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Abstract. Verifying that programs trusted to enforce security actually
do so is a practical concern for programmers and administrators. How-
ever, there is a disconnect between the kinds of tools that have been
successfully applied to real software systems (such as taint mode in Perl
and Ruby), and information-flow compilers that enforce a variant of the
stronger security property of noninterference. Tools that have been suc-
cessfully used to find security violations have focused on explicit flows of
information, where high-security information is directly leaked to output.
Analysis tools that enforce noninterference also prevent implicit flows
of information, where high-security information can be inferred from a
program’s flow of control. However, these tools have seen little use in
practice, despite the stronger guarantees that they provide.

To better understand why, this paper experimentally investigates the
explicit and implicit flows identified by the standard algorithm for estab-
lishing noninterference. When applied to implementations of authentica-
tion and cryptographic functions, the standard algorithm discovers many
real implicit flows of information, but also reports an extremely high
number of false alarms, most of which are due to conservative handling
of unchecked exceptions (e.g., null pointer exceptions). After a careful
analysis of all sources of true and false alarms, due to both implicit and
explicit flows, the paper concludes with some ideas to improve the false
alarm rate, toward making stronger security analysis more practical.

1 Introduction

The last decade has seen a proliferation of static analysis tools that analyze com-
modity software to discover potential security vulnerabilities. For example, tools
have been developed, in research and industry, to uncover SQL injection vulner-
abilities [16, 9], missed access control checks [25], user-kernel pointer bugs [13],
and format string vulnerabilities [6, 21]. At their core, these tools are quite sim-
ilar in that they track the flow of security-relevant data through the program.
For example, many programs receive untrusted input from the filesystem or the
network. If such data is unduly trusted it can be used for malicious purposes,
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e.g., to construct an unexpected SQL query string or printf format string that
leaks secrets or compromises the program. An analysis may track the flow of
input data to ensure it is santized or verified before it is trusted. An analysis
may dually check whether secret data, such as a cryptographic key or password,
may flow to a public channel; if so, this constitutes an information leak [3].

The last decade has also seen the development of security-typed programming
languages [20] (such as Jif [18], a variant of Java) that enforce flavors of the
security property of noninterference [11, 19]. Like the tools mentioned above, such
languages ensure that no untrusted data explicitly flows to trusted contexts (and
dually, that no secret data flows to public contexts). However, unlike these tools,
security-typed languages also ensure that there are no illegal implicit flows, which
arise due to control-dependent assignments. For example, given two boolean-
typed variables H and L, the code fragments L := H and if (H) then L :=
true; else L := false are semantically equivalent. In the first, H explicitly
flows to L via an assignment. In the second, no direct assignment takes place,
but nevertheless H has the same value as L at the conclusion of execution; thus
we say that H implicitly flows to L.

To our knowledge, implicit flow checking is not performed by mainstream
tools. On the upside, tracking implicit flows could reveal more security vul-
nerabilities. On the downside, an analysis that tracks implicit flows could waste
developer time, either by being too inefficient or producing too many false alarms
(warnings that do not correspond to actual problems). A natural question is “do
the benefits of implicit flow analysis outweigh the costs?”

This paper presents the results of a study we performed toward answering
this question. We analyzed several libraries for information leaks using JLift,
an interprocedural extension of the Jif security-typed language [14] and care-
fully analyzed the results to see how often JLift alarms real implicit information
flows, and how often they were false alarms. The code we analyzed implemented
security-critical functions: three different authentication methods in the J2SSH
Java SSH library and three different cryptographic libraries from the Java im-
plementation of the Bouncy Castle Cryptography API. We chose these appli-
cations for two reasons. First, they are security-critical, so understanding their
information leaks is important. Second, password checking and encryption di-
rectly manipulate sensitive data, and are known to induce illegal flows implicitly.
Therefore, the prevalence of true leaks in these routines suggests the best case
for finding potential leaks due to implicit flows, while the prevalence of false
alarms points to the human costs of analyzing an implicit flow checker’s results
when doing so is likely to be worthwhile.

