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Abstract
Software evolves to fix bugs and add features. Stopping and restart-
ing programs to apply changes is inconvenient and often costly.
Dynamic software updating (DSU) addresses this problem by up-
dating programs while they execute, but existing DSU systems for
managed languages do not support many updates that occur in prac-
tice and are inefficient. This paper presents the design and imple-
mentation of JVOLVE, a DSU-enhanced Java VM. Updated pro-
grams may add, delete, and replace fields and methods anywhere
within the class hierarchy. JVOLVE implements these updates by
adding to and coordinating VM classloading, just-in-time compila-
tion, scheduling, return barriers, on-stack replacement, and garbage
collection. JVOLVE is safe: its use of bytecode verification and VM
thread synchronization ensures that an update will always produce
type-correct executions. JVOLVE is flexible: it can support 20 of 22
updates to three open-source programs—Jetty web server, JavaE-
mailServer, and CrossFTP server—based on actual releases occur-
ring over 1 to 2 years. JVOLVE is efficient: performance experi-
ments show that JVOLVE incurs no overhead during steady-state
execution. These results demonstrate that this work is a significant
step towards practical support for dynamic updates in virtual ma-
chines for managed languages.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments

General Terms Languages, Experimentation, Reliability

Keywords dynamic software updating, virtual machine technol-
ogy, garbage collection

1. Introduction
Software is imperfect. To fix bugs and adapt software to user
demands, developers must modify deployed systems. However,
halting a software system to apply updates creates new problems:
safety concerns for mission-critical and transportation systems;
substantial revenue losses for businesses [38, 34]; maintenance
costs [44]; and at the least, inconvenience for users. These problems
may translate into serious security risks if patches are not applied
promptly [2, 3].

Dynamic software updating (DSU) is a general-purpose mech-
anism that solves these problems by updating programs while they
run without a special software architecture or redundant hard-
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ware [19]. A practical DSU system must be safe, flexible, and
efficient. Safe updates insure the program is as correct as deploying
it from scratch. The update model would ideally be flexible enough
to support all software changes, but DSU is still useful if the sys-
tem supports most software updates. Since updates should be rare
events, an efficient DSU system would ideally impose no runtime
overhead during steady-state program execution.

Researchers have made significant strides toward making DSU
practical for systems written in C or C++, supporting server fea-
ture upgrades [32, 13, 24], security patches [2], and operating sys-
tems upgrades [39, 5, 6, 25, 12, 3]. Enterprise systems and embed-
ded systems—including safety-critical applications—are increas-
ingly written in managed languages, such as Java, Ruby, and C#.
Unfortunately, work on DSU for managed languages lags behind
work for C and C++. For example, while the HotSpot JVM [27]
and some .NET languages [14] support on-the-fly method body up-
dates, this support is too inflexible for all but the simplest updates—
limiting changes to method bodies would support less than half of
the updates to our three Java benchmark programs. Academic ap-
proaches [37, 26, 35, 8] offer more flexibility, but have not been
proven on realistic applications. Furthermore, they employ method
and object indirection to make applications DSU capable, imposing
substantial space and time overheads on steady-state execution.

This paper presents the design of JVOLVE, a DSU system for
Java, which we implement in Jikes RVM, a Java Virtual Machine.
JVOLVE’s combination of flexibility, safety, and efficiency is a clear
advance over prior approaches. The paper’s key contribution is to
show how to extend and integrate existing VM services to support
DSU that is flexible enough to support a large class of updates,
guarantees type-safety, and imposes no space or time overheads on
steady-state execution.

JVOLVE DSU supports many common updates. Users can add,
delete, and change existing classes. Changes may add or remove
fields and methods, replace existing ones, and change type signa-
tures. Changes may occur at any level of the class hierarchy. To ini-
tialize new fields and update existing ones, JVOLVE applies class
and object transformer functions, the former for static fields and
the latter for object instance fields. The system automatically gen-
erates default transformers, which initialize new and changed fields
to default values and retain values of unchanged fields. If needed,
programmers may customize the default transformers.

