ms, and 1ms, respectively—though the experimental

setup is different.

UpStare [45] supports immediate updates, with no synchronization, by al-

lowing threads to update at any point during program execution. To provide this

support, UpStare requires the developer to create a mapping between each program

point in the old version of a changed function and the corresponding point in its

new version; such a mapping could require a significant manual effort, depending on

the size and complexity of the change. UpStare prevents blocking library calls from

delaying an update by substituting versions that include special handling when an

update has been requested; we use a similar, but simpler, approach in this work.

The UpStare paper does not report update times for any multithreaded programs.

POLUS [17] supports immediate updates by permitting contemporaneous threads

to execute code from different program versions. When a thread accesses a piece

of shared state, POLUS uses developer-provided, bidirectional transformation func-

tions to ensure that each thread sees the representation of state that it expects.

158

With this approach, however, the developer must additionally puzzle out the pos-

sible multi-version executions and reason that thread interactions via bi-directional

transformations will make sense. POLUS was applied to one multithreaded pro-

gram, Apache httpd. The authors report (for a different hardware configuration)

update times on the order of 15ms, but these also include time to transform any

in-flight state.

6.4 Conclusions

In this study, we found that, for a diverse set of benchmark programs, explicit

update points at quiescent program points were able to support multithreaded up-

dates quickly and with little implementation complexity. This finding suggests that

DSU systems like Kitsune that do not rely on complex program transformation or

analysis (i.e., those most likely to see real-world adoption) may be sufficient to bring

runtime updates to a non-trivial set of multithreaded programs.

159

Chapter 7

Future Work

This dissertation has presented several contributions to the state of the art in

DSU correctness and implementation. Over the course of these projects, we have

identified several new research directions and potential improvements to our current

approaches.

7.1 Checking Tools for Kitsune

Our current implementations of DSUTest and the program merger target up-

dates for Ginseng or an updating system with similar semantics. To expand the

usefulness of those techniques, we could adapt them to work with Kitsune.

DSUTest. For DSUTest, we believe it should be straightforward to create a mod-

ified testing driver program that can serve the two functions required by DSUTest:

to output the number of times each update point was reached during a non-updating

execution, and to control the timing of the dynamic update based on a command-

line argument. This would simplify the testing process, since the same compiled

program could be used in production or for DSU testing. This approach would not

attempt to compensate for non-determinism, but we believe that concern is less

significant in practice than it was for our empirical study, where we took pains to

ensure the validity of our results. Although this implementation would not support

160

update-test minimization, our experiments showed that minimization was unneeded

(and unhelpful) when Kitsune-style manual update points are used.

DSU Merger. For the DSU merger, the control-flow portions of the merging pro-

cess could potentially be quite simple. The old- and new-version symbols could be re-

named to be distinct and merged into the same file. A modified kitsune update would

be included in the merged file that would, upon update, invoke the new-version main

function and then terminate execution after main returns. One potentially limiting

factor would the need for a checking tool that could reason precisely enough about

which update point was taken when analyzing the new-version start-up code. It may

be possible to reduce the burden on analysis tools by generating separate start-up

code for each possible update point. This would in essence be the result of partially

evaluating the start-up control-flow conditions (i.e., kitsune is updating from (”point”))

with respect to name of the update point taken. Another challenge would be to

ensure that the xfgen specifications are compiled to code that can be effectively

analyzed by the target verification tools. For example, the current xfgen compiler

generates code that looks up symbol addresses in a lookup table before performing

transformation. A symbolic executor like Otter should be able to support this code,

but many other static-analysis tools cannot.

7.2 Kitsune Extensions

Over the course of our work on Kisune, we have identified several directions

for future work.

161

Automation. Although we have seen good evidence that making update behavior

explicit in the program is advantageous, there is still room for tools to help the

developer make those modifications. For example, it may be valuable for a tool

to analyze a program to detect its long-running event-processing loops. The tool

could apply heuristics based on the program’s loop nesting structure, the particular

operations performed in the loop body, and/or analysis of loop termination via

reachability [20] to suggest which loops should contain update points. Once update

points have been added to the program (either manually or through suggestions),

a tool could suggest modifications to the program’s start-up control flow to ensure

that the program returns to the correct loop when started up following an update.

Alternatively, a tool could identify what state might be overwritten when starting up

following an update. This information could be used to detect errors in a developer’s

modifications to start-up control flow.

Visualization. To help developers write state transformers, we could develop a

tool to visualize the old-version state at the time of the update. To facilitate this

tool support, the program could be compiled to expose data size information at

runtime. This tool could allow developers to iteratively construct their transforma-

tion rules and see their effects immediately. Such a tool could also aid developers

in implementing and debugging their type annotations.

Library State. Currently, Kitsune instruments the program itself for state migra-

tion, but does not have direct support for migrating the state maintained within

libraries. The programs that we have updated so far either use libraries that do not

162

contain state that is invalidated by the update (e.g., function pointers) or they have

APIs for reinitializing such state. If Kitsune-style updates become more popular,

important libraries could be modified to export cleaner interfaces for performing

migration. To support this, future work could experiment with API designs that

facilitate library state migration in a modular way (e.g., by having the runtime sys-

tem pass a mapping function into the library that it could use to update function

addresses). Likewise, specific requirements for library “reset” APIs could be devel-

oped. DSU-compatible libraries could elect to either directly support migration or

else they could implement a reset interface.

Lazy Transformation. Currently Kitsune transforms all program state during

the update process. This avoids the costly compiled-in version checks and type-

wrapping that Ginseng [52] uses to implement laziness. Nonetheless, if a program

with a large data set requires extensive transformation, the resulting delay may be

too disruptive to the program’s clients. In future work, we plan to look at ways

that virtual-memory protection could be used to implement lazy transformation

with Kitsune. For example, the Kitsune runtime could protect pages containing

new version state that has not yet been migrated forward and delay that migration

until a fault is handled. This will produce some steady-state performance overhead

due to transformations performed mid-request and protection faults that result from

false sharing. Experimentation is needed to assess the potential costs and benefits

of this approach.

163

7.3 DSU as a Feature for Other Languages

Kitsune implements whole-program updating and explicit updating semantics,

aiming to support DSU in harmony with the C language. Future work could analyze

what it means for DSU to be in harmony with other languages/environments, and

determine whether an approach based on Kitsune would be appropriate (or how it

would need to be modified).

Java. One promising target for this research is the Java language. Unlike C, the

Java runtime system provides precise type information. This means that none of

Kitsune’s type annotations for C (e.g., E PTRARRAY) would be needed. Also, it

should be possible to write code to walk the Java heap and perform transformation

using reflection. Another option would be to use an instrumented JVM to allow

transformation to occur during a garbage collection (GC) pass (or perhaps lazily if

concurrent GC were used). Finally, the xfgen specification language is not currently

equipped to define transformation involving class hierarchies, and it may need to

be extended in interesting ways to support complex changes (e.g., like modifying a

class’ parent).

Dynamic Languages. Since dynamic languages like Ruby [2] and Python [1] are

generally less amenable to static analysis than statically typed languages like C,

Kitsune-style updating, where the new version begins execution from the start, may

be an excellent match since it requires no complex analysis. However, xfgen does

use C program types to generate transformation. An interesting research question

would be to consider what tool support would aid developers in writing state trans-

164

formation code for dynamic languages. One possibility would be to build a tool like

the visualization tool proposed earlier in this chapter for dynamic languages. This

approach would fit well with the test-centric philosophy preferred by many users of

dynamic languages.

165

Chapter 8

Conclusion

In this dissertation, we have argued that dynamic software updating is best

treated as a program feature.

• For purposes of DSU correctness, this means that developers need the ability

to reason about the correctness of specific program behaviors under update,

just as they would for any other program feature. To support this claim, we

presented an empirical study that showed that the most common automatic

safety checks do not ensure update correctness and identified a critical set of

problems with reasoning about and using transparent DSU systems. We de-

veloped a new approach to specifying the correct behavior of program features

under DSU, and showed that it can often be applied with little additional

work over single-version specification. Finally, we developed a novel approach

to verifying DSU correctness using off-the-shelf tools that are not DSU-aware.