To perform the analysis, we labeled sensitive data, such as passwords or cryp-
tographic keys, as secret, and labeled output channels as public, so that JLift
emits an alarm each time it discovers secret information could be inferred over a
public channel. For our benchmarks, implicit flows caused 98% (870 out of 887) of
the alarms, and of the 162 alarms identifying true information leaks, 145 of these
(89%) were due to implicit flows. On the other hand, there was a tremendous
number of false alarms (725), all of which were due to implicit flows (i.e., 83% of
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the implicit flow alarms, or 725 out of 870, could not arise at runtime). Examining
these further we find that the overwhelming majority (845 out of 870) of im-
plicit flow alarms arise from the potential to throw an exception after examining
sensitive data. Moreover, while the false alarm rate for flows induced by normal
conditional statements is 30%, the rate of false alarms for exception-induced flows
is much higher, at 85%. The false alarm rate from unchecked exceptions, such
as NullPointerExceptions and ArrayIndexOutOfBoundsExceptions, is higher
still: 757 of the 845 exception-induced flows were due to unchecked exceptions,
and 706 of these (or 93.2%) were false alarms.

We draw two conclusions from these results. On the one hand, implicit flow
checking can be valuable: JLift emitted 145 alarms that correspond to true im-
plicit flows of secret information. On the other hand, the human cost of dealing
with the many false alarms is likely to be quite high, and could well be the reason
that most tools perform no implicit flow checking. However, because the high
rate of false alarms comes from a few identifiable sources (notably exceptions,
particularly unchecked exceptions), we see much potential for improvement. In
particular, we suggest that implicit flow checking tools: (1) employ more power-
ful, secondary analyses for ruling out spurious alarms due to infeasible unchecked
exceptions; (2) rank the errors reported, beginning with explicit flows, followed
by implicit flows not from exceptions, and finally reporting implicit flows due
to exceptions; (3) employ annotations so that programmers can indicate code
that has been checked by an alternative method, such as a human code review
or extensive testing.

2 Program Analysis for Security

A large body of work has explored the use of programming languages and anal-
yses, both static and dynamic, to detect security vulnerabilities. Many analyses
aim to discover source-sink properties, or explicit flows. For example, to discover
a possible format string vulnerability, a programmer could use the Cqual [10]
static analyzer to give printf the type printf(untainted char* fmt, ...).
This type specifies that printf’s first argument must not come from an untrusted
source. Input functions are then labeled as producing potentially tainted data,
e.g., the type tainted char* getenv(char *name) indicates that the value re-
turned from getenv is possibly tainted, since it could be controlled by an at-
tacker. Given this specification, Cqual can analyze a source program to discover
whether data from a source with type tainted char* is able to explicitly flow,
via a series of assignments or function calls, to a sink of type untainted char*.
If such a flow is possible, it represents a potential format string vulnerability.

Explicit flow analysis tools [9, 16, 24] can be used to detect a variety of in-
tegrity violations, such as SQL injection vulnerabilities [16, 9], format string
vulnerabilities [6, 21], missed access control checks [25], and user-kernel pointer
bugs [13]. These tools can also be used to check confidentiality-oriented prop-
erties, to ensure that secret data is not inadvertently leaked. In this case, the
programmer would label sensitive data, such as a private key, as secret and ar-
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guments to output functions as public, and the analyzer would ensure that se-
cret data never flows to public channels (except under acceptable circumstances,
e.g., after an access control check). Scrash [3] uses Cqual in this way to identify
sensitive information that should be redacted from program crash reports.

