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ABSTRACT
JavaScript programmers make extensive use of event-driven
programming to help build responsive web applications. How-
ever, standard approaches to sequencing events are messy,
and often lead to code that is difficult to understand and
maintain. We have found that arrows, a generalization of
monads, are an elegant solution to this problem. Arrows
allow us to easily write asynchronous programs in small,
modular units of code, and flexibly compose them in many
different ways, while nicely abstracting the details of asyn-
chronous program composition. In this paper, we present
Arrowlets, a new JavaScript library that offers arrows to
the everyday JavaScript programmer. We show how to use
Arrowlets to construct a variety of state machines, including
state machines that branch and loop. We also demonstrate
how Arrowlets separate computation from composition with
examples such as a drag-and-drop handler and a bubblesort
animation.

1. INTRODUCTION
JavaScript is the lingua franca of Web 2.0. With Java-

Script code running in a client-side browser, applications
can present a rich, responsive interface without unnecessary
delays due to server communication. Most JavaScript pro-
grams are written in an event-driven style, in which pro-
grams register callback functions that are triggered on events
such as timeouts or mouse clicks. A single-threaded event
loop dispatches the appropriate callback when an event oc-
curs, and control returns to the loop when the callback com-
pletes.

To keep web applications responsive, it is crucial that
callbacks execute quickly so that new events are handled
soon after they occur. Thus to implement non-trivial fea-
tures like long-running loops (e.g., for animations) or state
machines (e.g., to implement drag-and-drop), programmers
must chain callbacks together—each callback ends by regis-
tering one or more additional callbacks. For example, each
iteration of a loop would end by registering the current call-
back with a (short) timeout. Unfortunately, this style of
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event-driven programming is tedious, error-prone, and ham-
pers reuse. The callback sequencing code is strewn through-
out the program, and very often each callback must hard-
code the names of the next events and callbacks in the chain.

To combat this problem, many researchers and practition-
ers have developed libraries to ease the construction of rich
and highly interactive web applications. Examples include
jQuery (jquery.com), Prototype (prototypejs.org), YUI
(developer.yahoo.com/yui), MochiKit (mochikit.com), and
Dojo (dojotoolkit.org). These libraries generally provide
high-level APIs for common features, e.g., drag-and-drop,
animation, and network resource loading, as well as to han-
dle API differences between browsers. Unfortunately, while
these libraries do support a number of common scenarios,
even slight customizations may be impossible to achieve
without modifying the library internals.

In this paper, we describe Arrowlets, a new JavaScript li-
brary for composable event handling. Arrowlets is designed
to be lightweight, and supports much easier reuse and cus-
tomization than the approaches mentioned above. Arrowlets
is based on arrows, a programming pattern closely related to
monads [6], which are used extensively in Haskell. An arrow
abstraction resembles a normal function, with the key fea-
ture that arrows can be composed in various ways to create
new arrows. With Arrowlets, the code for handling events
is clearly separated from the “plumbing” code required to
chain event handlers together. This makes code easier to
understand, change, and reuse: the flow of control is clearly
evident in the composition of handlers, and the same han-
dlers can be chained in different ways and set to respond to
different events. Other approaches to enabling more modu-
lar and reusable JavaScript code have also been explored in
the literature, e.g., Flapjax [9], which is based around func-
tional reactive programming [12]. Arrowlets offer a com-
plementary approach that may be more similar to existing
JavaScript programming style while still offering the benefits
of separating computation from composition.

In the remainder of the paper, we begin by illustrating the
standard approach for event-based programming in Java-
Script, along with its difficulties. Then we introduce our
basic approach to allaying these difficulties using Arrowlets.
We next scale up to include richer combinators and present
several examples. We conclude by comparing our work to re-
lated approaches. We believe that Arrowlets provides Java-
Script programmers a flexible, modular, and elegant way to
structure their programs. The Arrowlets library, as well as
several live examples, is freely available at http://www.cs.

umd.edu/projects/PL/arrowlets.



2. EVENT PROGRAMMING IN JAVASCRIPT
In modern web browsers, JavaScript is implemented as a

single-threaded programming language. This is a real prob-
lem for web developers, because the browser’s JavaScript
interpreter typically runs in the main UI thread. Thus a
long-running script could stall a web page (and browser),
making it appear unresponsive.

To solve this problem, JavaScript programs make heavy
use of event-driven programming, in which programs reg-
ister asynchronous callbacks to handle UI interactions and
break up long-running tasks. For example, the following
program1 registers the clickTarget callback on the HTML el-
ement named target , and will be called each time target is
clicked:2

function clickTarget (evt) {
evt . currentTarget .textContent = ”You clicked me!”;

}
document.getElementById(”target”)

.addEventListener(”click ”, clickTarget , false );

Events are also used to slice long-running loops into small
tasks that quickly return control to the UI. For example, the
following program scrolls a document one pixel at a time
until the document can be scrolled no further. The call to
setTimeout schedules a call to scrollDown(el ) to occur 0ms in
the future:

function scrollDown(el ) {
var last = el. scrollTop++;
if ( last != el . scrollTop )

setTimeout(scrollDown, 0, el );
}
scrollDown(document.body);

We can think of scrollDown as a state machine. In the initial
state, it tries to scroll one pixel, and then either transitions
to the same state (if the scroll succeeded) or to an accepting
state (if scrolling is complete). The scrollDown function im-
plements a very simple state machine with only one handler,
and as such is easy to write. Chaining handlers together to
implement more complicated state machines can be more
difficult, as we show next using drag and drop.

2.1 Standard Drag-and-Drop
Consider the problem of supporting drag-and-drop in a

web browser. Figure 1(a) gives a state machine showing the
sequencing of event handlers we need for this feature. We
begin with a mousedown event on an item of interest and
transition to the setup state. From there, we cancel drag-
and-drop if the user releases the mouse (mouseup), or start
the drag for real on a mousemove. The user can keep dragging
as much as they like, and we drop when the mouse button
is released. In each of these states, we need to do various
things, e.g., when we (re-)enter the drag state, we animate
the motion of the selected object.