JVOLVE relies on bytecode verification to statically type-check
updated classes. To avoid type errors due to the timing of an up-
date [40, 32, 5], JVOLVE stops the executing threads at a DSU safe
point and then applies the update. DSU safe points are a subset of
VM safe points, where it is safe to perform garbage collection (GC)
and thread scheduling. DSU safe points further restrict the methods
that may be on each thread’s stack, depending on the update. These
methods include (1) updated methods, (2) methods that refer to up-
dated classes (since their machine code may contain hard-coded
offsets that the update changes), and (3) user-specified methods
as needed for safety [21, 31]. JVOLVE installs return barriers [43]



on these methods to inform the run-time system when a running
method returns, to speed up reaching a safe point. JVOLVE also
applies on-stack replacement (OSR) to recompile methods in the
second category even as they run, as long as they do not contain in-
lined updated methods. This approach does not guarantee JVOLVE
will reach a DSU safe point, but in our multithreaded benchmarks
it does in nearly all cases. More sophisticated thread scheduling
support could attain greater flexibility [30].

JVOLVE makes use of the garbage collector and JIT compiler
to efficiently update the code and data associated with changed
classes. JVOLVE initiates a whole-heap GC to find existing ob-
ject instances of updated classes and initialize new versions using
the provided object transformers. JVOLVE invalidates existing com-
piled code and installs new bytecode for all changed method imple-
mentations. When the application resumes execution these methods
are JIT-compiled when they are next invoked. The adaptive compi-
lation system naturally optimizes updated methods further if they
execute frequently.

JVOLVE imposes no overhead during steady-state execution.
During an update, it imposes overheads in classloading and garbage
collection. After an update, the adaptive compilation system will
incrementally optimize the updated code in its usual fashion. Even-
tually, the code is fully optimized and running with no additional
overhead. The zero overhead in steady-state execution for a VM-
based approach is in contrast to DSU techniques for C and C++.
These approaches must use a compiler or dynamic rewriter to insert
levels of indirection [32, 35] or trampolines [12, 13, 2, 3], which
add a constant overhead during normal execution.

We assessed JVOLVE by applying updates corresponding to one
to two years’ worth of releases of three open-source multithreaded
applications: Jetty web server, JavaEmailServer (an SMTP and
POP server), and CrossFTP server. We found that JVOLVE can
successfully apply 20 of the 22 updates—the two updates it does
not support change a method within an infinite loop that is always
on the stack. Microbenchmark results show that the pause time
due to an update depends on the size of the heap and fraction of
transformed objects. Experiments with Jetty show that applications
updated by JVOLVE enjoy the same steady-state performance as if
started from scratch.

In summary, this paper’s main contributions are (1) techniques
to extend and integrate standard virtual machine services for man-
aged languages to support flexible, safe, and efficient dynamic soft-
ware updating services, (2) the design, implementation, and eval-
uation of JVOLVE, a Java VM with support for dynamic software
updating. JVOLVE is distinguished from prior work in its realism,
flexibility, technical novelty, and high performance. We believe our
demonstration is a significant step towards supporting flexible, ef-
ficient, and safe updates in managed code virtual machines.

2. Dynamic Updates in JVOLVE

This section overviews JVOLVE’s approach, what changes it per-
mits, and how the developer participates in the process.

2.1 System Overview
Figure 1 illustrates the dynamic update process. Assume that
the VM is executing the current version of the program, whose
code is depicted in the left top corner. Meanwhile, developers
prepare a new version and fully test it using standard proce-
dures. A developer then invokes JVOLVE’s Update Preparation
Tool (UPT) on the old and new versions. The UPT generates an
update specification, which identifies new and updated classes, and
a JvolveTransformers.java file that contains default object
and class transformer methods.

Transformer methods take an object or class of the old version
and initialize the corresponding object or class of the new version.
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Figure 1. Dynamic Software Updating with JVOLVE

The default transformers assign default values, such as zero and
null, to new instance, reference, and static fields, and copy val-
ues for unchanged fields. Developers may customize the default
transformers as necessary. We present an example update and trans-
former in Section 2.3.