• For purposes of DSU implementation, we claim that programs should be writ-

ten to make the important parts of DSU behavior (e.g., when updates can

happen and what happens during and after an update) explicit in the program

code. We tested this claim by implementing Kitsune, a new DSU system for C

that avoids the restrictions imposed by other DSU systems on data represen-

tations, programming idioms, and compiler optimizations. Kitsune addresses

166

the problems that our empirical study identified with transparent updating

systems and operates in harmony with C. We applied Kitsune to a large set of

updates to widely used programs and found that using it required little pro-

grammer effort and imposed virtually no steady-state overhead on program

execution. We find Kitsune to be the most flexible, efficient, and easy to use

DSU system for C developed to date.

167

Appendix A

Comparing failures allowed by different timing mechanisms

Figure 2.4 shows the total count of update points for each patch and how many

test failures we permitted by each timing restriction. Although this was sufficient to

evaluate the efficacy of the checks, we were also curious about the exact relationship

between AS and CFS in terms of which particular points they allow.

The left half of Figure A.1 classifies each failing update point based on which

safety checks would have prevented the failure. We break down the failures into four

basic categories, one per row of the table, visualized in the Venn diagram above it.

For vsftpd, OpenSSH, and ngIRCd, we see that well over 97% of the failing

points are disallowed by both safety checks (row (c)). The next largest category of

failures are those that are allowed by CFS but disallowed by AS (row (a)), and no

failures are prevented only by CFS (row (b)).1 Lastly, well fewer than 1% of the

failures for each application are allowed under both safety checks (row (d)).

A.1 Program Phases

To get a more refined view of where updates are allowed and where they

fail, we have broken down the execution of our benchmark programs into phases

1Although we encountered no instances of failures that are prevented by CFS but allowed by
AS in our experiment, such cases are theoretically possible. More specifically, Ginseng’s static
analysis is conservative, and this conservatism could cause Ginseng to disallow an update point
that is allowed by AS. If that update point induced a version consistency error, we would then see
a failure prevented by CFS but allowed by AS.

168

A
S

(a
)

C
F
S

(b
)

C
F
S
∩
A
S

(c
)

(A
S

∪
C
F
S
)

(d
)

C
a
te

g
o
ry

F
a
il
u

re
s

%
F

a
il
u

re
s

OpenSSH

(a
)

O
n

ly
P

re
v
en

te
d

b
y

A
S

4
6
,2

8
8

3
%

(b
)

O
n

ly
P

re
v
en

te
d

b
y

C
F

S
0

0
%

(c
)

P
re

v
en

te
d

b
y

A
S

a
n

d
C

F
S

1
,3

8
8
,9

1
6

9
7
%

(d
)

P
re

v
en

te
d

b
y

N
ei

th
er

4
9
5

<
1
%

(a
+

b
+

c+
d

)
T

o
ta

l
F

a
il
u

re
s

1
,4

3
5
,6

9
9

1
0
0
%

vsftpd

(a
)

O
n

ly
P

re
v
en

te
d

b
y

A
S

2
,1

9
4

2
%

(b
)

O
n

ly
P

re
v
en

te
d

b
y

C
F

S
0

0
%

(c
)

P
re

v
en

te
d

b
y

A
S

a
n

d
C

F
S

1
2
6
,1

3
0

9
8
%

(d
)

P
re

v
en

te
d

b
y

N
ei

th
er

0
0
%

(a
+

b
+

c+
d

)
T

o
ta

l
F

a
il
u

re
s

1
2
8
,3

2
4

1
0
0
%

ngIRCd

(a
)

O
n

ly
P

re
v
en

te
d

b
y

A
S

9
8

<
1
%

(b
)

O
n

ly
P

re
v
en

te
d

b
y

C
F

S
0

0
%

(c
)

P
re

v
en

te
d

b
y

A
S

a
n

d
C

F
S

3
0
8
,3

6
4

∼
1
0
0
%

(d
)

P
re

v
en

te
d

b
y

N
ei

th
er

0
0
%

(a
+

b
+

c+
d

)
T

o
ta

l
F

a
il
u

re
s

3
0
8
,4

6
2

1
0
0
%

C
a
te

g
o
ry

S
u

cc
es

se
s

%
S

u
cc

es
se

s

OpenSSH

(a
)

O
n

ly
A

ll
o
w

ed
b
y

A
S

1
0
2
,0

7
6

2
%

(b
)

O
n

ly
A

ll
o
w

ed
b
y

C
F

S
7
9
2
,9

7
0

1
2
%

(c
)

A
ll
o
w

ed
b
y

A
S

a
n

d
C

F
S

4
,1

4
1
,7

2
4

6
3
%

(d
)

A
ll
o
w

ed
b
y

N
ei

th
er

1
,5

8
1
,2

2
6

2
4
%

(a
+

b
+

c+
d

)
T

o
ta

l
P

a
ss

in
g

6
,6

1
7
,9

9
6

1
0
0
%

vsftpd

(a
)

O
n

ly
A

ll
o
w

ed
b
y

A
S

3
3
7
,0

3
6

9
%

(b
)

O
n

ly
A

ll
o
w

ed
b
y

C
F

S
1
,1

3
6
,4

8
8

3
0
%

(c
)

A
ll
o
w

ed
b
y

A
S

a
n

d
C

F
S

1
,7

3
6
,0

7
9

4
6
%

(d
)

A
ll
o
w

ed
b
y

N
ei

th
er

5
9
4
,7

1
5

1
6
%

(a
+

b
+

c+
d

)
T

o
ta

l
P

a
ss

in
g

3
,8

0
4
,3

1
8

1
0
0
%

ngIRCd

(a
)

O
n

ly
A

ll
o
w

ed
b
y

A
S

0
0
%

(b
)

O
n

ly
A

ll
o
w

ed
b
y

C
F

S
6
4
3
,0

4
4

3
4
%

(c
)

A
ll
o
w

ed
b
y

A
S

a
n

d
C

F
S

9
4
1
,5

6
5

4
9
%

(d
)

A
ll
o
w

ed
b
y

N
ei

th
er

3
3
3
,5

8
0

1
7
%

(a
+

b
+

c+
d

)
T

o
ta

l
P

a
ss

in
g

1
,9

1
8
,1

8
9

1
0
0
%

F
a
il
u

re
s

P
re

v
en

te
d

S
u

cc
es

se
s

A
ll
o
w

ed

T
ab

le
A

.1
:

B
re

ak
d
ow

n
of

re
su

lt
s

b
y

sa
fe

ty
ch

ec
k

169

corresponding to their long-running loops and the transitions between them. The

execution of vsftpd consists of a connection loop that accepts session requests and

forks child processes to handle them, and a command loop in each child process

that receives, processes, and responds to requests from the client. In addition,

vsftpd includes a startup phase that initializes and configures the server state, and a

transition phase that performs some per-connection initialization. Transitions occur

as follows:

startup connection loop transition command loop

We have identified a similar set of phases for OpenSSH. The key differences are

the presence of two command loop phases that handle requests for different protocol

versions, a brief shutdown phase to handle cleanup after a client connection ends,

and the possibility of skipping the connection loop under certain configurations.

The transitions for OpenSSH occur as follows:

startup

connection loop

transition

command loop 1

command loop 2

shutdown

Unlike vsftpd and OpenSSH, which fork new processes to service client con-

nections independently, ngIRCd employs a simpler program structure where new

connections and requests from existing connections are serviced by the main server

loop running in a single process. In our test executions, we observed two distinct,

but simpler phases for ngIRCd:

startup main loop

170

0 → 1

1 → 2

2 → 3

3 → 4

4 → 5

5 → 6

6 → 7

n
gI
R
C
d

A
ll
P
ts

C
F
S

A
S

M
an

u
al

startup

A
ll
P
ts

C
F
S

A
S

M
an

u
al

main
loop

0 → 1

1 → 2

2 → 3

3 → 4

4 → 5

5 → 6

6 → 7

Failure(s) Ocurred

v
sf
tp
d

A
ll
P
ts

C
F
S

A
S

M
an

u
al

startup transition

A
ll
P
ts

C
F
S

A
S

M
an

u
al

A
ll
P
ts

C
F
S

A
S

M
an

u
al

A
ll
P
ts

C
F
S

A
S

M
an

u
al

All Points Passed

No Points Allowed

7 → 8

command
loop

connection
loop

0 → 1

1 → 2

2 → 3

3 → 4

4 → 5

5 → 6

6 → 7

7 → 8

8 → 9

9 → 10

O
p
en
S
S
H

A
ll
P
ts

C
F
S

A
S

M
an

u
al

startup transition shutdown

A
ll
P
ts

C
F
S

A
S

M
an

u
al

A
ll
P
ts

C
F
S

A
S

M
an

u
al

A
ll
P
ts

C
F
S

A
S

M
an

u
al

A
ll
P
ts

C
F
S

A
S

M
an

u
al

A
ll
P
ts

C
F
S

A
S

M
an

u
al

command
loop 1

command
loop 2

connection
loop

Figure A.1: Updatability across program phases

Figure A.1 summarizes test failures by program phase and patch (the full

tables from which this figure is derived can be found in Figures A.2, A.3, and A.4).