The standard approach to implementing this state ma-
chine is shown in Figure 1(b). Each function corresponds
to one state, and mixes together “plumbing” code to install
and uninstall the appropriate event handlers and “action”

1For brevity, the code as shown in this paper does not run
in Internet Explorer due to minor API differences. The ex-
amples have been verified to work in Safari and Firefox.
2The last parameter to addEventListener, required by Firefox,
selects the order of event handling, and can be ignored for
this and all other examples in the paper.
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(a) State machine

1 function setup(event) {
2 var target = event.currentTarget ;
3 target .removeEventListener(”mousedown”, setup, false );
4 target .addEventListener(”mousemove”, drag, false );
5 target .addEventListener(”mouseup”, cancel , false );
6 /∗ setup drag−and−drop ∗/
7 }
8 function drag(event) {
9 var target = event.currentTarget ;

10 target .removeEventListener(”mouseup”, cancel , false );
11 target .addEventListener(”mouseup”, drop, false );
12 /∗ perform dragging ∗/
13 }
14 function drop(event) {
15 var target = event.currentTarget ;
16 target .removeEventListener(”mousemove”, drag, false );
17 target .removeEventListener(”mouseup”, drop, false );
18 /∗ perform dropping ∗/
19 }
20 function cancel(event) {
21 var target = event.currentTarget ;
22 target .removeEventListener(”mousemove”, drag, false );
23 target .removeEventListener(”mouseup”, cancel , false );
24 /∗ cancel drag−and−drop ∗/
25 }
26 document.getElementById(”dragtarget”)
27 .addEventListener(”mousedown”, setup, false );

(b) Standard JavaScript implementation

Figure 1: Drag-and-drop in JavaScript

code to implement the state’s behavior. For example, we
install the setup function to handle the mousedown event on
line 27. When called, setup uninstalls itself and adds han-
dlers to transition to the drag and cancel states (lines 3–5),
and then carries out appropriate actions (line 6).

Even though this code has been distilled down to only the
control flow, it is not that easy to understand. The flow of
control is particularly convoluted: each event handler ends
by returning, but the actual control “continues” indirectly to
one of several subsequent event handlers. Code reuse is also
hard, because each event handler hard-codes its subsequent
event handlers, and the side-effects of drag-and-drop are in-
terspersed with the state transition logic. For example, if
we wanted to initiate drag-and-drop with a mouseover event,
we would need to make a new copy of setup.

2.2 Drag-and-Drop with Arrowlets
Event-driven programming in JavaScript does not have

to be convoluted and monolithic: with Arrowlets, we can
easily write event-driven code that is clean, understandable
and reusable.

Figure 2(a) gives an arrow composition diagram outlining
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(a) Arrow diagram

1 function setupA(proxy, event) {
2 proxy.setupDrag(event);
3 return proxy;
4 }
5 function dragA(proxy, event) {
6 proxy.moveDrag(event);
7 return proxy;
8 }
9 function dropA(proxy, event) {

10 proxy.dropDrag(event);
11 return proxy;
12 }
13 function cancelA(proxy, event) {
14 proxy.cancelDrag(event);
15 return proxy;
16 }
17

18 var dragOrDropA =
19 ( ((EventA(”mousemove”).bind(dragA)).next(Repeat))
20 . or((EventA(”mouseup”).bind(dropA)).next(Done))
21 ). repeat ();
22

23 var dragDropOrCancelA =
24 ((EventA(”mousemove”).bind(dragA)).next(dragOrDropA))
25 . or((EventA(”mouseup”).bind(cancelA)));
26

27 var dragAndDropA = /∗ drag−and−drop ∗/
28 (EventA(”mousedown”).bind(setupA))
29 .next(dragDropOrCancelA);
30

31 DragElementA(”dragtarget”).next(dragAndDropA).run();

(b) JavaScript implementation

32 DragElementA(”dragtarget”)
33 .next(EventA(”mouseover”).bind(setupA))
34 .next(dragDropOrCancelA)
35 .run()

(c) Alternative—setup on mouseover

36 (nextPieceA
37 .next(EventA(”click ”).bind(setupA))
38 .next((dragOrDropA
39 .next(repeatIfWrongPlaceA)).repeat()
40 )
41 ). repeat()
42 .run()

(d) Jigsaw game re-using drag-and-drop elementary arrows

Figure 2: Drag-and-drop with arrows

drag-and-drop with Arrowlets. It corresponds almost di-
rectly to the state machine in Figure 1(a), except we have in-
dicated the target (#dragtarget) and written events as nodes.
The two dashed boxes indicate portions of the composition
we intend to reuse.

Figure 2(b) shows the complete implementation of drag-
and-drop with Arrowlets. As before, we introduce four func-

Combinator Use

f .AsyncA() lift function f into an arrow (called
automatically by combinators be-
low)

h = f.next(g) h(x) is f(g(x))

h = f.product(g) h takes a pair (a,b) as input, passes
a to f and b to g, and returns a pair
(f(a), g(b)) as output

h = f.bind(g) h calls f with its input x, and then
calls g with a pair (x, f(x)).

h = f.repeat() h calls f with its input; if the output
of f is: Repeat(x), then f is called
again with x; Done(x), then x is re-
turned

h = f.or(g) h executes whichever of f and g is
triggered first, and cancels the other

h.run() begins execution of h

Table 1: Arrow combinators used by drag-and-drop.

tions, setupA, dragA, dropA, and cancelA, to handle the re-
spective drag-and-drop states. Each handler takes as in-
put a drag proxy and the triggering event. The drag proxy
wraps the actual target, and additionally implements four
methods—setupDrag, moveDrag, dropDrag, cancelDrag. The
bodies of these four methods correspond exactly to the code
represented by lines 6, 12, 18, and 24 in Figure 1(b). Using
proxy objects affords greater flexibility in customizing the
side-effect of drag-and-drop, and is a standard trick found
in many JavaScript libraries. For example, one drag-and-
drop machine could use a proxy that moves the target when
dragged, while another proxy could be used to draw a trail
behind the dragged target.