The user signals the running VM to apply the update, and
the VM loads the new class files and transformers and schedules
the update. The VM scheduler signals an interrupt, which stops
all threads at VM safe points, where it is safe to perform thread
scheduling and garbage collection. JVOLVE then checks if the VM
is at a DSU safe point. DSU safe points require that no thread’s
activation stack contains a restricted method. Restricted methods
are of three categories: (1) methods changed by the update, (2)
methods whose bytecode is unchanged but whose compiled repre-
sentation may change, and (3) methods specified by the user. If re-
stricted methods are on stack, the VM installs return-barriers for (1)
and (3), and performs on-stack-replacement for (2) to reach a DSU
safe point. Section 3.2 describes this process in detail.

Once all application threads have synchronized at DSU safe
points, JVOLVE applies the update. It first invalidates the compiled
versions of all changed methods. These methods are recompiled
as needed—the adaptive JIT compiler will generate code the next
time the program invokes an invalidated method, and may optimize
it further, if the program executes it frequently. The VM then
invokes the class transformers. Finally, the VM initiates a full
copying garbage collection. It piggybacks on the garbage collector
to detect all existing objects whose classes change. It allocates
objects that conform to the new type declarations, and performs
object transformations to populate the new objects with valid state.
At this point, the update is complete.

2.2 Programmer Update Model
We have designed a flexible, yet simple update model that supports
updates that we believe are important in practice.

Programmers may change method bodies. Method body updates
are the simplest and most commonly supported change [27, 14, 17,
20, 35, 39, 22], because DSU systems can preserve type safety by
simply invoking the new method the next time the program exe-
cutes the method. However, restricting updates to method bodies
prevents many common changes [29]. Section 4 shows that over
half the releases of Jetty, JavaEmailServer, and CrossFTP change
more than just the method bodies.

Programmers may also change class signatures in various ways.
They may change method signatures, e.g., by changing the type
or number of method arguments. They may add or delete instance
and static field members and change the types or access modifiers



public class User {
private final String username, domain, password;
private String[] forwardAddresses;
public User(...) {...}
public String[] getForwardedAddresses() {...}
public void setForwardedAddresses(String[] f) {...}

}
public class ConfigurationManager {

private User loadUser(...) {
...
User user = new User(...);
String[] f = ...;
user.setForwardedAddresses(f);
return user;

}
}

public class User {
private final String username, domain, password;
private EmailAddress[] forwardAddresses;
public User(...) {...}
public EmailAddress[] getForwardedAddresses() {...}
public void setForwardedAddresses(EmailAddress[] f) {...}

}
public class ConfigurationManager {

private User loadUser(...) {
...
User user = new User(...);
EmailAddress[] f = ...;
user.setForwardedAddresses(f);
return user;

}
}

(a) Version 1.3.1 (b) Version 1.3.2

Figure 2. Example changes to JavaEmailServer User and ConfigurationManager classes

of existing members. These changes may occur at any level of the
class hierarchy. For example, programmers may delete a field from
a parent class and this change will propagate correctly to the class’s
descendants. We rely on the bytecode compiler to ensure that the
resulting program is type-safe, e.g., there are no more accesses to
the deleted field in the program. JVOLVE does not support permu-
tations of the class hierarchy, e.g., reversing a super-class relation-
ship. While this change may be desirable in principle, in practice,
it requires sophisticated transformers that enforce update ordering
constraints. None of the program versions we examined make this
type of change.

Example. Consider the following update from JavaEmailServer,
a simple SMTP and POP e-mail server. Figure 2 illustrates a pair
of classes that change between versions 1.3.1 and 1.3.2. These
changes are fully supported by JVOLVE. JavaEmailServer uses
the class User to maintain information about e-mail user ac-
counts in the server. Moving from version 1.3.1 to 1.3.2, there are
three differences. First, the method loadUser fixes some prob-
lems with the loading of forwarded addresses from a configu-
ration file (details not shown). This change is a simple method
update. Second, the array of forwarded addresses in the new ver-
sion contains instances of a new class, EmailAddress, rather than
String. This change modifies the class signature of User since
it modifies the type of forwardedAddresses. Finally, the class’s
setForwardedAddresses method is also altered to take an array
of EmailAddresses instead of an array of Strings, and code from
loadUser accommodates this change as well.