While common, explicit flows are but one way in which an attacker is able
to gain information about a program’s execution for malicious purposes. The
other possibility is to use an implicit flow by which, in the case of confidentiality
properties, the attacker learns secret information indirectly, via a control channel.
As a simple illustration, consider the following program:

secret int x;
void check(public int y) {
if (x > y) then printf("greater\n");
else printf("smaller\n");

}

Cqual would not report a violation for this program: the secret integer x is not
leaked via an explicit flow to the public console. However, information about x
is leaked, in particular whether or not x is greater than the attacker-controlled
variable y. Invoked repeatedly, with different values of y, such a function could
ultimately leak all of x. It has been shown that cryptosystem implementations
can end up leaking the private key if they contain certain kinds of implicit flows,
e.g., by reporting the stage in which a decryption failed [1, 2, 23]. Conversely, an
attacker’s input can influence a program to corrupt trusted data, e.g., by turning
a setuid-invoking program into a confused deputy [5].

These problems are violations of the more general information flow secu-
rity property of noninterference [11]. For confidentiality, a program that en-
joys noninterference will not leak secret information to public outputs in any
manner, whether via implicit or explicit flows. Security-typed programming lan-
guages [20] such as Jif [18] enforce noninterference via type checking. Program
types are annotated with security labels like the secret and public qualifier an-
notations above, and security correctness is guaranteed through type checking:
type-correct programs do not leak secret information on public channels. Thus,
using a security-typed language, the check function above would be correctly
flagged as a potential leak of information.

3 Security Type Checking and Implicit Flows

The question we address in this paper is whether implicit flow checking as done
by security-typed languages is efficacious—is the signal worth the noise? This
section describes the standard security-type checking algorithm used to detect
implicit flows and considers possible sources of imprecision. The next section
examines the number and sources of true and false alarms when using this algo-
rithm to analyze some security-critical Java libraries.

In a security-typed language, types are annotated with security labels, anal-
ogous to type qualifiers: the integer type int can be labeled with the label high
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1 int{Public} authenticate(AuthenticationServer auth,
2 SshAuthRequest msg) {
3 Key{Secret} key = reader.readBinaryString();
4 if (checkKey == 0) {
5 if (verify.acceptKey(msg.getUsername(), key)) {
6 SshAuthPKOK reply = new SshAuthPKOK(key);
7 auth.sendMessage(reply);
8 return READY; }
9 else return FAILED; } }

Fig. 1. Example Authentication Code From J2SSH

as int{high} to signify a high-secrecy integer. The labels are ordered, inducing
a subtyping relation � on labeled types. In particular, because low is less secret
than high, int{low} is a subtype of int{high}, written int{low} � int{high}. If
h and l are respectively high and low secrecy variables, then the assignment
statement h := l is allowed, as int{low} � int{high}. On the other hand, l := h

is not allowed, preventing an illegal explicit flow, as int{high} 6� int{low},
The statement if h == 0 then l := 1 else l := 0 contains an implicit flow of

information from h to l, as by observing l we learn information about the value
of h. The standard way [20] to check for implicit flows is to maintain a security
label PC` for the program counter. This label contains the information revealed
by knowing which statement in the program is being executed at the current
time. PC` is determined by the labels of guards of any branches taken: if the
program branches on a condition that examines a high-security value, PC` is set
to high while checking the code in the branches. When a variable with label m
is assigned, we require PC` � m. In the above statement, the branch condition
(h == 0) causes the PC` to be high when checking the branches, meaning that
any assignment to l is illegal and so the code is rejected.

For a more realistic example, consider the code in Figure 1, taken from the
J2SSH implementation of public-key authentication. We use the label Secret

to represent high security, and Public to represent low security. This code is
executed when a user is attempting to authenticate using an SSH key. The
acceptKey method checks if the specified key is an accepted key for the user that
is attempting to log in. As this contains information about the system, acceptKey
returns a Secret boolean value, causing PC` to become Secret. As such, the
value READY returned from the branch must also be considered Secret, but notice
that we have annotated the return value of authenticate as int{Public}, so this
constitutes an implicit information leak.