The remainder of Figure 2(b) assembles the drag-and-drop
state machine from the handlers we have written. To do so,
we use combinators to compose the handlers with the appro-
priate event triggers. These combinators compose arrows,
which include regular functions or specialized event listeners
that we provide, and describe serial and parallel combina-
tions of arrows. Table 1 describes the arrow combinators
we use to implement drag-and-drop; full details appear in
Sections 3 and 4.

In Figure 2(b), we have split the composition into three
pieces: dragOrDropA, dragDropOrCancelA, dragAndDropA. Each
handler is connected to its triggering event using bind, and
then connected to each other with other combinators. For
example, the arrow dragOrDropA on lines 18–21 (shown in a
dashed box in the part (a)) connects the drag state to itself
(upon a mousemove) or to the drop state (upon mouseup).

Finally, the entire drag-and-drop composition is installed
on the DragElementA(”dragtarget”) drag proxy on line 31. The
arrow DragElementA, which we have elided, locates and re-
turns the named HTML element wrapped in the proxy ob-
ject that implements the animation of drag-and-drop.

Notice that the composition on lines 18–31 is simply a
transliteration of the arrow diagram. We think this is a
much more direct way to construct this event handling code
than the standard approach we saw earlier, while retaining
its basic computational structure. In particular, with Ar-
rowlets the code implementing the effect of each handler is
essentially unchanged; the difference is that hard-coded, in-
direct state transitions have been traded for more flexible,



class Arrow a where
arr :: (b → c) → a b c
(>>>) :: a b c → a c d → a b d

instance Arrow (→) where
arr f = f
( f >>> g) x = g ( f x)

(a) Arrows in Haskell

Function.prototype .A = function() { /∗ arr ∗/
return this ;

}
Function.prototype .next = function(g) { /∗ >>> ∗/

var f = this ; g = g.A(); /∗ ensure g is a function ∗/
return function(x) { return g(f(x )); }

}

(b) Function arrows in JavaScript

Figure 3: Two definitions of arrows

direct arrowlet compositions. Moving to a system like Flap-
jax, which uses an entirely different computational model,
would require more pervasive changes [9]. (See Section 5 for
more discussion.)

Once we have used Arrowlets to separate setupA, dragA,
dropA, and cancelA from each other and their event triggers,
we can reuse them in different compositions of arrows. For
example, Figure 2(c) shows an alternative drag-and-drop im-
plementation that is initiated by a mouseover event, rather
than a mousedown event.

We can even re-use the elementary arrows of drag-and-
drop in a different application. Figure 2(d) shows the basic
control-flow of a jigsaw puzzle game. One piece of the jigsaw
puzzle is first displayed (line 36), picked up with a click

event (line 37), and then moved with the cursor until being
dropped by the mouseup event inside dragOrDropA (line 38).
However, the piece may be automatically picked up again if
it was dropped in the wrong place (line 39). And the whole
composition repeats with the next jigsaw piece. Re-using
the code in Figure 1(b) to build this new structure would be
non-trivial, while with asynchronous event arrows, building
such compositions is straightforward.

3. IMPLEMENTATION OF ARROWLETS
The design of Arrowlets is based on the concept of arrows

from Haskell [6]. Arrows are generalizations of monads [11],
and like them, they help improve modularity, by separating
composition strategies from the actual computations; they
are flexible, because operations can be composed in many
different ways; and they help isolate different program con-
cerns from one another.

We will first explain the concept of arrows with the sim-
plest possible arrows, namely regular functions, and then
build on it to describe how various components of the Ar-
rowlets library are implemented in JavaScript.

3.1 Function Arrows
Figure 3(a) gives a (very) simplified definition of the Arrow

type class in Haskell. A type a is an instance of Arrow (writ-
ten Arrow a) if it supports at least two operations: arr f,
which lifts function f into a, and f >>> g, which produces a

new arrow in which g is applied to the output of f.
The simplest arrow instance, Arrow (→), represent stan-

dard functions where arr is the identity function, and >>> is
function composition. With these operations, we can com-
pose functions using arrow operations:

add1 x = x + 1
add2 = add1 >>> add1

result = add2 1 {− returns 3 −}

Figure 3(b) shows function arrows in JavaScript. In Java-
Script, every object has a prototype object (analogous to
a class). Properties (e.g., methods) of an object are first
looked up in the object itself, and if not found, are looked
up in the object’s prototype. JavaScript functions are them-
selves objects, and hence they have a prototype, named
Function.prototype.

In Figure 3(b), we add two methods to every function ob-
ject. The A method, corresponding to arr, lifts a function
into an arrow. As in Haskell, the A method is just the iden-
tity. The next combinator, corresponding to >>>, composes
two arrows by returning a new (anonymous) function invok-
ing the composition. In this code, binding f to this sets f to
refer to the object (i.e., function) whose next combinator is
invoked. We also lift argument g to an arrow with the call
g.A(). This check helps ensure that g is a function (all of
which have the A method).

With these simple definitions, we can now compose func-
tions as arrows in JavaScript in the same way as Haskell:3

function add1(x) { return x + 1; }
var add2 = add1.next(add1);

var result = add2(1); /∗ returns 3 ∗/

JavaScript lacks Haskell’s sophisticated type system, so we
unfortunately cannot statically ensure arrows are used cor-
rectly. For example, the definition in Figure 3(b) only works
for single argument functions. Moreover, we may have dif-
ferent kinds of arrows that cannot be simply mixed together.
Thus in practice (and in the examples below), we will intro-
duce new prototypes to distinguish different kinds of arrows
from each other.

3.2 CPS Function Arrows
Regular function composition will not work for event han-

dling arrows because event handlers are invoked asynchro-
nously, e.g., they are registered as callbacks with functions
such as addEventListener. Instead, in Arrowlets we use contin-
uation passing style (CPS) [2], a well-known programming
technique. We convert all functions to take a continuation
parameter, which is akin to an event handler callback, and
use CPS composition to compose regular functions and asyn-
chronous functions.