2.3 Class and Object Transformers
For classes whose signatures have changed, an object transformer
method initializes a new version of the object based on the old
version. For example, consider a class List with field next of
type List and an update that adds a new int field x to List.
The object transformer’s job is to modify each object instance of
type List to conform to its new class definition. Class transformers
serve a similar purpose and update static fields, rather than instance
fields. The UPT generates default class and object transformers
automatically, retaining unchanged fields and initializing new or
changed ones. The default object transformer for our changed List
copies the next field from an old object to a transformed object
and initializes x to zero, i.e, transformed.next = old.next
and transformed.x = 0.

For our running example, the UPT identifies that the User
and ConfigurationManager classes have changed, and produces
default object transformers. The programmer elects to modify the
object transformer for the class User, as illustrated in Figure 3.

public class v131_User {
private final String username, domain, password;
private String[] forwardAddresses;

}
public class JvolveTransformers {
...
public static void jvolveClass(User unused) {}
public static void
jvolveObject(User to, v131_User from) {

to.username = from.username;
to.domain = from.domain;
to.password = from.password;
// default transformer would have:
// to.forwardAddresses = null
int len = from.forwardAddresses.length;
to.forwardAddresses = new EmailAddress[len];
for (int i = 0; i < len; i++) {

String[] parts =
from.forwardAddresses[i].split("@", 2);

to.forwardAddresses[i] =
new EmailAddress(parts[0], parts[1]);

}}}

Figure 3. Example User object transformer

Object and class transformer methods are simply static meth-
ods in the class JvolveTransformers. The class transformer
method jvolveClass takes an instance of the new class as
a dummy argument; standard overloading in Java distinguishes
the jvolveClass methods for different classes. (In our exam-
ple, jvolveClass does nothing.) The object transformer method
jvolveObject takes two reference arguments: to, the uninitial-
ized new version of the object, and from, the old version of the
object. We prepend a version number to the names of old classes to
distinguish them from the new versions. Based on the UPT specifi-
cation, but before the VM loads the JvolveTransformers class,
the VM renames the old class in all its internal data structures. This
renaming makes the class name space and the JvolveTransform-
ers class type-correct. In our example, the VM renames the old
version of User to class v131_User, which is the type of the from
argument to the jvolveObject method in the new User class. The
v131_User class contains only field definitions from the original
class; all methods have been removed since the updated program
may not call them, as discussed below.

A typical transformer initializes a new field to its default
value (e.g., 0 for integers or null for references) and copies ref-
erences to the old values. In the example, the first three lines
simply copy the previous values of username, domain, and



password. A more interesting case is the field type change to
forwardedAddresses. The default transformer function would
initialize the forwardedAddresses field to null because of the
type change. Here, the programmer has customized the function
to instead allocate a new array of EmailAddresses and initialize
them to the Strings from the old array.

Because the transformer class is separate from the old and new
object classes, the Java type system would normally forbid the
transformer access to their private fields. There is no obvious so-
lution to this problem that conforms to the Java type system. We
could define object transformers as methods of the old changed
classes, which would grant access to the old fields, but not the new
ones. Defining transformers as methods of the new changed class
has the reverse problem. Also, the Java type system would disal-
low writes to final fields from within the transformer functions.
To avoid these problems, we compile our separate transformation
class with the JastAdd Java-to-bytecode extensible compiler [18]
using a simple extension we wrote that ignores access modifiers
(e.g., private and protected) and allows methods to assign to
final fields. Bytecode that ignores these modifiers would not nor-
mally verify, so we have to modify the VM to allow it in this special
circumstance.1 The VM executes these Java functions normally,
because they are otherwise standard Java. Since the transforma-
tion class is only active and available during the update, the VM
may delete it after transformation. Separating transformers from
updated classes avoids cluttered class files at run-time, and makes
DSU more transparent to developers.