Black boxes indicate that all tests pass and grey boxes indicate one or more failures.

White boxes indicate that no allowable update points were reached during execution

of the particular phase.

We can see that CFS allows at least one update point in each program phase,

while AS precludes updates during the startup phases for OpenSSH and vsftpd.

There are no manually placed update points in the startup and transition phases.

In all cases, updates are permitted within the command and connection loop phases,

ensuring reasonable availability to updates. Moreover, for Manual and AS, no fail-

ures occur at update points within the loops, while for CFS, the only loop-phase

failures occur in the vsftpd command loop.

171

Our observation that updates within the loops are most important, while up-

dates within the startup or transition phases are much less so (since these phases

are finite and presumably short) suggests that update availability is best evaluated

using a simpler criteria: are updates supported during each long running loop of the

program? Each of the three timing restrictions that we have evaluated satisfy this

criteria. Manually identified update points were able to do so while not permitting

any failing update executions in our experiments.

Following are tables showing the complete breakdown of program failures

across each application, safety check, and program phase. These results are sum-

marized in the text in Figures 2.4 and A.1.

A.2 Minimization Effectiveness

Figure A.2 illustrates the effectiveness of our minimization algorithm as it was

applied in our empirical study. In each column, we show the original count to the

left of the arrow, the minimized count to the right of it, and the percent reduction

in parentheses. The All Pts column shows the reduction for the full set of update

points that are reached during the execution of each application’s test suite. Overall,

95% of update tests from OpenSSH, 96% from vsftpd, and 86% from ngIRCd could

be eliminated. This is significant because the initial number of tests was very large:

over 14.2M in total for all three programs.

If our testing approach were used in practice, rather than for this empirical

study, it would only necessary to test update points that are allowed by the safety

172

Update All Pts CFS AS Manual

Total Failed Total Failed Total Failed Total Failed

O
p
e
n
S
S
H

in
it

0→1 68,141 7,226 25,455 0 no pts no pts

1→2 90,776 0 90,776 0 no pts no pts

2→3 87,569 10,830 32,703 906 no pts no pts

3→4 103,035 0 103,035 0 no pts no pts

4→5 103,035 9,191 38,010 0 no pts no pts

5→6 116,164 10,596 47,455 0 no pts no pts

6→7 116,872 108,669 47,691 44,351 no pts no pts

7→8 138,750 11,222 1,572 0 no pts no pts

8→9 153,985 0 71,880 0 no pts no pts

9→10 149,279 2 45,477 0 no pts no pts

Total 1,127,606 157,736 504,054 45,257 no pts no pts

O
p
e
n
S
S
H

m
a
in

lo
o
p

0→1 1,151 0 48 0 48 0 24 0

1→2 1,196 0 1,196 0 1,196 0 27 0

2→3 1,121 2 44 0 44 0 22 0

3→4 1,187 0 1,187 0 1,187 0 24 0

4→5 1,172 46 46 0 46 0 23 0

5→6 1,636 0 70 0 70 0 35 0

6→7 1,636 212 70 0 70 0 35 0

7→8 4,234 0 68 0 68 0 34 0

8→9 4,694 0 2,254 0 78 0 39 0

9→10 4,396 0 72 0 72 0 36 0

Total 22,423 260 5,055 0 2,879 0 299 0

O
p
e
n
S
S
H

t
r
a
n
s
it
io

n

0→1 473,167 12,489 28,847 0 32,503 0 no pts

1→2 572,337 0 572,337 0 550,537 0 no pts

2→3 510,969 290,876 29,076 782 8,954 4 no pts

3→4 618,569 0 618,569 0 588,380 0 no pts

4→5 619,472 556,444 33,954 609 9,363 380 no pts

5→6 705,534 107 41,043 0 57,056 0 no pts

6→7 706,432 54,452 32,746 110 38,359 110 no pts

7→8 721,499 158 45,421 1 67,627 1 no pts

8→9 759,782 3 146,387 0 48,551 0 no pts

9→10 726,649 357,917 35,608 24 45,554 0 no pts

Total 6,414,410 1,272,446 1,583,988 1,526 1,446,884 495 no pts

O
p
e
n
S
S
H

c
li
e
n
t
lo

o
p
1

0→1 26,542 0 12,443 0 2,490 0 415 0

1→2 28,593 0 28,593 0 23,425 0 479 0

2→3 26,995 5,257 4,174 0 836 0 418 0

3→4 37,537 0 37,537 0 37,537 0 632 0

4→5 37,537 0 27,431 0 1,264 0 632 0

5→6 42,904 0 30,215 0 42,904 0 698 0

6→7 42,858 0 11,144 0 5,576 0 697 0

7→8 42,640 0 22,128 0 22,128 0 692 0

8→9 43,216 0 30,353 0 1,408 0 704 0

9→10 41,075 0 28,937 0 4,020 0 670 0

Total 369,897 5,257 232,955 0 141,588 0 6,037 0

O
p
e
n
S
S
H

c
li
e
n
t
lo

o
p
2

0→1 10,759 0 1,232 0 254 0 127 0

1→2 10,483 0 10,483 0 10,483 0 124 0

2→3 10,852 0 8,665 0 10,125 0 128 0

3→4 10,759 0 10,759 0 10,759 0 127 0

4→5 10,759 0 10,651 0 10,651 0 127 0

5→6 10,759 0 10,651 0 10,759 0 127 0

6→7 10,759 0 3,991 0 254 0 127 0

7→8 10,483 0 10,340 0 9,920 0 124 0

8→9 10,576 0 10,470 0 10,576 0 125 0

9→10 10,759 0 10,651 0 10,254 0 127 0

Total 106,948 0 87,893 0 84,035 0 1,263 0

O
p
e
n
S
S
H

s
h
u
t
d
o
w
n

0→1 1,111 0 19 0 19 0 no pts

1→2 1,937 0 1,937 0 1,937 0 no pts

2→3 1,214 0 645 0 943 0 no pts

3→4 1,111 0 1,111 0 940 0 no pts

4→5 1,111 0 541 0 19 0 no pts

5→6 1,238 0 566 0 1,161 0 no pts

6→7 1,111 0 541 0 19 0 no pts

7→8 1,111 0 541 0 1,111 0 no pts

8→9 1,111 0 541 0 1,111 0 no pts

9→10 1,356 0 592 0 1,151 0 no pts

Total 12,411 0 7,034 0 8,411 0 no pts

Figure A.2: Test success and failure (OpenSSH Full)

173

Update All Pts CFS AS Manual

Total Failed Total Failed Total Failed Total Failed

v
sf
tp

d
in

it

0→1 214,035 0 214,035 0 5,751 0 no pts

1→2 214,047 0 143,248 0 5,751 0 no pts

2→3 220,163 0 220,163 0 5,751 0 no pts

3→4 271,574 0 271,574 0 3,294 0 no pts

4→5 218,721 4,427 2,518 0 27 0 no pts

5→6 223,198 785 5,840 0 27 0 no pts

6→7 223,900 1,189 2,519 0 5,751 0 no pts

7→8 224,366 2,815 2,492 0 5,751 0 no pts

Total 1,810,004 9,216 862,389 0 32,103 0 no pts

v
sf
tp

d
m

a
in

lo
o
p

0→1 1,674 0 1,674 0 1,674 0 54 0

1→2 1,674 0 1,539 0 1,674 0 54 0

2→3 1,674 0 1,674 0 1,512 0 54 0

3→4 1,971 0 1,971 0 1,485 0 54 0

4→5 1,674 0 1,350 0 108 0 54 0

5→6 1,674 0 1,350 0 1,620 0 54 0

6→7 1,674 0 1,350 0 1,674 0 54 0

7→8 1,674 0 1,350 0 108 0 54 0

Total 13,689 0 12,258 0 9,855 0 432 0

v
sf
tp

d
tr
a
n
si
ti
o
n

0→1 85,318 0 85,318 0 67,367 0 no pts

1→2 85,349 0 17,437 0 67,609 0 no pts

2→3 87,925 0 87,925 0 49,135 0 no pts

3→4 88,222 0 88,222 0 23,249 0 no pts

4→5 87,431 32,377 1,152 0 6,034 0 no pts

5→6 87,589 108 16,216 0 46,834 0 no pts

6→7 87,698 81 1,152 0 19,399 0 no pts

7→8 87,913 431 966 0 8,825 0 no pts

Total 697,445 32,997 298,388 0 288,452 0 no pts

v
sf
tp

d
c
li
e
n
tl
o
o
p

0→1 136,883 0 136,883 0 134,649 0 100 0

1→2 138,913 2,993 36,053 726 111,735 0 100 0

2→3 160,732 0 160,732 0 123,328 0 101 0

3→4 145,304 0 145,304 0 63,965 0 103 0

4→5 179,101 83,118 14,277 1,468 196 0 101 0

5→6 198,571 0 42,593 0 167,076 0 101 0

6→7 216,573 0 24,318 0 196 0 101 0

7→8 235,427 0 202 0 196 0 101 0

Total 1,411,504 86,111 560,362 2,194 601,341 0 808 0

Figure A.3: Test success and failure (vsftpd Full)