While sound, the use of PC` to find implicit flows is conservative. Con-
sider the program if h == 0 then l := 1 else l := 1. This program leaks no
information—the value of l is always 1, no matter what the value of h—but the
type system rejects it as an illegal flow. A more pernicious source of false alarms
is the throwing of exceptions. For example, the Java code obj.equals(otherObj)

throws a NullPointerException at run time if obj is null. If such an exception
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occurs while PC` is high, the resulting termination of the program (assuming
the exception is not caught) is publicly-visible, and thus is an implicit flow of
information. In the example in Figure 1, such an exception thrown within the
call to sendMessage could reveal whether the given key was accepted. Therefore,
if the type system cannot prove that obj is always non-null, then dereferencing it
must be considered as possibly throwing a null pointer exception. An analogous
situation arises with other exceptions, such as array bounds violations and class
cast exceptions.

Jif’s type checker makes some attempt to prove that certain objects cannot
be null and that some array accesses are legal, but its analysis is fairly simplistic.
For example, the analysis operates only on local variables (not fields or formals),
and is only intraprocedural. Programmers are thus forced to work within the
limits of the analysis to limit false alarms. For example, it is a common practice
to copy fields and formal method arguments into local variables to check if
the objects are null before invoking methods on them. Redundant null checks
and empty try/catch blocks (where the programmer presumes no exception can
actually be thrown but the analysis cannot detect this) are also common.

While Jif’s analysis could be improved, determining whether a runtime ex-
ception could occur or not is undecidable [15], so no analysis can be perfect. To
show the general difficulty of the problem, consider the following code (taken
from the public key authentication routine in J2SSH):

1 byte[] decode(byte[] source, int off, int len) {
2 int len34 = len ∗ 3 / 4;
3 byte[] outBuff = new byte[len34];
4 ...
5 }

In this code, the statement new byte[len34] could throw a
NegativeArraySizeException, meaning that the program attempted to cre-
ate a byte array with a negative size (if len34 is negative). As this code
is invoked after checking whether a username is valid on the system, the
program crashing here after a negatively-sized array is created could reveal this
information to the requester. While the passed-in value len is meant to always
be positive, there is no easy way, in general, for a program analysis to determine
this. In our manual analysis, we determined that the only call to decode by the
public key authentication method was with the variable bytes.length, where
bytes was an array returned by String.getBytes(), a quantity that will always
be non-negative.

4 Experiments

To determine the impact of implicit program flows in analyzing real code, we
analyzed six implementations of security functions: (1) three different authenti-
cation methods in the J2SSH Java SSH library:4 and (2) three different cryp-

4 J2SSH is available from http://sourceforge.net/projects/sshtools.
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tographic libraries from the Java implementation of the Bouncy Castle Cryp-
tography API.5 The J2SSH authentication methods that we investigated were
password-based, keyboard-interactive, and public-key-based. The Bouncy Cas-
tle implementations that we investigated were RSA Encryption (using SHA1
Digests), MD5 Hashing, and DES Encryption. To gather statistics about the ex-
isting runtime exceptions in these codebases, we used JLift, an interprocedural
extension of the Jif security-typed language [14].

The results from our investigations are summarized in Figure 2. Our experi-
ments show the following:

– Implicit flows corresponded to most of the leaks of information in these
applications. In the SSH authentication methods, there were no explicit in-
formation leaks, while there were only a handful of explicit leaks in the
cryptography libraries. In total, leaks corresponding to explicit flows made
up less than 2% of the reported alarms, and none of the explicit flows corre-
sponded to a false positive.

– The implicit flows arising from unchecked runtime exceptions dominate all
other flows. Specifically, 757 out of 870 (87 %) of alarms caused by implicit
flows were due to the five types of runtime exceptions (Null Pointer, Array
Out of Bounds, Class Cast, Negative Array, Arithmetic). These results are
summarized in Figure 4.