Figure 4 shows how we use CPS in Arrowlets. A CPS
function takes two arguments: the “normal” argument x and
a continuation k, called with the function’s final result. In
the figure, CpsA (lines 1–3) constructs a CPS arrow from a
cps function. In JavaScript, constructors are simply regular
functions, and when we invoke new CpsA(cps), JavaScript cre-
ates a new object and then initializes it by calling CpsA(cps)

with this bound to the new object.
3Notice that we did not need to apply the A method to add1,
because we have added the next combinator to all functions,
thus implicitly making them arrows.



1 function CpsA(cps) {
2 this .cps = cps; /∗ cps :: (x, k) → () ∗/
3 }
4 CpsA.prototype.CpsA = function() { /∗ identity ∗/
5 return this ;
6 }
7 CpsA.prototype.next = function(g) {
8 var f = this ; g = g.CpsA();
9 /∗ CPS function composition ∗/

10 return new CpsA(function(x, k) {
11 f .cps(x, function(y) {
12 g.cps(y, k);
13 });
14 });
15 }
16 CpsA.prototype.run = function(x) {
17 this .cps(x, function(y) { });
18 }
19 Function.prototype .CpsA = function() { /∗ lifting ∗/
20 var f = this ;
21 /∗ wrap f in CPS function ∗/
22 return new CpsA(function(x, k) {
23 k(f(x ));
24 });
25 }

Figure 4: CPS function arrows in JavaScript

On line 4 we introduce our convention of giving CpsA

objects an identity CpsA method, which we use like the A

method from Figure 3(b): if we successfully invoke x =
x .CpsA(), we know x is a CPS arrow. The next combinator
is implemented using the CPS equivalent of function com-
position,4 invoking f, and passing in a continuation that
invokes g, which itself continues with k (lines 7–15). We
call a CPS arrow by invoking its run method (lines 16–18),
which simply calls the function in the cps field with the ac-
tual argument and a do-nothing function that acts as the
final continuation. Finally, we extend Function’s prototype
with a CpsA method to lift a normal one-argument function
into a CPS arrow. With this method, programmers using
Arrowlets can write regular functions, and the details of CPS
are effectively hidden.

With these definitions, we can convert our add1 and add2

functions to CPS and compose them:

function add1(x) { return x + 1; }
var add2 = add1.CpsA().next(add1.CpsA());

var result = add2.run(1); /∗ returns 3 ∗/

/∗ where: add1.CpsA().cps = function(x,k) { k(add1(x)); }
add1.CpsA().next(add1.CpsA()).cps

= function(x,k) { k(add1(add1(x)));} ∗/

3.3 Simple Asynchronous Event Arrows
Building on CPS arrows we can now define simple event

arrows, which are CPS functions that register their continu-
ations to handle particular events. Ultimately we will want
several forms of composition, but for now, we define an event
arrow SimpleEventA that supports linear sequencing, shown
in Figure 5.

In this code, the function SimpleEventA acts as a construc-
tor, where line 3 implements a convenient JavaScript idiom.

4JavaScript lacks tail-call optimization, so this simple defi-
nition of next can cause the call stack to overflow. Our actual
implementation uses trampolines to avoid this issue.

1 function SimpleEventA(eventname) {
2 if (!( this instanceof SimpleEventA))
3 return new SimpleEventA(eventname);
4 this .eventname = eventname;
5 }
6 SimpleEventA.prototype = new CpsA(function(target, k) {
7 var f = this ;
8 function handler(event) {
9 target .removeEventListener(

10 f .eventname, handler, false );
11 k(event );
12 }
13 target .addEventListener(f .eventname, handler, false );
14 });

Figure 5: SimpleEventA for handling JavaScript listeners

If the constructor is called as a regular function (i.e., with-
out new), it calls itself again as a constructor to create a new
SimpleEventA object. This allows us to omit new when using
SimpleEventA. Line 4 stores the name of the event this arrow
handles.

Lines 6–14 define the SimpleEventA prototype object to be
a CpsA arrow constructed from an anonymous function. By
making the prototype a CpsA object, SimpleEventA inherits all
the properties of CpsA. The anonymous function installs the
local function handler to be triggered on eventname (line 13).
When this event fires, handler deregisters itself from handling
that event, and then invokes the continuation k with the
received event. We chose to immediately deregister event
handlers that have fired since this corresponds to transitions
in a state machine, according to our motivating use case.

Examples. Let us rewrite the very first example in Sec-
tion 2 to use our simple event arrows. First we write a
handler arrow for the event:

var count = 0;
function clickTargetA(event) {

var target = event.currentTarget ;
target .textContent = ”You clicked me! ” + ++count;
return target ;

}

This function extracts the target of the event, updates its
text, and then returns it (for the next event handler). To
register this code to handle a single click, we write the fol-
lowing plumbing code:

SimpleEventA(”click ”).next(clickTargetA)
.run(document.getElementById(”target”));

This code creates an event arrow for a click event (on the
target element) and composes it with our handler arrow.
When the event fires, clickTargetA is called with the event’s
target, and the event handler is removed. Also, in this code,
the structure of event handling is quite apparent. And, be-
cause we have separated the plumbing from the actions, we
can reuse the latter easily. For example, to count button
clicks on another target, we just create another SimpleEventA,
reusing the code for clickTargetA (the effect on count is shared
by the two handlers):

SimpleEventA(”click ”).next(clickTargetA)
.run(document.getElementById(”anotherTarget”));

If we want to track a sequence of events on the same target,
we simply compose the handlers:



SimpleEventA(”click ”).next(clickTargetA)
.next( SimpleEventA(”click ”).next(clickTargetA) )

.run(document.getElementById(”target”));

This code waits for one click, increments the count, and
then waits again for a click, and increments the count once
more. Sequential composition of asynchronous event arrows
using next is associative, as expected, so we could equiva-
lently write the above as

SimpleEventA(”click ”).next(clickTargetA)
.next(SimpleEventA(”click ”))
.next(clickTargetA)

.run(document.getElementById(”target”));

Event arrows have another useful property in addition
to easy composition: The details of different browser event
handling libraries can be hidden inside of the arrow library,
rather than being exposed to the programmer. For example,
Internet Explorer uses attachEvent instead of addEventListener,
and we could modify the code in Figure 5 to call the appro-
priate function depending on the browser.