Supported in its full generality, a transformer method may ref-
erence any object reachable from the global (static) namespace
of both the old and new classes, and read or write fields or call
methods on the old version of an updated object and/or any ob-
jects reachable from it. JVOLVE presents a more limited interface
(similar to past work [37, 26]). In particular, the only access to the
new class namespace is via the to pointer, whose fields are unini-
tialized. The old class namespace is accessible, with two caveats.
First, fields of old objects may be dereferenced, but only if the up-
date has not changed the object’s class, or if it has, after the ref-
erenced objects are transformed to conform to the new class def-
inition. Second, no methods may be called on any object whose
class was updated. In Figure 3 class v131_User is defined in terms
of the fields it contains; no methods are shown. As explained in
Section 3.4, these limitations stem from the goal of keeping our
garbage collector-based traversal safe and relatively simple. This
interface is sufficient to handle all of the updates we tested.

An alternative programming model would be that transform-
ers could dereference from object fields and see the old objects,
rather than the transformed ones. Boyapati et al. [11] implement
this model, as described in Section 5. Our experience and that of
others [5, 32, 30, 24] indicate that our model expresses many up-
dates well. We leave to future work a detailed investigation of the
semantics and expressiveness of both models.

3. JVOLVE DSU Implementation
This section describes how we support DSU in JVOLVE by ex-
tending common virtual machine services. JVOLVE is built on the
Jikes RVM, a high-performance Java-in-Java Research VM [1, 42].
JVOLVE integrates and extends the Jikes RVM’s dynamic class-
loader, JIT compiler, thread scheduler, copying garbage collector
(GC), and support for return barriers and on-stack replacement to
implement DSU.

1 Jikes RVM, on which JVOLVE is built, does not implement a bytecode
verifier. Aside from this exceptional case, JVOLVE classes are compiled
normally and should pass verification.

After the user prepares and tests a program’s modifications, the
update process in JVOLVE proceeds in five steps. (1) Our UPT
generates an update specification. (2) The user signals JVOLVE.
(3) JVOLVE stops running threads at a DSU safe point. (4) It
loads the updated classes, the transformer functions, and installs
the modified methods and classes. (5) JVOLVE then applies object
and class transformers following a modified GC.

3.1 Preparing the update
To determine the changed and transitively-affected classes for a
given release, we wrote a simple Update Preparation Tool (UPT)2

that examines differences between the old and new classes provided
by the user. UPT groups changes into three categories, and lists
them in the update specification file:

Class updates: These updates change the class signature by add-
ing, removing, or changing the types of fields and methods.

Method body updates: These updates change only the internal
implementation of a method.

Indirect method updates: These are methods whose bytecode is
unchanged, but the VM recompiles them because they refer
to fields and methods of updated classes. The compiled code
uses hard-coded field offsets, and the update may change these
offsets.

UPT generates default object and class transformer functions for all
class updates, which the programmer may optionally modify. Af-
ter compiling the transformers with our custom JastAdd compiler
(described in Section 2.3), the user initiates the update by signaling
the JVOLVE VM and providing the new version of the application,
the update specification file, and the transformers class file.

3.2 DSU safe points
JVOLVE requires the running system to reach a DSU safe point be-
fore it applies updates. DSU safe points occur at VM safe points
but further restrict the methods on the threads’ stacks. These re-
strictions provide sensible update semantics: no code from the new
version executes before the update completes, and no code from the
old version executes afterward. As mentioned in Section 2.1, we
divide restricted methods into three categories: (1) methods whose
bytecode has changed, due to a class update or a method body up-
date; (2) methods whose bytecode has not changed but that access
an updated class; and (3) methods the user blacklists.

This subsection next discusses why these restrictions improve
the safety and semantics of updates, and then describes the actions
JVOLVE takes to reach a DSU safe point.

Semantics of DSU safe points. Our choice of restricted methods
is similar to other DSU systems [37, 26, 2, 17, 27, 14, 13, 39].
To understand why category (1) methods are restricted, consider
the update from Figure 2. Assume the thread is stopped at the
beginning of the ConfigurationManager.loadUser method.
If the update takes effect at this point, the new implementation
of User.setForwardedAddresses will take an object of type
EmailAddress[] as its argument. However, if the old version
of loadUser were to resume, it would still call setForwarded-
Addresses with an array of Strings, resulting in a type error.