– Most flows due to unchecked exceptions were caused by program paths that
could not be executed at runtime. Specifically, we manually verified that 706
alarms (out of 824 total exceptional alarms) could not occur at run time.

4.1 Methodology

We chose to analyze two different codebases for information leaks: an SSH server
and a cryptographic library. These programs are security-critical, and thus con-
stitute a worthy target of security analysis. While it would be unsurprising to
find implicit (and explicit) flows in these programs since they manipulate secret
information in an observable way (e.g., by outputting the result of a password
check or emitting ciphertext), our interest is of effectiveness: does the standard
algorithm, when applied to mature code written in a natural style, identify the
true explicit and implicit information flows without producing a deluge of false
alarms?

4.2 Analysis Methodology

Details of Security Analysis. To perform an information-flow analysis with-
out explicitly converting the code into Jif as well as investigating how a im-
plicit flow checker behaved when applied to code written in a natural style, we
used JLift [14], a modification of the Jif compiler to perform a whole-program

5 BouncyCastle implementations for Java and C# are available at http://www.

bouncycastle.org/.



8 Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger

information-flow analysis on Java programs. From a set of seed labels, JLift
propagates security information across procedure calls by determining a set of
summary constraints for each method, a standard method in static analysis [22].
JLift relies on the Jif compiler to generate these constraints: in particular, it
annotates types with a security label and uses a program counter to detect
implicit flows. We ran JLift using a context-sensitive treatment of methods, as-
sociating a unique set of summary constraints to each instance of a method
call. Our experience has been that context sensitivity is required for an accurate
information-flow analysis [14].

Annotation of JLift. To analyze these programs for security errors, we labeled
protected data as high security and analyzed the resulting flows. As JLift does
not report all possible program paths that lead to a violation, we ran the tool
multiple times, suppressing earlier warnings by adding some “declassification”
annotations (which indicate that certain flows should be ignored). To efficiently
catalogue exceptions that could be thrown at runtime that would affect the
program counter, we first used the analysis to determine which methods could
be invoked from a high program counter location. We then had JLift enumerate
the runtime exceptions, determined by an interprocedural propagation analysis,
that could possibly be thrown by those methods. We investigated each of these
runtime exceptions to determine if they could be thrown at run time.

Following Jif’s behavior, we did not directly analyze the program flows that
could occur when invoking a library function at runtime. For conservativity, we
assigned each instance of a class defined in a library a label variable L and treated
each value passed to or returned from methods or fields as having label L. This
prevented secure information from being laundered by being passed through
library functions.

False Alarms. We define a false alarm as an alarm that the analysis tool reports
that corresponds to an infeasible program path. For example, if the variable v

is always not null, then an alarm raised by the statement v.foo() attributed to
a NullPointerException at this point would be false. We marked an alarm as
true when we could manually confirm the flagged path could actually execute
at run time; all other alarms were considered false. As an example, Jif’s null
pointer analysis is only performed on local variables; all fields are considered to
be possibly null. As such, many times a field dereference was incorrectly flagged
as problematic even though all feasible paths initialized the field (e.g., in the
constructor) before dereferencing it.

Several places in the code explicitly throw an exception: for example, if a
block to encrypt was too large for the RSA cipher, the program would throw a
DataLengthException. We did not count explicitly thrown exceptions or excep-
tions from library calls (for example, IOException on file open) as false alarms.
The code for MD5 hashing explicitly threw exceptions at only three locations,
as opposed to DES, which threw exceptions at nineteen locations: this accounts
for some of the difference in false positive rate between the two.