4. FULL ASYNCHRONOUS ARROWS
Now that we have developed simple event arrows, we can

extend them with features for implementing more sophisti-
cated examples, like drag-and-drop. To do this we need to
introduce a number of arrows and combinators. We intro-
duce these by example next, and defer a detailed description
of their implementation to Section 4.2.

4.1 Arrows and Combinators

Asynchronous Event Arrows with Progress. Previously,
we introduced an arrow SimpleEventA for handling particular
events. In practice, we want to support multiple arrows “in
flight” at a time, e.g., in the setup state of drag-and-drop, we
wait for multiple events at once. Thus we must be able to
cancel an event handling arrow while it is active so that we
can switch to another state.

Our solution is to create a new arrow AsyncA, which ex-
tends CpsA with support for tracking progress and cancel-
lation. When an AsyncA is run, it returns a progress arrow,
which can be used to observe or cancel execution of the ar-
row. We use AsyncA to build EventA, which similarly extends
SimpleEventA with support for progress and cancellation. Us-
ing EventA, we can augment the two-click example from the
prior section so that it returns a progress arrow p. We can
then use p to affect the arrow in flight, e.g., to stop waiting
for clicks after 10 seconds, as shown below.

var target = document.getElementById(”target”);
var p = EventA(”click”).next(clickTargetA)

.next(EventA(”click ”).next(clickTargetA ))
.run( target );
/∗ p can be used to abort the event arrow ∗/

setTimeout(function() {
p.cancel (); /∗ cancels event arrow ∗/
target .textContent = ”Can’t click this ”;

}, 10000);

We can also use p to track when an event begins:

var status = document.getElementById(”status”);
p.next(function() {

/∗ called when event arrow finishes ∗/
status .textContent = ”I ’ve been clicked ! ”;

}).run ();

We can use progress arrows in combination with looping,
described next, to build widgets like progress bars for long
operations.

Looping with repeat(). To support loops in state ma-
chines, such as the drag state in our drag-and-drop example,
we provide a repeat combinator. The expression f . repeat(t)

creates an arrow that puts f in a loop. If f returns returns
Repeat(x), then f is called again with x after t milliseconds
have elapsed; otherwise if j returns Done(x), then the loop
completes and returns x.

As an example, we can use repeat to implement an anima-
tion of bubble sort:

var bubblesortA = function(x) {
var list = x. list , i = x.i , j = x.j ;
if ( j + 1 < i) {

if ( list .get( j ) > list .get( j + 1)) {
list .swap(j, j + 1);

}
return Repeat({ list : list , i : i , j : j + 1 });

} else if ( i > 0) {
return Repeat({ list : list , i : i − 1, j :0 });

} else {
return Done();

}
}.AsyncA().repeat(100);

/∗ list is an object with methods get and swap ∗/
bubblesortA.run({ list : list , i : list . length , j : 0 });

The arrow bubblesortA takes as input an object that con-
tains three properties: the list to be sorted, and indices i

and j representing the iteration state. Here, list is a proxy
object with methods for looking up an element (get) and for
swapping two elements (swap); these methods could be im-
plemented to visualize the progress of sorting in the display.

The body of bubblesortA is a standard bubble sort, except
instead of a do-while loop, we continue iteration by returning
a Repeat object with updated values for list , i , and j , or we
return Done when the loop is complete. We create the arrow
by using the repeat combinator with an interval of 100ms so
that the bubble sort can be visualized slowly. We could also
use a shorter interval for improved performance.

Parallel arrows with product(). Arrows also provides
combinators for parallel compositions. The product combi-
nator (∗∗∗ in Haskell) takes two arrows and produces a new
arrow that takes as input a pair, applies the constituent ar-
rows to each component of the pair, and outputs the result
in a pair. For Arrowlets, we additionally define the product

combinator to execute concurrently and synchronize at the
completion of both arrows.

Using the product combinator, we can extend the example
at the end of Section 3.3 to respond only after the user clicks
on two targets in any order. First, we modify clickTargetA

to update two targets:

function clickTargetsA ( target1 , target2) {
target1 .textContent = ”You clicked me!”;
target2 .textContent = ”And me too!”;

}

Note that Arrowlets automatically unpacks a pair of targets
into the argument list of clickTargetsA . We can then register
this handler on two targets with the following plumbing:

(EventA(”click ”).product(EventA(”click ”)))



.next( clickTargetsA )

.run(Pair(document.getElementById(”target1”),
document.getElementById(”target2”)));

Now only after both targets are clicked on, which may be in
any order, will the clickTargetsA handler be called to display
the message.

Branching with Either-or(). Our next addition to AsyncA

is an “or” combinator that combines two asynchronous ar-
rows and allows only one, whichever is triggered first, to
execute. For example, this allows us to wait for a keystroke
or a mouse movement, and respond to only one. An “or”
combinator is necessary for supporting any branching state
machine, as with drag-and-drop.

As an example, we demonstrate a simple coin-toss game
implemented with or below. We first define WriteA to create
an arrow that writes into an event’s target element. Then,
we compose two arrows that respond to clicks in heads and
tails . Finally, we combine the arrows with or, ensuring that
the player can only click once, on either heads or tails . Un-
fortunately, in this game, you’d never win.

function WriteA(str) {
return function(event) {

var target = event.currentTarget ;
target .textContent = str ;
return target ;

};
}

var heads = ConstA(document.getElementById(”heads”));
var tails = ConstA(document.getElementById(”tails”));

(heads.next(EventA(”click ”)). next(WriteA(”I win!”)))
. or( tails .next(EventA(”click ”)). next(WriteA(”You lose! ”)))
.run ();

Forwarding Arrow Inputs. Finally, most arrows take an
input, perform some computation on it, and output the re-
sult of the computation to the next arrow in sequence. How-
ever, there are many cases where we want pass the input
“around” the next arrow, i.e., to keep the original input in
addition to the output. For example, in our drag-and-drop
example from Section 2.2, an event handler receives not just
the event it was triggered on, but also the proxy object on
which the event listeners were installed on. The bind com-
binator provides this feature. In the short example below,
we show how an image manipulator can display before-and-
after shots of a brightened image.