check in use. The CFS and AS columns show the number of points allowed under

these checks and the further reduction achieved by our algorithm. The combination

yields a significant reduction: the maximum number of tested points to achieve

full update coverage for a patch to any application under a safety check was vsftpd

patch 3→4 which required 42,431 tests (all other patches required far fewer). This

174

Update All Pts CFS AS Manual

Total Failed Total Failed Total Failed Total Failed

n
g
IR

C
d

in
it

0→1 137,326 0 137,326 0 134,504 0 no pts

1→2 137,326 0 137,326 0 132,362 0 no pts

2→3 137,326 204 1,632 0 68 0 no pts

3→4 137,360 1,086 1,632 0 68 0 no pts

4→5 138,278 2,215 1,666 34 68 0 no pts

5→6 194,038 0 194,038 0 2,108 0 no pts

6→7 194,038 158,916 476 0 68 0 no pts

Total 1,075,692 162,421 474,096 34 269,246 0 no pts

n
g
IR

C
d

n
g
ir
c
d
lo
o
p 0→1 154,005 0 154,005 0 18,326 0 372 0

1→2 152,232 0 148,984 0 35,010 0 370 0

2→3 152,324 0 375 0 375 0 375 0

3→4 152,540 0 376 0 376 0 376 0

4→5 143,406 135,890 321 61 260 0 260 0

5→6 198,181 3 198,181 3 9,603 0 384 0

6→7 198,271 10,148 384 0 384 0 384 0

Total 1,150,959 146,041 502,626 64 64,334 0 2,521 0

Figure A.4: Test success and failure (ngIRCd Full)

particular patch did not modify any types signatures, so CFS permitted all possible

timings.

The manually introduced update points are a small fraction of those in All, and

we found the minimization strategy to be ineffective at further reducing these points.

This is because the manually inserted update points occur once per iteration of the

long-running loops of the program and so many function calls may occur between

iterations, increasing the chances of a conflict. In effect, we may view manual update

point selection as a highly-effective form of minimization as no patch to any program

would require more than 870 update tests.

Our minimization algorithm was critical in enabling us to perform our exper-

iments. As we note in Section 2.4, testing of these reduced points for OpenSSH still

required approximately 600 CPU hours to complete.

175

U
p

d
a
te

A
ll

P
ts

C
F

S
A

S
M

a
n
u

a
l

OpenSSH

0
→

1
5
8
0
,8

7
1
→

3
1
,7

9
1

(9
5
%

)
6
8
,0

4
4
→

3
,6

8
7

(9
5
%

)
3
5
,3

1
4
→

3
,0

2
7

(9
1
%

)
5
6
6
→

5
6
6

(0
%

)

1
→

2
7
0
5
,3

2
2
→

1
,7

9
5

(∼
1
0
0
%

)
7
0
5
,3

2
2
→

1
,7

9
5

(∼
1
0
0
%

)
5
8
7
,5

7
8
→

1
,7

1
7

(∼
1
0
0
%

)
6
3
0
→

5
9
2

(6
%

)

2
→

3
6
3
8
,7

2
0
→

6
3
,0

1
1

(9
0
%

)
7
5
,3

0
7
→

5
,4

5
4

(9
3
%

)
2
0
,9

0
2
→

2
,3

5
3

(8
9
%

)
5
6
8
→

5
6
8

(0
%

)

3
→

4
7
7
2
,1

9
8
→

4
,3

2
4

(9
9
%

)
7
7
2
,1

9
8
→

4
,3

2
4

(9
9
%

)
6
3
8
,8

0
3
→

3
,7

7
5

(9
9
%

)
7
8
3
→

7
7
0

(2
%

)

4
→

5
7
7
3
,0

8
6
→

2
7
,3

9
9

(9
6
%

)
1
1
0
,6

3
3
→

4
,5

9
2

(9
6
%

)
2
1
,3

4
3
→

1
,5

6
4

(9
3
%

)
7
8
2
→

7
8
2

(0
%

)

5
→

6
8
7
8
,2

3
5
→

1
7
,3

9
8

(9
8
%

)
1
3
0
,0

0
0
→

1
,2

9
2

(9
9
%

)
1
1
1
,9

5
0
→

1
,7

2
3

(9
8
%

)
8
6
0
→

8
4
1

(2
%

)

6
→

7
8
7
9
,6

6
8
→

4
7
,0

9
2

(9
5
%

)
9
6
,1

8
3
→

4
,5

6
8

(9
5
%

)
4
4
,2

7
8
→

2
,1

3
9

(9
5
%

)
8
5
9
→

8
5
9

(0
%

)

7
→

8
9
1
8
,7

1
7
→

8
9
,6

0
1

(9
0
%

)
8
0
,0

7
0
→

3
,9

2
5

(9
5
%

)
1
0
0
,8

5
4
→

4
,1

4
1

(9
6
%

)
8
5
0
→

8
5
0

(0
%

)

8
→

9
9
7
3
,3

6
4
→

3
4
,2

9
3

(9
6
%

)
2
6
1
,8

8
5
→

5
,4

6
7

(9
8
%

)
6
1
,7

2
4
→

2
,0

7
0

(9
7
%

)
8
6
8
→

8
2
3

(5
%

)

9
→

1
0

9
3
3
,5

1
4
→

5
2
,3

5
6

(9
4
%

)
1
2
1
,3

3
7
→

3
,4

2
4

(9
7
%

)
6
1
,0

5
1
→

2
,8

9
1

(9
5
%

)
8
3
3
→

8
3
3

(0
%

)

T
o
ta

l
8
,0
5
3
,6
9
5
→

3
6
9
,0
6
0

(9
5
%

)
2
,4
2
0
,9
7
9
→

3
8
,5
2
8

(9
8
%

)
1
,6
8
3
,7
9
7
→

2
5
,4
0
0

(9
8
%

)
7
,5
9
9
→

7
,4
8
4

(2
%

)

vsftpd

0
→

1
4
3
7
,9

1
0
→

8
3

(∼
1
0
0
%

)
4
3
7
,9

1
0
→

8
3

(∼
1
0
0
%

)
2
0
9
,4

4
1
→

8
3

(∼
1
0
0
%

)
1
5
4
→

2
8

(8
2
%

)

1
→

2
4
3
9
,9

8
3
→

1
,2

3
9

(∼
1
0
0
%

)
1
9
8
,2

7
7
→

1
,2

3
5

(9
9
%

)
1
8
6
,7

6
9
→

3
4
5

(∼
1
0
0
%

)
1
5
4
→

1
2
7

(1
8
%

)

2
→

3
4
7
0
,4

9
4
→

1
,1

5
5

(∼
1
0
0
%

)
4
7
0
,4

9
4
→

1
,1

5
5

(∼
1
0
0
%

)
1
7
9
,7

2
6
→

8
2
0

(∼
1
0
0
%

)
1
5
5
→

1
2
7

(1
8
%

)

3
→

4
5
0
7
,0

7
1
→

4
2
,4

2
1

(9
2
%

)
5
0
7
,0

7
1
→

4
2
,4

2
1

(9
2
%

)
9
1
,9

9
3
→

7
,0

3
0

(9
2
%

)
1
5
7
→

1
3
0

(1
7
%

)