Implicit Flows: Can’t Live With ‘Em, Can’t Live Without ‘Em 9

Program Security Function
# Alarms False Alarms False Alarm

RateTotal Explicit Implicit Explicit Implicit

J2SSH Password 7 0 7 0 3 42.86 %
Keyboard Interactive 23 0 23 0 19 82.61 %
Public Key 170 0 170 0 111 65.29 %

BouncyCastle RSA 218 3 215 0 186 86.51 %
MD5 209 4 205 0 199 97.07 %
DES 260 10 250 0 207 82.80 %

Fig. 2. False alarm rates for the three authentication methods present in J2SSH. The
first and column columns give the application and security function that was analyzed.
The third column gives the total number of alarms, with the fourth and fifth columns
containing the number of alarms raised by both potential explicit and implicit flows.
The sixth and seventh column gives the number of false alarms (subdivided between
explicit and implicit flows), while the seventh column gives the overall percentage of
false alarms among all of the alarms reported by JLift.

4.3 J2SSH

J2SSH is a Java SSH library that contains an SSH server implementation that
has three different authentication methods: password, keyboard-interactive, and
public-key authentication. This code most directly leaks information to potential
attackers. If the programmer is not careful, information leaks in an authentica-
tion system risk giving away important information about the system, such as
legal user names or even passwords (perhaps subject to a brute-force attack).

J2SSH handles authentication by allowing the host operating system to pro-
vide a native authentication mechanism. This object represents the operating
system mechanism for checking and changing passwords. Our experiment was
thus to see how the J2SSH server code protected the native authentication mech-
anism. We marked information associated with the native authentication mech-
anism as Secret and assumed that the authentication method returned a Public

result.
There were only three means of communicate with the user in the J2SSH

server: (1) the returned result from authentication (a boolean), (2) messages
sent by the server back to the client, and (3) abnormal termination of the SSH
server. There were no explicit flows of information in these codebases, as each of
the authentication methods behaved similarly to the code from Figure 1: based
on the result of a secret query, a value is returned to the user, a message is sent,
or the program terminates.

4.4 Bouncy Castle Cryptographic Implementations

We also ran our analysis on the implementations of three cryptographic imple-
mentations from the Java implementations of the Bouncy Castle Cryptographic
APIs: RSA asymmetric-key encryption (with SHA1 digests), MD5 hashing, and
DES symmetric-key encryption.
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1 int newKey[32], boolean pc1m[56], boolean pcr[56];
2 for (int j = 0; j < 56; j++) {
3 int l = pc1[j];
4 pc1m[j] = (key[l >>> 3] & bytebit[l & 7]) != 0; }
5 for (int i = 0; i < 16; i++) {
6 int l, m, n;
7 if (encrypting) { m = i << 1; } else { m = 15 − i << 1; }
8 n = m + 1; newKey[m] = (newKey[n] = 0);
9 for (int j = 0; j < 28; j++) {

10 l = j + totrot[i];
11 if (l < 28) { pcr[j] = pc1m[l]; } else { pcr[j] = pc1m[l − 28]; }
12 } for (int j = 28; j < 56; j++) {
13 l = j + totrot[i];
14 if (l < 56) { pcr[j] = pc1m[l]; } else { pcr[j] = pc1m[l − 28]; }
15 } for (int j = 0; j < 24; j++) {
16 if (pcr[pc2[j]]) { newKey[m] |= bigbyte[j]; }
17 if (pcr[pc2[j + 24]]) { newKey[n] |= bigbyte[j]; } } }

Fig. 3. Code from the DES key scheduling code, where the original secret key is split
into two keys to operate on half of a 64-bit encryption string. Nearly every line of the
above code was flagged as possibly throwing an exception.

For these codebases, we labeled both the keys and the data being encrypted
or hashed as secret. For each function, the code performing the encryption con-
tained many low-level bitwise operations, including accesses to pre-defined con-
stant arrays and bit-shifts. This lead to many more possible array access errors
reported in the Bouncy Castle cryptographic libraries than in J2SSH. This also
accounts for the slightly higher false positive rate in the Bouncy Castle crypto-
graphic implementations as compared to J2SSH.