var showBeforeAndAfterA = brightenA.bind(displayA);

4.2 Implementation Details

Progress and Asynchronous Arrows. The first step of
our implementation is to extend CpsA so that continuations
take both the normal function argument x and a progress
arrow argument p. Progress arrows are created with the
ProgressA constructor, described below. Our CpsA definition
extended with progress arrows is called AsyncA, for asyn-
chronous arrow, and is shown in lines 1–10 of Figure 6. The
constructor (line 1) and lifting function (line 2) work analo-
gously to CpsA; next (lines 3–10) simply passes the extra pa-
rameter through the CPS composition. The run method now

1 function AsyncA(cps) { this .cps = cps; }
2 AsyncA.prototype.AsyncA = function() { return this ; }
3 AsyncA.prototype.next = function(g) {
4 var f = this ; g = g.AsyncA();
5 return new AsyncA(function(x, p, k) {
6 f .cps(x, p, function(y, q) {
7 g.cps(y, q, k);
8 });
9 });

10 }
11 AsyncA.prototype.run = function(x, p) {
12 p = p || new ProgressA();
13 this .cps(x, p, function(y) {});
14 return p;
15 }
16 Function.prototype .AsyncA = function() {
17 var f = this ;
18 return new AsyncA(function(x, p, k) { k(f(x), p); });
19 }
20

21 function ConstA(x) {
22 return (function() { return x; }).AsyncA();
23 }

Figure 6: Full asynchronous arrows (part 1)

optionally takes a progress arrow argument p, or sets p to an
empty progress arrow on line 12 if no argument is passed.5

Then run passes the arguments to this .cps, as before, and
finally returns p back to the caller. This last step allows the
caller of run to make use of the progress arrow later, in the
case that it was created on line 12 rather than passed in.
Finally, the code to lift functions to AsyncA (lines 16–19) is
the same as before. For convenience, we also introduce a
function ConstA(x), which produces an arrow that ignores its
inputs and returns x (lines 21–23).

Next, we use AsyncA to implement an arrow constructor
EventA, just as we used CpsA to implement SimpleEventA. The
code is shown in Figure 7(a). The arrow constructor (lines 1–
5) is as before. EventA inherits from AsyncA (line 6), also as
before. When an event arrow is run, it registers (line 17)
the cancel function (lines 8–11) with the progress arrow, and
installs an event handler (line 18). This allows us to later
abort the arrow (i.e., remove the event handler) if we wish.
When an event is triggered, we inform the progress arrow by
invoking its advance method (line 13). Upon receiving this
method call, a progress arrow p will in turn alert any other
objects that are listening for progress messages from p. For
example, a progress bar object might ask to be informed
each time an arrow composition advances, to update the
image of the bar. The remainder of the code is as with
SimpleEventA: we cancel the event handler (line 14) and call
the continuation k, this time with both the event to process
and the progress arrow (line 15).

To actually implement progress arrows, we could most
likely extend regular function arrows (from Figure 3(b)),
but since AsyncA is somewhat more flexible, we choose that
as our starting place. Figure 7(b) defines ProgressA, our
progress arrow type. Each progress arrow has two sets of
listeners: cancellers (line 4), which are invoked when the ar-
row’s cancel method is called, and observers (line 5), invoked
via the arrow’s advance method.

Users can add to the set of observers by invoking the next

5If the argument p is not given, then it is set to undefined,
in which case p || e evaluates to e.



1 function EventA(eventname) {
2 if (!( this instanceof EventA))
3 return new EventA(eventname);
4 this .eventname = eventname;
5 }
6 EventA.prototype = new AsyncA(function(target, p, k) {
7 var f = this ;
8 function cancel () {
9 target .removeEventListener(f .eventname,

10 handler , false );
11 }
12 function handler(event) {
13 p.advance(cancel );
14 cancel ();
15 k(event, p);
16 }
17 p.addCanceller(cancel );
18 target .addEventListener(f .eventname, handler, false );
19 });

(a) Event arrows

1 function ProgressA() {
2 if (!( this instanceof ProgressA))
3 return new ProgressA();
4 this . cancellers = []; /∗ empty arrays ∗/
5 this . observers = [];
6 }
7 ProgressA.prototype = new AsyncA(function(x, p, k) {
8 this . observers .push(function(y) { k(y, p); });
9 })

10 ProgressA.prototype . addCanceller = function( canceller ) {
11 /∗ add canceller function ∗/
12 this . cancellers .push( canceller );
13 }
14 ProgressA.prototype .advance = function( canceller ) {
15 /∗ remove canceller function ∗/
16 var index = this . cancellers . indexOf( canceller );
17 if (index >= 0) this. cancellers . splice (index , 1);
18 /∗ signal observers ∗/
19 while ( this . observers . length > 0)
20 this . observers .pop()();
21 }
22 ProgressA.prototype . cancel = function() {
23 while ( this . cancellers . length > 0)
24 this . cancellers .pop()();
25 }

(b) Progress arrows

Figure 7: Full asynchronous arrows (part 2)

combinator inherited from AsyncA. On lines 7–9, we set the
underlying CPS function of the arrow to push its argument
onto the observer list. Thus, invoking p.next(f ). run() for
progress arrow p adds f to observers . Making ProgressA an
asynchronous arrow gives it all the flexible compositional
properties of arrows, e.g., it allows adding multiple, complex
observers. For example, we could write p.next(f ). next(g) for
a progress arrow that invokes g(f ()) when progress occurs, or
call p.next(f ). run (); p.next(g).run() to add both observers f

and g.
Cancellers are registered explicitly via the addCanceller method

(lines 10–13). If cancel is invoked, the progress arrow calls all
cancellers (lines 23–24). If advance(c) is invoked, the progress
arrow first removes c from cancellers (lines 16–17) and then
calls any observers (lines 19–20). A call to advance implies
that a unit of progress was made (e.g., an event triggered),
and so the corresponding cancellation handler c for the unit

1 function Pair(x, y) { return { fst :x, snd:y }; }
2 AsyncA.prototype.product = function(g) {
3 var f = this ; g = g. AsyncA();
4 return new AsyncA(function(x, p, k) {
5 var out1, out2, c = 2;
6 function barrier () {
7 if (−−c == 0) k(Pair(out1, out2), p);
8 }
9 f .next(function(y1) { out1 = y1; barrier (); })