4
→

5
4
8
6
,9

2
7
→

4
1
,5

8
9

(9
1
%

)
1
9
,2

9
7
→

4
,5

4
2

(7
6
%

)
6
,3

6
5
→

5
4
5

(9
1
%

)
1
5
5
→

1
5
5

(0
%

)

5
→

6
5
1
1
,0

3
2
→

3
9
,4

7
8

(9
2
%

)
6
5
,9

9
9
→

9
,5

3
0

(8
6
%

)
2
1
5
,5

5
7
→

1
2
,7

1
7

(9
4
%

)
1
5
5
→

1
2
7

(1
8
%

)

6
→

7
5
2
9
,8

4
5
→

1
1
,6

1
9

(9
8
%

)
2
9
,3

3
9
→

1
,2

6
3

(9
6
%

)
2
7
,0

2
0
→

8
3
1

(9
7
%

)
1
5
5
→

1
2
8

(1
7
%

)

7
→

8
5
4
9
,3

8
0
→

2
1
,1

0
1

(9
6
%

)
5
,0

1
0
→

7
1
7

(8
6
%

)
1
4
,8

8
0
→

5
8
1

(9
6
%

)
1
5
5
→

1
5
5

(0
%

)

T
o
ta

l
3
,9
3
2
,6
4
2
→

1
5
8
,6
8
5

(9
6
%

)
1
,7
3
3
,3
9
7
→

6
0
,9
4
6

(9
6
%

)
9
3
1
,7
5
1
→

2
2
,9
5
2

(9
8
%

)
1
,2
4
0
→

9
7
7

(2
1
%

)

ngIRCd

0
→

1
2
9
1
,3

3
1
→

1
1
,7

3
3

(9
6
%

)
2
9
1
,3

3
1
→

1
1
,7

3
3

(9
6
%

)
1
5
2
,8

3
0
→

2
,9

7
1

(9
8
%

)
3
7
2
→

3
3
7

(9
%

)

1
→

2
2
8
9
,5

5
8
→

1
0
,5

3
9

(9
6
%

)
2
8
6
,3

1
0
→

1
0
,5

3
9

(9
6
%

)
1
6
7
,3

7
2
→

2
,1

3
7

(9
9
%

)
3
7
0
→

3
3
5

(9
%

)

2
→

3
2
8
9
,6

5
0
→

6
,9

1
3

(9
8
%

)
2
,0

0
7
→

4
7
7

(7
6
%

)
4
4
3
→

4
4
3

(0
%

)
3
7
5
→

3
7
5

(0
%

)

3
→

4
2
8
9
,9

0
0
→

7
,0

3
9

(9
8
%

)
2
,0

0
8
→

4
7
8

(7
6
%

)
4
4
4
→

4
4
4

(0
%

)
3
7
6
→

3
7
6

(0
%

)

4
→

5
2
8
1
,6

8
4
→

1
1
0
,1

2
5

(6
1
%

)
1
,9

8
7
→

7
2
9

(6
3
%

)
3
2
8
→

3
2
8

(0
%

)
2
6
0
→

2
6
0

(0
%

)

5
→

6
3
9
2
,2

1
9
→

1
2
,8

1
2

(9
7
%

)
3
9
2
,2

1
9
→

1
2
,8

1
2

(9
7
%

)
1
1
,7

1
1
→

1
,7

7
3

(8
5
%

)
3
8
4
→

3
8
4

(0
%

)

6
→

7
3
9
2
,3

0
9
→

1
1
9
,5

0
5

(7
0
%

)
8
6
0
→

4
5
2

(4
7
%

)
4
5
2
→

4
5
2

(0
%

)
3
8
4
→

3
8
4

(0
%

)

T
o
ta

l
2
,2
2
6
,6
5
1
→

2
7
8
,6
6
6

(8
7
%

)
9
7
6
,7
2
2
→

3
7
,2
2
0

(9
6
%

)
3
3
3
,5
8
0
→

8
,5
4
8

(9
7
%

)
2
,5
2
1
→

2
,4
5
1

(3
%

)

T
ab

le
A

.2
:

U
p

d
at

e
p

oi
n
t

m
in

im
iz

at
io

n

176

Appendix B

Merging equivalence proof

This appendix presents a formal proof of Theorem 1 from Section 4.1, which

states that a configuration 〈p, σ, e〉 updated by patch π is correct if and only if the

merged configuration 〈p, σ, e〉 � π is correct. Note that the definition of correctness

given in the paper specifies only a single patch π to be applied. For our proof, we

generalize to correctness over sequences of patches ~π.

B.1 Overview

The proof is structured in three parts: First, we prove a soundness lemma

showing that the merged program simulates every step of execution in the old and

new programs, as well as the updating step from old to new. Second, we prove

a completeness lemma showing that every execution in the merged program corre-

sponds to an execution in the original program, the new program, or the updated

program. Finally, we use these results to prove the main equivalence result.

Before we present these lemmas, we need a little notation. We define three

merging transformations—for old-version, new-version, and combined-version code.

The first two complete the presentation of merging given in Figure 4.2. Figure B.1

fully defines the transformation [[·]]p,π which applies to old-version code, and Fig-

ure B.2 fully defines {| · |}p, which is used with new-version code. The highlights

177

[[x]]p,π , x

[[a]]p,π , a

[[g]]p,π ,

{
gptr if p(g) = λx.e

g otherwise

[[i]]p,π , i

[[(v1, v2)]]p,π , ([[v1]]p,π, [[v2]]p,π)

[[()]]p,π , ()

[[v1 op v2]]p,π , [[v1]]p,π op [[v2]]p,π

[[v1(v2)]]p,π , [[v1]]p,π([[v2]]p,π)

[[?]]p,π , ?

[[v1 := v2]]p,π , [[v1]]p,π := [[v2]]p,π

[[!v]]p,π , ![[v]]p,π

[[ref v]]p,π , ref [[v]]p,π

[[if v e1 e2]]p,π , if [[v]]p,π [[e1]]p,π [[e2]]p,π

[[let x = e1 in e2]]p,π , let x = [[e2]]p,π in [[e2]]p,π

[[while e1 do e2]]p,π , while [[e1]]p,π do [[e2]]p,π

[[update]]p,(pπ ,eπ) , let z = isupd() in

if z 0 (uflag := ?; let z = isupd() in if z ({|eπ|}p′ ; 1) 0)

[[assume v]]p,π , assume [[v]]p,π

[[assert v]]p,π , assert [[v]]p,π

[[running p′′]]p,(pπ ,eπ) ,


let z = isupd() in z = 0 if p′′ = p

let z = isupd() in z 6= 0 if p′′ = pπ

let z = 0 in z otherwise

[[error]]p,π , error

[[p, (g, λy.e)]]p,π , [[p]]p,π,

(g, λy.[[e]]p,π),

(gptr , λy.let z = isupd() in if z g′(y) g(y))

[[·]]p,π , (·, (isupd , λy.let z = !uflag in z > 0))

Figure B.1: Merging old version code.

178

{|x|}p , x

{|a|}p , a

{|g|}p ,

{
g′ if p(g) = λx.e

g otherwise

{|i|}p , i

{|(v1, v2)|}p , ({|v1|}p, {|v2|}p)
{|()|}p , ()

{|v1 op v2|}p , {|v1|}p op {|v2|}p

{|v1(v2)|}p , {|v1|}p({|v2|}p)
{|?|}p , ?