Figure 3 shows a typical example of code where it is difficult to rule out
impossible runtime exceptions. The code was taken from the implementation
of DES and contained a very large false alarm rate: nearly every line of the
algorithm was flagged as possibly throwing at least one exception. Automati-
cally verifying that this code cannot throw an exception is difficult: it requires
knowledge of the contents custom-built arrays bytebit, totrot, bigbyte, knowing
that these arrays cannot change and carefully maintaining knowledge of possible
bounds on each variable. With some effort, we were able to manually verify that
each line of the above code could not throw a runtime exception.

4.5 Discussion

Figure 4 contains statistics about implicit flows, exceptional flows, and alarms
raised by the five most commonly occurring runtime exceptions. From this figure,
we can see that most alarms were caused by implicit flows, and that most of these
implicit flows were caused by exceptions. Of these, five exceptions make up the
bulk of the false alarms reported by the Jif program analysis: null pointer errors,
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Exception # Alarms False Alarms False Alarm Rate
% of Total

Alarms

all flows 887 725 81.74 % 100 %
all implicit 870 725 81.74 % 98.08 %
all exceptions 824 706 79.59 % 92.90 %
null pointer 475 455 95.79 % 53.78 %
array bounds 233 204 87.55 % 26.27 %
non-exceptional implicit flows 46 14 30.43 % 5.19 %
class cast 24 22 91.67 % 2.78 %
negative array 20 20 100.0 % 2.76 %
arithmetic exception 5 5 100.0 % 0.56 %

Fig. 4. Rates of false alarms per exception for the most commonly-occurring runtime
exceptions. The first column gives the type of exception, the second gives the number
of alarms, the third gives the number of those that were due to an code path that is not
realizable at runtime, and the fourth gives the rate of false alarms. The fifth column
shows the percentage of total alarms (number of alarms from this category divided by
total alarms) that were caused by this specific exception type.

array bounds errors, class cast errors, negative array errors, and arithmetic errors
(divide by zero). The applications that we looked at had no explicit flows that
corresponded to infeasible runtime paths; this may be due to the small number
of explicit flows that these applications contained.

Our experimental results suggest that developers analyzing code for
information-flow security should follow an iterative process: first analyze ex-
plicit flows, then analyze implicit flows that occur because of non-exceptional
program paths, and finally analyze the remaining implicit flows.

Most of the implicit flows reported by the analysis that were not false alarms
corresponded to technical violations of noninterference. For example, in DES, the
eventual size of the output buffer for ciphertext (publicly available) depended
on the size of the data to be encrypted. There were also several authentication
flows that revealed information about whether a username was valid or not, but
these occurred after the password was successfully verified, making these flows
difficult to exploit. For example, when a login attempt was valid but the user
was required to change his or her password, the server would send a message
with this information.

A handful (3) of implicit flows that we marked as false alarms were not caused
by the type-based nature of the analysis. These alarms occurred because the
J2SSH KBI authentication method assigned three variables to both high security
and low security values and the Jif program analysis treated all occurrences of
those variables as high security data.

We make no judgment about the value of true alarms. Each of the true alarms
represented a violation of noninterference. Methods for determining the severity
of these alarms (for example, statically determining for each alarm a quantitative
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upper bound of number of bits leaked, as in recent work [17]) are beyond the
scope of this paper.

One may wonder how our results with JLift speak to Jif programming as it is
done today, as Jif has been used to build several substantial systems, including
JPMail, a mail client [12] and a Civitas, remote voting system [7]. The answer is
simple: the programmer must work around the imprecision of various analyses
in order get the program to type check. As mentioned before, programmers
often copy fields into local variables because the null pointer analysis in the
compiler is only done on local variables. Empty catch statements, signaling the
programmer’s belief that a runtime exception should not affect the security of
the program counter, are also quite common. To quantify these observations,
we examined the Civitas code base, which contains over 13000 lines of Jif Code.
We found 568 empty catch statements to handle unexpected runtime exceptions.
Of these, 429 of these caught exceptions were given the variable name imposs,
indicating that the programmers believed that it was impossible for these errors
to occur. Of the remainder, 13 of them were given the variable name unlikely,
indicating that the programmers thought it was not likely that these errors would
occur. While programmer belief does not guarantee all of these exceptions are
impossible or unlikely, these coding constructions speak to the need for a sound
but less burdensome way for developers to handle implicit flows arising from
runtime exceptions.