10 .run(x. fst , p);
11 g.next(function(y2) { out2 = y2; barrier (); })
12 .run(x.snd, p);
13 });
14 }

Figure 8: Combining arrows in parallel

1 AsyncA.prototype.repeat = function() {
2 var f = this ;
3 return new AsyncA(function rep(x, p, k) {
4 f .cps(x, p, function(y, q) {
5 if (y.Repeat) {
6 function cancel () { clearTimeout( tid ); }
7 q.addCanceller(cancel );
8 var tid = setTimeout(function() {
9 q.advance(cancel );

10 rep(y. value , q, k);
11 }, 0);
12 } else if (y.Done)
13 k(y. value , q);
14 else
15 throw new TypeError(”Repeat or Done?”);
16 });
17 });
18 }
19

20 function Repeat(x) { return { Repeat:true , value :x }; }
21 function Done(x) { return { Done:true, value :x }; }
22

23 Function.prototype . repeat = function( interval ) {
24 return this .AsyncA().repeat( interval );
25 }

Figure 9: Looping with AsyncA

of progress is removed as it is no longer needed. The corre-
sponding observers are also removed and invoked (line 20).
This behavior is analogous to the removal of event listeners
after an event triggers.

product(). Figure 8 shows the product combinator for the
AsyncA arrow. We use the Pair function to create pairs as ob-
jects with two properties, fst and snd . To implement product,
we first define the function barrier on lines 6–8, which serves
to synchronize the arrow at the completion of its constituent
arrows. Then, we run the arrows f on lines 9–10 and g on
lines 11–12, giving as input the first and second components
of x, respectively. Upon completion of each arrow, we store
the result into out1 or out2 and call barrier . When c reaches
0, i.e., when both f and g have completed, the barrier func-
tion will in turn call the continuation k with the results.
Although not shown above, Arrowlets also unpacks pairs
automatically into the argument list of regular (non-CPS)
functions for convenience.



1 AsyncA.prototype.or = function(g) {
2 var f = this ; g = g.AsyncA();
3 return new AsyncA(function(x, p, k) {
4 /∗ one progress for each branch ∗/
5 var p1 = new ProgressA();
6 var p2 = new ProgressA();
7 /∗ if one advances, cancel the other ∗/
8 p1.next(function() { p2.cancel ();
9 p2 = null ; }).run ();

10 p2.next(function() { p1.cancel ();
11 p1 = null ; }).run ();
12 function cancel () {
13 if (p1) p1.cancel ();
14 if (p2) p2.cancel ();
15 }
16 /∗ prepare callback ∗/
17 function join (y, q) {
18 p.advance(cancel );
19 k(y, q);
20 }
21 /∗ and run both ∗/
22 p.addCanceller(cancel );
23 f .cps(x, p1, join );
24 g.cps(x, p2, join );
25 });
26 }

Figure 10: Branching with AsyncA

repeat(). Figure 9(a) shows the implementation of repeat.
When run, the resulting arrow executes repeatedly, yielding
to the UI thread via setTimeout recursion. Then we return a
new asynchronous arrow containing the function rep (line 3).
When invoked, rep calls f (the arrow from which the repeat-
ing arrow was created) and passes it a new, nested continu-
ation with argument y and progress arrow q.

The argument y is an object created with either Repeat or
Done (lines 20–21). These methods store their argument x

in a JavaScript approximation of a tagged union—an object
with the value field set to x and either the Repeat or Done

field set to true.
Given argument y, there are two cases. If y is tagged

with Done (lines 12–13), then we extract the value from y

and pass it to the continuation k for the entire arrow. If y

is tagged with Repeat (lines 5–11), we use the looping idiom
from Section 2 to execute rep again after interval has elapsed.
To allow the loop to be cancelled during this timeout period,
we extend the list of cancellers to kill the timeout (lines 6
and 7), and since we progressed by one iteration, we advance
the progress arrow (line 9).

Either-or(). Figure 10 gives the code for the or method,
which combines the current arrow f with the argument g

(line 2). Calling f . or(g).run() executes whichever of f or g is
triggered first, and cancels the other. To keep the presenta-
tion simpler, we assume both f and g are asynchronous event
arrows. When invoked, the new arrow first creates progress
arrows p1 and p2, which when advanced calls cancel on the
other arrow (lines 8–11). We also register (line 22) the cancel

function (lines 12–15), which will remove any handlers that
are still installed. Then, we invoke the component arrows, f

with p1 (line 23) and g with p2 (line 24). When either arrow
completes, they call join (lines 17–20), which first advances
the progress arrow p for the composition itself (line 18) and
then invokes the regular continuation.

1 var idA = function(x) { return x; }.AsyncA();
2 var dupA = function(x) { return Pair(x, x); }.AsyncA();
3

4 CpsA.prototype.bind = function(g) {
5 var f = this ; g = g.AsyncA();
6 return dupA.next(idA.product(f))
7 .next(g);
8 }

Figure 11: Passing state around arrows

bind(). bind can be implemented with next and product

along with two helper arrows, as shown in Figure 11. bind

creates a new arrow that first duplicates its input into a pair
with dupA, passes through the first component untouched
via idA and applies f to the second component, and finally
applies g to the resulting pair.

Many combinators in Arrowlets such as bind are imple-
mented with just next and product. In general, we find it
quite simple in practice to compose additional convenience
combinators as needed.

4.3 Discussion
We believe our asynchronous arrow library is potentially

useful for a variety of applications beyond those presented.
In essence, Arrowlets can be used to construct arrows cor-
responding to arbitrary state machines, where transitions
between states occur via synchronous or asynchronous calls.
The combinators next and or can construct machines that
are DAGs (where each machine state corresponds to a single
handler), and with repeat we can create arbitrary graphs. It
is easy to imagine other applications that could be built from
such state machines, such as games (where related actions in
the game, e.g., matching two cards, could be composed into
a state machine) or productivity applications (where various
elements of the UI have state).