{|v1 := v2|}p , {|v1|}p := {|v2|}p

{|!v|}p , !{|v|}p

{|ref v|}p , ref {|v|}p

{|if v e1 e2|}p , if {|v|}p {|e1|}p {|e2|}p

{|let x = e1 in e2|}p , let x = {|e1|}p in {|e2|}p

{|while e1 do e2|}p , while {|e1|}p do {|e2|}p

{|update|}p , let z = 0 in z

{|assume v|}p , assume {|v|}p

{|assert v|}p , assert {|v|}p

{|running p′′|}p ,

{
let z = 1 in z if p = p′′

let z = 0 in z otherwise

{|error|}p , error

{|p, (g, λy.e)|}p , {|p|}p, (g′, λy.{|e|}p)
{| · |}p , ·

Figure B.2: Merging new version code.

of these transformations were explained in Section 4.1.3. For technical reasons, we

modify the transformations slightly so that non-values (e.g., update) map to non-

values (e.g., let z = 0 in z instead of 0). The third transformation (| · |)p,pπ combines

[[·]]p,π and {|·|}p and returns a set of expressions as a result. For example, it translates

179

(|x|)p,pπ , {x}
(|a|)p,pπ , {a}

(|g|)p,pπ ,

{
{g′, gptr} if p(g) = λx.e

{g} otherwise

(|i|)p,pπ , {i}
(|(v1, v2)|)p,pπ , {(v′1, v′2) | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}

(|()|)p,pπ , {()}
(|v1 op v2|)p,pπ , {v′1 op v′2 | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}

(|v1(v2)|)p,pπ , {v′1(v′2) | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}
(|?|)p,pπ , {?}

(|v1 := v2|)p,pπ , {v′1 := v′2 | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}
(|!v|)p,pπ , {!v′ | v′ ∈ (|v|)p,pπ}

(|ref v|)p,pπ , {ref v′ | v′ ∈ (|v|)p,pπ}
(|if v e1 e2|)p,pπ , {if v′ e′1 e′2 | v ∈ (|v|)p,pπ ∧ e′1 ∈ (|e1|)p,pπ ∧ e′2 ∈ (|e2|)p,pπ}

(|let x = e1 in e2|)p,pπ , {let x = e′1 in e′2 | e′1 ∈ (|e1|)p,pπ ∧ e′2 ∈ (|e2|)p,pπ}
(|while e1 do e2|)p,pπ , {while e′1 do e′2 | e′1 ∈ (|e1|)p,pπ ∧ e′2 ∈ (|e2|)p,pπ}

(|update|)p,pπ , {let z = 0 in z}
(|assume v|)p,pπ , {assume v′ | v′ ∈ (|v|)p,pπ}

(|assert v|)p,pπ , {assert v′ | v′ ∈ (|v|)p,pπ}

(|running p′′|)p,pπ ,


{let z = 0 in z, let z = isupd() in z = 0} if p′′ = p

{let z = 1 in z, isupd()} if p′′ = pπ

{let z = 0 in z} otherwise

(|error|)p,pπ , {error}

Figure B.3: Merging combined version code.

function pointers g to {g′, gptr}. The (| · |)·,· transformation is needed because after

the simulated update takes place, function pointers f may either bind to old/new

versions fptr or to new versions f ′.

Next, using these transformations on expressions, we define a transformation

180

on configurations:

〈p;σ; e〉 � π , 〈p, σ[uflag 7→ i], e〉

〈p;σ; e〉 [�] π , 〈p, σ̂[uflag 7→ j], ê〉

where p = {|pπ|}pπ , [[p]]p,π

e = [[e]]p,π

σ = {l 7→ [[v]]p,π | σ(l) = v}

π = (pπ, eπ) i ≤ 0

ê = (|e|)p,pπ j > 0

σ̂ = {σ′ | dom(σ′) = dom(σ) ∧ ∀l ∈ dom(σ). σ′(l) ∈ (|σ(l)|)p,pπ}

The (·� ·) and (· [�] ·) transformations simulate the behavior of the program before

and after the update occurs respectively. Note that both transformations describe

sets of configurations: (· � ·) contains all configurations of the specified form where

uflag is bound in the heap to an integer i ≤ 0 while (· [�] ·) is a set due to the

use of (| · |)p,pπ . These sets are needed to set up the simulations between executions

in the old, new, and transformed programs. To streamline the presentation we will

occasionally abuse notation slightly, lifting various notions from elements to sets in

the obvious way. For example, we write 〈p;σ; e〉 � π ; 〈p;σ′; e′〉 [�] π to indicate

that every configuration in 〈p;σ; e〉 � π steps to a configuration in 〈p;σ′; e′〉 [�] π.

The first lemma states that any execution in an untransformed program is

matched by an execution in the transformed program.

Lemma 1 (Soundness). For all p, p′, σ, σ′, e, e′, ~ν, π with π = (pπ, eπ) we have

〈p;σ; e〉 ~ν; ∗ 〈p′;σ′; e′〉 implies

181

1. if ~ν = ε then p′ = p and 〈p;σ; e〉 � π ; ∗ 〈p;σ′; e′〉 � π

2. if ~ν = π then p′ = pπ and 〈p;σ; e〉 � π ; ∗ 〈p;σ′; e′〉 [�] π.

The second lemma states that for any execution trace of the transformed

program, there is a corresponding trace of the untransformed program. However,

the transformed program may need to execute a little more to match up with an

untransformed state.

Lemma 2 (Completeness). For all p, p′, σ, σ′, e, e′, π such that π = (pπ, eπ), if

〈p;σ; e〉 � π ; ∗ 〈p′;σ′; e′〉 then there exist σ′′ and e′′ such that

• 〈p′;σ′; e′〉; ∗ 〈p;σ′′; e′′〉 � π and 〈p;σ; e〉; ∗ 〈p;σ′′, e′′〉 ; or

• 〈p′;σ′; e′〉; ∗ 〈p;σ′′; e′′〉 [�] π and 〈p;σ; e〉 π; ∗ 〈pπ;σ′′, e′′〉 ; or

Using these lemmas, we prove the main result:

of Theorem 1. Recall the statement of the theorem:

For all p, σ, e, π with π = (pπ, eπ) and dom(pπ) ⊇ dom(p) we have

|= 〈p;σ; e〉, π if and only if |= 〈p, σ, e〉 � π.

We prove each direction separately.

(⇐) Let 〈p;σ; e〉 � π ; ∗ 〈p′;σ′; e′〉 be an execution of the transformed program.

By Lemma 2 there exists a σ′′ and e′′ such that either:

• 〈p′;σ′; e′〉; ∗ 〈p;σ′′; e′′〉 � π and 〈p;σ; e〉; ∗ 〈p;σ′′; e′′〉. By assumption,

we have |= 〈p;σ; e〉, π and hence e′′ is not error. Using Lemma 8 we also

have that e′ is not error.

182

• 〈p′;σ′; e′〉 ; ∗ 〈p;σ′′; e′′〉 [�] π and 〈p;σ; e〉 π; ∗ 〈p′;σ′′; e′′〉. The result

follows by a similar argument as the previous case.

(⇒) Let 〈p;σ; e〉 ~ν; ∗ 〈p′;σ′; e′〉 be an execution. By Lemma 1 we have:

• ~ν = ε implies p′ = p and 〈p;σ; e〉 � π ; ∗ 〈p;σ′; e′〉 � π. By assumption,

we have |= 〈p;σ; e〉, π and hence [[e′]]p,π is not error. Using Lemma 8 we

also have that e′ is not error.

• ~ν = π implies p′ = pπ and 〈p;σ; e〉 � π ; ∗ 〈p;σ′; e′〉 [�] π. The result

follows by a similar argument as the previous case. 2

B.2 Soundness Lemmas

The main soundness lemma follows from the three lemmas proved in this

section. The first shows that the simulation between the original and transformed

programs holds before to an update when taking a single step.

Lemma 3. For all p, σ, σ′, e, e′, π, if 〈p;σ; e〉 ; 〈p;σ′; e′〉 then 〈p;σ; e〉 � π ;+

〈p;σ′; e′〉 � π.

Proof. Let (pπ, eπ) = π and define p, σ, and σ′ as follows:

p = {|pπ|}p, [[p]]p,π

σ = {l 7→ [[v]]p,π | σ(l) = v}[uflag 7→ i]

σ′ = {l 7→ [[v]]p,π | σ′(l) = v}[uflag 7→ i′]

183

where i ≤ 0 and i′ ≤ 0.

The proof is by induction on 〈p;σ; e〉; 〈p;σ′; e′〉. Most cases are straightfor-

ward calculations using the definition of the transformation. We show just a few of

the most interesting cases.

Case 〈p;σ; v1 op v2〉; 〈p;σ; v′〉 where v′ = [[op]](v1, v2):

For this case, we must assume that [[op]](v1, v2) = v′ implies [[op]]([[v1]]p,π, [[v2]]p,π) =

[[v′]]p,π. This rules out operators such as < on function pointers (which makes

intuitive sense, because relative ordering on pointers will not be preseved by

the transformation in general). We calculate as follows,

〈p;σ; v1 op v2〉 � π = 〈p;σ; [[v1 op v2]]p,π〉

= 〈p;σ; [[v1]]p,π op [[v2]]p,π〉

; 〈p;σ; [[op]]([[v1]]p,π, [[v2]]p,π)〉

= 〈p;σ; [[v′]]p,π〉 � π by assumption

= 〈p;σ; v′〉 � π

and obtain the required result.