5 Towards Painfree Noninterference

In this section we suggest several approaches for handling the high rate of false
alarms.

Modern programming languages support robust features for error handling
and recovery. As an imperative object-oriented language, Java gives more con-
trol over errors than previous languages like C and C++: if an error occurs in
code, the Java runtime can catch and handle it, rather than simply terminating.
However, the possibility for failure at every method call or array access in Java
makes it difficult to perform an accurate information-flow analysis. Once the pro-
gram counter has been raised to secret by a high-security conditional or thrown
exception, even one that might itself be a false alarm, a sound static analysis
must treat the execution of the rest of the program as conditional, meaning that
every possible exception raised after this must be reported and handled.

From Figure 4, it is clear that better program analyses would aid in re-
ducing the number of false alarms. Currently, most null pointer accesses can-
not be proven safe by Jif, and as almost any line of Java code can throw a
NullPointerException, this leads to an unacceptably high number of false alarms.
Improved analyses could reduce this false alarm rate, but due to the fundamental
undecidability of determining if a null pointer access is safe [15] combined with
the difficulty of maintaining invariants for every line of code (as seen in Figure
3), these analyses will likely remain imperfect.
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One way to improve the power of these analyses is to rely more on program-
mer annotations. For example, a programmer could annotate when an object
could possibly be null, rather than the opposite: this would shift the burden of
dealing with null pointer analyses to annotating which variables could possibly
store the null value. Security-typed languages could also be integrated with tools
such as ESC/Java [4, 8] that can verify these annotations and so prove proper-
ties of variables and array bounds while reducing the number of false positives
reported by the security analysis. Adding a new block primitive to the Jif pro-
gramming language that indicated that the enclosed code could not terminate
abnormally would allow Jif programmers to make trusted sections of code more
explicit without relying on empty try/catch blocks, as in the Civitas codebase.

As we have seen, a sound security analyses must therefore consider a large
number of runtime program paths, not all of which can occur at runtime. Flow
Caml [19] is a security-typed language based on Caml Lite, a member of the ML
family of functional programming languages. As ML does not have the concept
of a null pointer, Flow Caml does not require a null pointer analysis for pro-
grammers to use the language. It may be possible to, by changing the semantics
of the underlying Java language, modify the kinds of flows that can occur at
runtime and so reduce the number of false positives reported by a static analy-
sis. Another possibility is to change our security model to insert a global system
declassifier so that certain classes of implicit flows (those with a high noise rate)
are allowed to leak information about secret data. If this is adopted, care must
be taken to ensure that these flows cannot be repeatedly exploited to gain a
substantial amount of information from the system.

Finally, different programming models could aid in reducing the number of
false alarms. If a section of code can be encapsulated as only taking input and
returning an output (rather than possibly terminating in the middle of its com-
putation), then any implicit flows that occur during this computation can be
folded into the input (through a try/catch block, for example). If every oper-
ation that is performed inside of a high program counter region will not throw
an exception, then the only implicit flows that can occur during a program are
updates to the system’s global state performed by these operations (such as
message sends and receives). It may be possible to automate this approach.

6 Conclusion

In this paper, we have outlined the impact of considering implicit flows in a secu-
rity analysis. Our experiments show that when checking mature, security-critical
code, the standard type-based algorithm reports a strikingly large number of im-
plicit flows as false alarms. Most of these implicit flows are induced by unchecked
exceptions that a static analysis is not able to prove are infeasible at runtime. If
we are to make security analysis with implicit flows practical, better tools and
different programming techniques are necessary.
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