Preventing an update until changed methods are no longer on
the stack ensures type safety because when the new version of the
program resumes it will be self consistent. If a programmer changes
the type signature of a method m, for the program to compile
properly, the programmer must also change any methods that call m.

2 UPT is built using jclasslib: http://www.ej-technologies.com/
products/jclasslib.

http://www.ej-technologies.com/products/jclasslib
http://www.ej-technologies.com/products/jclasslib


In our example, the fact that setForwardedAddresses changed
type necessitated changing the function loadUser to call it with
the new type. With this safety condition, there is no possibility that
the signature of method m could change and some old caller could
call it—the update must also include all updated callers of m.

Category (2) methods are more subtle. Suppose some method
getStatus calls method getForwardedAddresses from our ex-
ample, but getStatus source code and bytecode has not changed
from versions 1.3.1 to 1.3.2. Nevertheless, getStatus’s machine
code, produced by the JIT compiler, may need to be recompiled.
For example, if the new compiled version of getForwarded-
Addresses is at a different offset than before, then the VM must re-
compile getStatus to correctly refer to the new offset. An update
may also change field offsets in modified classes, which requires
recompiling any class that accesses them as well. Ginseng [32] and
POLUS [13], two DSU systems for C, likewise consider functions
as changed if their source code is the same but they access data
types whose (compiled) representation is different. Note that the
VM would not need to restrict category (2) methods if it used an
interpreter that looked up offsets at each access.

Even if a method has not changed, a user may need to manually
blacklist it. For example, suppose a method handle calls meth-
ods process and cleanup, and the method cleanup initializes a
field that it uses. Now suppose we update this program to move
the initialization statement into process, because process needs
to use the field as well. In both versions, the field is properly ini-
tialized when the program runs from scratch. However, suppose
that JVOLVE applies the update and the thread running handle
yields in between the calls to process and cleanup. In this case,
handle’s bytecode has not been changed (process and cleanup
are method body changes, not class updates), so we could go ahead
with the update. But if we did, then the program would have called
the old process method, which did not perform any initialization,
and then would call the new cleanup method, which performs no
initialization either, since it the new version process does it, lead-
ing to incorrect semantics. To avoid such version consistency prob-
lems [31] the programmer can include handle in the restricted set.
Our benchmarks did not require manual restrictions.

Finally, note that when the VM JIT compiler uses inlining we
may need to increase the number of restricted methods to include
those into which restricted methods are inlined. In particular, if a
category (1), (2), or (3) method m is inlined into method n, we
should also restrict n (and recompile it, after the update) to pre-
vent the old m from running after the update. Jikes RVM initially
compiles a method with its base-compiler, which generates ma-
chine code but does not apply sophisticated optimizations. Based
on run-time profiling information, the VM may recompile the same
method later using its opt-compiler, which performs standard op-
timizations, including inlining. It performs inlining of small, fre-
quently used methods; cost-based inlining for larger methods; and
may inline multiple levels down a hot call chain. As a consequence,
JVOLVE restricts inlined callers of restricted methods.

Reaching a DSU safe point. To safely perform VM services
such as thread scheduling, garbage collection, and JIT compilation,
Jikes RVM (like most production VMs) inserts yield points on
all method entries, method exits, and loop back edges. If the VM
wants to perform a garbage collection or schedule a higher priority
thread, it sets a yield flag, and the threads stop at the next VM safe
point. JVOLVE piggybacks on this functionality. When JVOLVE is
informed that an update is available, it sets the yield flag. Once
application threads on all processors have reached VM safe points,
JVOLVE checks the paused threads’ stacks. If no stack refers to a
restricted method, JVOLVE applies the update.

If any thread is running a restricted method, JVOLVE defers the
update and installs a return barrier [43] on the topmost restricted

method of each thread. A generic return barrier replaces the regular
method return branch back to the next instruction in the calling
method with a branch to bridge code, which performs some special
action and then executes the return branch. We added this generic
return barrier functionality to Jikes RVM, but this technology is
standard in other VMs. Our bridge code restarts the update process.
Therefore, when a restricted method returns, the thread will block
and JVOLVE will restart the update process, which will either reach
a DSU safe point, or the VM will insert more return barriers. If
JVOLVE does not reach a safe point within 15 seconds, it aborts the
update (the length of timeout is arbitrary, and can be configured by
the user). However, it turns out we can sometimes proceed with an
update despite category (2) methods on-stack, as described next.