Case: 〈p;σ; update〉; 〈p;σ; 0〉

184

We calculate as follows,

〈p;σ; update〉 � π

= 〈p;σ; [[update]]p,π〉

= 〈p;σ; let z = isupd() in

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉

; 〈p;σ; let z = let z = !uflag in z > 0 in

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉

;+ 〈p;σ; (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉 as σ(uflag) = i ≤ 0

;+ 〈p;σ[uflag 7→ i′]; 0〉 where i′ ≤ 0

= 〈p;σ[uflag 7→ i′]; [[0]]p,π〉

= 〈p;σ; 0〉 � π

and obtain the required result.

Case: 〈p;σ; update〉 π; 〈p′;σ; (e; 1)〉 where π = (p′, e)

Can’t happen, as ~ν = ε by assumption.

Case: 〈p;σ; running p〉; 〈p;σ; 1〉

185

We calculate as follows,

〈p;σ; running p〉 � π = 〈p;σ; [[running p]]p,π〉

= 〈p;σ; let z = isupd() in z = 0〉

; 〈p;σ; let z = let z = !uflag in z > 0 in z = 0〉

;+ 〈p;σ; 1〉 as σ(uflag) = i ≤ 0

= 〈p;σ; [[1]]p,π〉

= 〈p;σ; 1〉 � π

and obtain the required result.

The next lemma proves the simulation is also preserved by updates.

Lemma 4. For all p, p′, σ, σ′, e, e′, π with π = (pπ, eπ) we have 〈p;σ; e〉 π; 〈p′;σ′; e′〉

implies p′ = pπ and 〈p;σ; e〉 � π ;+ 〈p;σ′; e′〉 [�] π.

Proof. Let (pπ, eπ) = π and define p, σ, and σ̂′ as follows.

p = {|pπ|}p, [[p]]p,π

σ = {l 7→ [[v]]p,π | σ(l) = v}[uflag 7→ i]

σ̂′ = {σ′[uflag 7→ j] | dom(σ′) = dom(σ) ∧ ∀l ∈ dom(σ). σ′(l) ∈ (|σ(l)|)p,pπ}

where i ≤ 0 and j > 0.

The proof is by induction on 〈p;σ; e〉 π; 〈p′;σ′; e′〉. We show just one case:

Case: 〈p;σ; update〉 π; 〈pπ;σ; (eπ; 1)〉

186

We calculate as follows,

〈p;σ; update〉 � π

= 〈p;σ; let z = isupd() in

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉

;+ 〈p;σ; let z = 0 in as σ(uflag) = i ≤ 0

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉

;+ 〈p;σ[uflag 7→ j]; let z = isupd() in if z ({|eπ|}p; 1) 0〉 where j > 0

;+ 〈p;σ[uflag 7→ j]; ({|eπ|}p; 1)〉

∈ 〈p; σ̂[uflag 7→ j]; (|eπ; 1|)p,pπ 〉

⊆ 〈p;σ; (eπ; 1)〉 [�] π

and obtain the required result.

The third lemma proves that the simulation is preserved following an update.

Lemma 5. For all p, σ, σ′, e, e′, π with π = (pπ, eπ) we have 〈pπ;σ; e〉 ; 〈pπ;σ′; e′〉

implies 〈p;σ; e〉 [�] π ;+ 〈p;σ′; e′〉 [�] π.

Proof. Similar to the previous soundness lemmas.

B.3 Completeness Lemmas

The main completeness lemma follows from repeated applications of the next

two lemmas.

187

Lemma 6. For all p, p′, σ, σ′, e, e′, π where π = (pπ, eπ), if

〈p;σ; e〉 � π ;+ 〈p′;σ′; e′〉

and there does not exist σ0 and e0 such that either

〈p;σ; e〉; 〈p;σ0; e0〉 and 〈p;σ; e〉 � π ;+ 〈p;σ0; e0〉 � π ;+ 〈p′;σ′; e′〉

or

〈p;σ; e〉 π; 〈p′;σ0; e0〉 and 〈p;σ; e〉 � π ;+ 〈p;σ0; e0〉 [�] π ;+ 〈p′;σ′; e′〉

then there exists σ′′ and e′′ such that either

• 〈p′;σ′′; e′′〉 = 〈p;σ′; e′〉 � π and 〈p;σ; e〉; 〈p;σ′′; e′′〉 ; or

• 〈p′;σ′′; e′′〉 ∈ 〈p;σ′; e′〉 [�] π and 〈p;σ; e〉 π; 〈pπ;σ′′; e′′〉; or

• 〈p′;σ′; e′〉 ν; 〈p′;σ′′; e′′〉 for some ν.

Intuitively, this lemma states that if the transformed program can take some

number of steps, then either that state corresponds to a reachable untransformed

state, or can take another step, eventually reaching a corresponding state.

The second lemma is similar, but considers post-update states:

Lemma 7. For all p, p′, σ, σ′, e, e′, π where π = (pπ, eπ), if

〈p;σ; e〉 [�] π ;+ 〈p′;σ′; e′〉

188

and there do not exist σ0 and e0 such that

〈pπ;σ; e〉; 〈pπ;σ0; e0〉 and 〈p;σ; e〉 [�] π ;+ 〈p;σ0; e0〉 [�] π ;+ 〈p′;σ′; e′〉

Then there exist σ′′ and e′′ such that either

• 〈p′;σ′; e′〉 ∈ 〈p;σ′′; e′′〉 [�] π and 〈pπ;σ; e〉; 〈pπ;σ′′; e′′〉 ; or

• 〈p′;σ′; e′〉; 〈p′;σ′′; e′′〉.

B.4 Auxiliary Lemmas

Lemma 8 (Error). For all p, π, e, we have e 6= error if and only if:

• [[e]]p,π 6= error;

• {|e|}p 6= error; and

• (|e|)p,π 63 error.

Lemma 9 (Non-Zero). For all p, π, v, we have v 6= 0 if and only if:

1. [[v]]p,π 6= 0;

2. {|v|}p 6= 0; and

3. (|v|)p,pπ 63 0.

Lemma 10 (Substitution). For all p, p′, π, x, v, and e we have the following:

• [[e[v/x]]]p,π = [[e]]p,π[[[v]]p,π/x];

189

• {|e[v/x]|}p = {|e|}p[{|v|}p/x]; and

• (|e[v/x]|)p,pπ = (|e|)p,pπ [(|v|)p,pπ/x].

190

Bibliography

[1] The python language. http://www.python.org/.

[2] The ruby language. http://www.ruby-lang.org/en/.

[3] Upgrading weblogic application environments. http://docs.oracle.com/cd/

E12840_01/wls/docs103/pdf/upgrade.pdf, July 2008.

[4] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Modular software upgrades

for distributed systems. In Proceedings of the European Conference on Object-

Oriented Programming (ECOOP), July 2006.

[5] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. OPUS:

Online patches and updates for security. In USENIX Security Symposium,

2005.

[6] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer, and Sri-

ram K. Rajamani. Partial-order reduction in symbolic state space exploration.

In Proceedings of the International Conference on Computer Aided Verification,

1997.

[7] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent pro-

gramming in ERLANG (2nd ed.). Prentice Hall International Ltd., 1996.

191

[8] Jeff Arnold and M. Frans Kaashoek. Ksplice: automatic rebootless kernel

updates. In Proceedings of the European Conference on Computer Systems

(EuroSys, 2009.

[9] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray,

Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for instruction-level

tracing and analysis of program executions. In Proceedings of the ACM SIG-

PLAN International Conference on Virtual Execution Environments (VEE),

2006.

[10] T. Bloom and M. Day. Reconfiguration and module replacement in Argus:

theory and practice. Software Engineering Journal, 8(2):102–108, 1993.

[11] Gilad Bracha. Objects as software services. http://bracha.org/

objectsAsSoftwareServices.pdf, August 2006.

[12] Computer Associates (CA). The avoidable cost of downtime (phase 1).

http://www.arcserve.com/us/%20~/media/files/supportingpieces/

arcserve/avoidable-cost-of-downtime-summary.pdf, November 2010.

[13] Computer Associates (CA). The avoidable cost of downtime (phase 2).

http://www.arcserve.com/us/lpg/%20~/media/Files/SupportingPieces/

ARCserve/avoidable-cost-of-downtime-summary-phase-2.pdf, May 2011.

[14] Cassandra API overview. http://wiki.apache.org/cassandra/API.