In addition to timeouts and UI events, Arrowlets can also
support other kinds of events, e.g., completion of a network
or file I/O call. Indeed, our original motivation for develop-
ing arrows was to make it easier to write a web-based code
visualization tool6 that starts by loading XML files over the
network. To do this we create a composite asynchronous ar-
row that first loads an index file, and then iteratively loads
each file present in the index, where one load commences
when the previous one completes.

5. RELATED WORK
An earlier version of this work appeared as a poster at

ICFP 2008, which included a much shorter, 2-page writeup.
There are several threads of related work.

JavaScript libraries. JavaScript libraries, such as jQuery,
Prototype, YUI, MochiKit, and Dojo, provide high-level
APIs for common GUI features, such as drag-and-drop and
animation. For example, in jQuery, one can make a docu-
ment widget box“draggable”within its surrounding text area
with the syntax $(box).draggable(). These high-level APIs
are easy to use, but they are often not modular and are less
customizable, as we have found with drag-and-drop.

One form of customizability that is offered by library in-
terfaces is an animation queue. The queue contains one or

6http://www.cs.umd.edu/projects/PL/PP/
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more animation steps (called effects). Programmers can se-
quence animation steps dynamically by adding to the queue.
Such queues and other more complex compositions are easily
implemented with Arrowlets.

Some libraries also provide an idiom called method chain-
ing. In this idiom, all methods of an object return the object
itself, such that further methods can be invoked on it. Ar-
row combinators have a similar lightweight syntax, but are
more flexible as they can be composed modularly.

Flapjax. Flapjax [9] is another approach to solving the
problems we have mentioned, but takes a data-flow ori-
ented approach, in the style of functional reactive program-
ming [12]. In Flapjax, programmers use combinators to
construct, compose, and filter first-class event streams, and
these streams drive the processing that will ultimately up-
date the display, write files, send messages, etc. Arrowlets
is more control-flow oriented. In particular, handler arrows
are naturally chained together to form state machines: each
handler corresponds to a node in the machine, and how han-
dlers are composed determines the transitions in the ma-
chine. We can customize the machine by composing han-
dlers differently; in Flapjax we might instead customize the
makeup of the event stream. Since Arrowlets do not ma-
nipulate first-class event streams, they are lower-level than
Flapjax’s abstractions, and arguably closer to Javascript
programming practice. Indeed, in Section 2.2 we showed
it was fairly straightforward to move from existing code to
Arrowlets, and thus to gain Arrowlets’ benefits of improved
composability and reuse.

Threads and Event-driven programming. Perhaps sur-
prisingly, programming with Arrowlets bears a striking re-
semblance to programming with threads, despite the fact
that JavaScript is single-threaded. Indeed, it is well-known
that threads and events are computationally equivalent [7].
Recently research has explored this relationship more closely.
The basic observation is that single-threaded event-driven
programming is analogous to multi-threading with cooper-
ative scheduling, in which one thread runs at a time and
yields the CPU either voluntarily or when it would block on
an I/O operation [1, 10].

Li and Zdancewic have built a thread monad for Haskell
that follows this observation [8]. We can translate their
observation to arrows by viewing a thread as a sequence of
event handlers, where each handler’s final action is to regis-
ter an event that triggers the next handler in the sequence
(e.g., after a timeout or I/O event completion). By this
view, an arrow composition using Arrowlets is analogous to a
thread; Figure 12 suggests the relationship between threads
and Arrowlets.

Haskell’s Arrow libraries. Our inspiration to develop an
arrow-based library comes from a number of related libraries
in Haskell such as Fudgets [3] and Yampa [5]. Fudgets is a
library for building graphical user interfaces (GUI), and uses
arrows to implement GUI elements such as buttons, menus,
and scroll bars, as well as event handlers. A complete GUI
application is composed of Fudgets using various combina-
tors. Yampa is arrow-based library for functional reactive
programming [5], as with Flapjax. In Yampa, arrow com-
binators compose signals with signal functions. Yampa has
been used to implement a robotics simulator [5] as well a
GUI library named Fruit [4].

Unlike standard GUI applications such as those written in
Fudgets or Fruit, web applications are typically developed
in a combination of HTML and CSS to define the graphical
layout of interface elements, and JavaScript for the inter-
face behavior (i.e., event handling). Arrowlets is designed
with this distinction in mind and focuses on composing event
handlers in JavaScript.

Twisted’s Deferred. Twisted (twistedmatrix.com) is an
event-driven networking library for Python, which, like Ar-
rowlets, provides an abstraction to manage event callbacks.
In Twisted, asynchronous functions such as network file ac-
cess do not take a callback parameter, but instead return
Deferred objects that represent values that may have yet to
arrive. The value in Deferred can be accessed by adding a
callback function via its addCallback method. This approach
resembles monads, a concept that is closely related to ar-
rows.

Unlike addCallback, the next combinator in Arrowlets pro-
vides a consistent interface to compose asynchronous or syn-
chronous functions with each other. To have a similarly con-
sistent interface using Deferred, programmers have to be care-
ful to wrap the return value of every function in a Deferred ob-
ject, which is an error-prone endeavor in dynamically-typed
languages such as Python or JavaScript. Also, addCallback

composes Deferred objects with functions, whereas next com-
poses arrows with arrows. This asymmetry makes it more
verbose to write reusable compositions. Furthermore, Ar-
rowlets provides a richer library of combinators for synchro-
nization and asynchronous looping.

6. CONCLUSION
We presented the Arrowlets library for using arrows in

JavaScript. The key feature of Arrowlets is support for
asynchronous event arrows, which are triggered by events
in a web browser such as mouse or key clicks. By provid-
ing sequencing, parallel, looping, and branching combina-
tors, programmers can easily express how their event han-
dlers are composed and also separate event handling from
event composition. Arrowlets supports sophisticated inter-
face idioms, such as drag-and-drop. Arrowlets also includes
progress arrows, which can be used to monitor the execution
of an asynchronous arrow or abort it. In translating arrows
into JavaScript, Arrowlets provides programmers the means
to elegantly structure event-driven web components that are
easy to understand, modify, and reuse.
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