Lifting category (2) restrictions. JVOLVE reduces the number of
restricted methods in category (2) by leveraging VM support for
on-stack replacement (OSR). Jikes RVM normally uses OSR to re-
place a base-compiled version of an active method with an opti-
mized version. We observe that for category (2) restricted methods,
the situation is much the same: an unchanged, on-stack method re-
quires recompilation, in our case to fix any changed offsets. If the
stack only contains category (2) methods, JVOLVE first performs
OSR, and then starts the update. As of this writing, we only sup-
port OSR for base-compiled category (2) methods, which do not
contain any inlined calls, though we plan to support OSR on opt-
compiled methods as well.

Jikes RVM’s standard OSR functionality works as follows. Af-
ter reaching a yield point, OSR recompiles the topmost method on
a thread’s stack. The VM then modifies the thread’s current PC to
switch to the equivalent location in the new implementation, and
adjusts the stack to reflect the recompiled version. Jikes RVM ex-
amines the active stack frame and extracts the values of local vari-
ables. It generates a special prologue to the recompiled method that
sets up a stack frame with these extracted values. The last instruc-
tion in this prologue jumps to the new PC location. The VM then
overwrites the return address of the yield point function to jump to
the prologue.

We extend Jikes RVM’s OSR facilities to support multiple stack
activation records, and multiple stack frames on the same stack.
This later addition makes it more likely to reach a DSU safe point
when a string of category (2) methods precede a changed method
on the stack. Given this support, JVOLVE ignores base-compiled
category (2) methods when testing for a safe point. If any base-
compiled category (2) methods are on stack at an otherwise DSU-
safe point, JVOLVE uses OSR to replace them. The exact timing
of OSR for DSU requires the VM to first load modified classes, as
explained next.

3.3 Installing modified classes
Once the program reaches a safe point, JVOLVE begins the update
by loading and installing the changed classes, and updating relevant
metadata in the existing versions.

Jikes RVM represents classes with several internal data struc-
tures. Each class has an RVMClass meta-object that describes
the class. It points to other meta-objects that describe the class’s
method and field types and offsets in an object instance. The com-
piler and garbage collector query this metadata. Often the compiler
can statically determine the type of the object reference. In this
case, it queries the meta-object and hard-codes constant offsets
into the machine code to generate efficient field and method ac-
cess code. The garbage collector uses meta-objects to identify ob-
ject reference fields and trace the referent objects. RVMClass also
stores a type information block (TIB) for each class, which maps
a method’s offset to its actual implementation. Jikes RVM always
compiles a method directly to machine code when the method is
first invoked. Each object instance contains a pointer to its TIB, to
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Figure 4. Running object transformers following GC

support dynamic dispatch. When the program invokes a method on
an object, the generated code indexes the object’s TIB at the correct
offset and jumps to the machine code.

For a class with only method body updates, all of the class’s
metadata is the same in both the old and new versions. Therefore,
JVOLVE invalidates the TIB entries for each replaced method, reads
in the new method body implementations, and modifies the exist-
ing class metadata to refer to the replacement methods’ bytecode.
The JIT will compile the updated method when the program next
invokes it, after the update.

For a class update, the class’s number, type, and order of fields
or methods may have changed, which in turn impacts the class’s
metadata, including its TIB. JVOLVE modifies existing class meta-
data as follows. First, it changes the old class’s metadata to use a
modified class name, e.g., metadata for class User is renamed to
v131_User in our example update from Figure 2 and 3. Next, it in-
stalls the new RVMClass and corresponding metadata for the new
version. Then the VM updates several Jikes RVM data structures
(e.g., the Java Table of Contents for static methods and fields) to
indicate that the newly-loaded class is now the up-to-date version.
Note that all TIB entries for the newly-installed class are invalid, so
all methods in the class will be compiled on demand. JVOLVE in-
validates the TIB entries and other data structures for the old class
so that they can be garbage-collected.