[15] Nathaniel Charlton, Ben Horsfall, and Bernhard Reus. Formal reasoning about

runtime code update. In Hot Topics in Software Upgrades (HotSWUp), 2011.

192

[16] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. Polus: A

powerful live updating system. In Proceedings of the International Conference

on Software Engineering (ICSE), pages 271–281, 2007.

[17] Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang, and Pen-Chung Yew. Dy-

namic software updating using a relaxed consistency model. Proceedings of the

IEEE Transactions on Software Engineering, 37(5), September 2011.

[18] The 2009 U.S. digital year in review. http://www.comscore.com/Press_

Events/Presentations_Whitepapers/2010/The_2009_U.S._Digital_Year_

in_Review, May 2010.

[19] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C.

Necula. Dependent types for low-level programming. In Proceedings of the

European Symposium on Programming, pages 520–535, 2007.

[20] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs

for systems code. In Proceedings of the ACM Conference on Programming

Language Design and Implementation (PLDI), 2006.

[21] M. Dmitriev. Towards flexible and safe technology for runtime evolution of

java language applications. In Proceedings of the Workshop on Engineering

Complex Object-Oriented Systems for Evolution, in association with OOPSLA

2001, October 2001.

193

[22] Dominic Duggan. Type-based hot swapping of running modules. In Proceedings

of the The ACM SIGPLAN International Conference on Functional Program-

ming (ICFP), 2001.

[23] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and

Peter M. Chen. Revirt: Enabling intrusion analysis through virtual-machine

logging and replay. In OSDI, 2002.

[24] Edit and continue. http://msdn2.microsoft.com/en-us/library/

bcew296c.aspx.

[25] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The

essence of compiling with continuations. In Proceedings of the ACM Conference

on Programming Language Design and Implementation (PLDI), 1993.

[26] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay de-

bugging for distributed applications. In Proceedings of the USENIX Annual

Technical Conference, 2006.

[27] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic types.

Technical Report ECS-LFCS-97-378, LFCS, University of Edinburgh, 1997.

[28] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu,

M. Frans, and Kaashoek Zheng Zhang. R2: An application-level kernel for

record and replay. In OSDI, 2008.

[29] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework for

on-line software version change. IEEE TSE, 22(2), 1996.

194

[30] Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster.

Efficient Systematic Testing for Dynamically Updatable Software. In Proceed-

ings of the Hot Topics in Software Upgrades (HotSWUp), 2009.

[31] Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster.

A testing-based empirical study of dynamic software update safety restrictions.

Technical Report CS-TR-4949, Department of Computer Science, the Univer-

sity of Maryland, College Park, 2010.

[32] Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster, and Jef-

frey S. Foster. Specifying and verifying the correctness of dynamic software

updates. In Proceedings of the Verified Software: Theories, Tools and Experi-

ments, January 2012.

[33] Christopher M. Hayden, Karla Saur, Michael Hicks, and Jeffrey S. Foster. A

study of dynamic software update quiescence in multi-threaded programs, 2012.

[34] Christopher M. Hayden, Edward K. Smith, Eric A. Hardisty, Michael Hicks,

and Jeffrey S. Foster. Evaluating dynamic software update safety using effi-

cient systematic testing. Proceedings of the IEEE Transactions on Software

Engineering, 99(PrePrints), September 2011.

[35] Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster.

State Transfer for Clear and Efficient Runtime Updates. In Proceedings of the

Hot Topics in Software Upgrades (HotSWUp), 2011.

195

[36] Michael Hicks and Scott Nettles. Dynamic software updating. Proceedings of

the ACM Transactions on Programming Languages and Systems (TOPLAS),

27(6), 2005.

[37] Java platform debugger architecture. This supports class replacement. See

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/.

[38] The K42 Project. http://www.research.ibm.com/K42/.

[39] Leo King. Nasdaq out of date software helped hackers - report. Computerworld

UK, November 2011.

[40] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic

change management. Proceedings of the IEEE Transactions on Software Engi-

neering, 16(11), 1990.

[41] Insup Lee. DYMOS: A Dynamic Modification System. PhD thesis, Dept. of

Computer Science, U. Wisconsin, Madison, 1983.

[42] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for reasoning

about shape and arithmetic. In CAV, LNCS 5123, pages 428–432. Springer,

2008.

[43] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic

numeric abstractions for heap-manipulating programs. In Proceedings of the

ACM SIGPLAN Symposium on Principles of Programming Languages, 2010.

196

[44] Kristis Makris. Upstare manual. http://files.mkgnu.net/files/upstare/

UPSTARE_RELEASE_0-12-8/manual/html-single/manual.html.

[45] Kristis Makris and Rida Bazzi. Immediate Multi-Threaded Dynamic Software

Updates Using Stack Reconstruction. In USENIX Annual Technical Confer-

ence, 2009.

[46] Kristis Makris and Kyung Dong Ryu. Dynamic and Adaptive Updates of Non-

Quiescent Subsystems in Commodity Operating System Kernels. In European

Conference on Computer Systems (EuroSys, 2007.

[47] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A systematic testing tool for

concurrent software. Technical Report MSR-TR-2007-149, Microsoft Research,

2007.

[48] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.

Producing wrong data without doing anything obviously wrong! In Proceedings

of the ACM Conference on Architectural support for programming languages

and operating systems, pages 265–276, 2009.

[49] Iulian Neamtiu and Michael Hicks. Safe and timely dynamic updates for multi-

threaded programs. In Proceedings of the ACM Conference on Programming

Language Design and Implementation (PLDI), 2009.

[50] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Con-

textual effects for version-consistent dynamic software updating and safe con-

197

current programming. In Proceedings of the ACM SIGPLAN Symposium on

Principles of Programming Languages, 2008.

[51] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical

dynamic software updating for C. In Proceedings of the ACM Conference on

Programming Language Design and Implementation (PLDI), 2006.

[52] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical

dynamic software updating for C. In Proceedings of the ACM Conference on

Programming Language Design and Implementation (PLDI), 2006.

[53] Dave Patterson. A simple way to estimate the cost of downtime. http://roc.

cs.berkeley.edu/talks/pdf/LISA.pdf, November 2002.

[54] William Pugh and Nathaniel Ayewah. Unit testing concurrent software. In Pro-

ceedings of the IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2007.

[55] Shaz Qadeer and Dinghao Wu. KISS: Leep it simple and sequential. In Pro-

ceedings of the ACM Conference on Programming Language Design and Imple-

mentation (PLDI), 2004.

[56] Redis - project hosting on Google Code. http://code.google.com/p/redis/.

[57] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam

Porter. Using symbolic evaluation to understand behavior in configurable soft-

ware systems. In Proceedings of the International Conference on Software En-

gineering (ICSE), 2010.

198

[58] Eric Roman. A survey of checkpoint/restart implementations. Technical report,

Lawrence Berkeley National Laboratory, Tech, 2002.

[59] Yasushi Saito. Jockey: A user-space library for record-replay debugging. In

AADEBUG, 2005.

[60] Richard W. Stevens and Stephen A. Rago. Advanced Programming in the

UNIX(R) Environment (2nd Edition). Addison-Wesley Professional, 2005.

[61] Don Stewart and Manuel M. T. Chakravarty. Dynamic applications from the

ground up. In Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop

on Haskell, pages 27–38, New York, NY, USA, 2005. ACM Press.

[62] stopbadware.org. Compromised websites: an owner’s perspective. http://www.

stopbadware.org/pdfs/compromised-websites-an-owners-perspective.

pdf, February 2012.

[63] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian

Neamtiu. Mutatis Mutandis : Safe and flexible dynamic software updating.

ACM Trans. Program. Lang. Syst., 29(4), 2007.

[64] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic Soft-

ware Updates: A VM-centric Approach. In Proceedings of the ACM Conference

on Programming Language Design and Implementation (PLDI), 2009.

[65] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic soft-

ware updates for Java: A VM-centric approach. In Proceedings of the ACM

199

Conference on Programming Language Design and Implementation (PLDI),

2009.

[66] Chris Walton. Abstract Machines for Dynamic Computation. PhD thesis, Uni-

versity of Edinburgh, 2001. ECS-LFCS-01-425.

[67] David A. Wheeler. Sloccount. http://www.dwheeler.com/sloccount/.

[68] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam, Boris

Weissman, and Vmware Inc. Retrace: Collecting execution trace with virtual

machine deterministic replay. In MoBS, 2007.

200