Once method and class updates are installed, if category (2)
methods are active, the VM initiates OSR for these methods.

Invalidating changed methods will impose overhead on the exe-
cution just following the update when these methods are first base-
compiled and then when they are progressively optimized at higher
levels, if they execute frequently. We could reduce this overhead
somewhat by optimizing new versions directly to their prior level of
optimization. Updates to method bodies however invalidate execu-
tion profiles and without branch and call frequencies, code quality
would degrade. Thus, we believe it is better to let the adaptive com-
piler work as it was intended. In any case, since dynamic updates
are relatively rare events, any added overhead due to recompilation
will be short-lived.

3.4 Applying Transformers
We modify the Jikes RVM semi-space copying collector [9] to up-
date changed objects as part of a collection. The collector trans-
forms old objects of an updated classes to conform to their new
class signature and point to their new TIB. A semi-space copying
collector normally works by traversing the pointer graph in the old
heap (called from-space) starting at the roots and performing a tran-
sitive closure over the object graph, copying all objects it encoun-

ters to a new heap (called to-space). The roots include statics, stack-
allocated local variables, and references in registers. The compiler
generates a stack map at every VM safe point (a superset of DSU
safe points). The stack map enumerates all register and local vari-
ables on the stack that reference heap objects. When the collector
first encounters an object, it copies it to to-space and then over-
writes its header with a forwarding pointer to the new copy. If the
collector encounters a forwarded object later via another reference,
it uses the forwarding pointer to redirect the reference to the new
object.

Our modified collector works in much the same way, but differs
in how it handles objects whose class signature has changed. In this
case, it allocates a copy of the old object and a new object of the
new class, which may have a different size compared to the old
one. The collector initializes the new object to point to the TIB of
the new type, and installs the forwarding pointer in from-space to
this new version. Next, the collector stores a pair of pointers in its
update log, one to the copy of the old object and one to the new
object. The collector continues scanning the old copy.

After the collection completes, JVOLVE first executes trans-
formers for all classes and then for all objects. JVOLVE goes
through the update log and invokes the object transformer, pass-
ing the old and new object pair as arguments. Once it processes all
pairs, the log is deleted, making the duplicate old versions unreach-
able. Since they are unreachable, the next garbage collection will
naturally reclaim them. If we put them in a special space, we could
reclaim them immediately.

Example. Figure 4 illustrates a part of the heap at the end of the
GC phase while applying the update from Figure 3 (forwarding
pointers not shown). On the left is a depiction of part of the heap
prior to the update. It shows a User object whose fields point to
various other elided objects. After the copying phase, all of the old
reachable objects are duplicated in to-space. The transformation log
points to the new version of User (which is initially empty) and the
duplicate of the old version, both of which are in to-space. The
transformer function can safely copy fields of the from object. The
figure shows that after running the transformer function, the new
version of the object points to the same username field as before,
and it points to a new array which points to new EmailAddress
objects. The EmailAddress constructor called within the trans-
former function initialized these objects by referring to the old e-
mail String values and assigning fields to point to substrings of
the given String.

In our example, the jvolveObject function only copies the
contents of the old User object’s fields. More generally, our update
model allows old object fields to be dereferenced in transformer



functions so long as the fields point to transformed objects. If some
object o is dereferenced while running p’s transformer method,
but o has not yet been transformed, we must find o and pass it
and its uninitialized new version to the jvolveObject method to
initialize it. Since p points to the new version of o, we could scan
the remainder of the update log to find the old version. To avoid this
cost, we instead cache a pointer to the old version in the new version
during the collection. We take care that jvolveObject functions
invoked recursively in this manner do not loop infinitely, which
would constitute one or more ill-defined transformer functions.
We detect cycles with a simple check, and abort the update. In
our current implementation, the programmer uses a special VM
function to force a field’s referenced object to be transformed. We
should be able to handle this case automatically, through a read
barrier or a simple analysis of the jvolveObject bytecode.

3.5 Discussion
Our implementation of object transformers uses an extra copy of all
updated objects and adds temporary memory pressure. We could
instead copy the old versions to a special block of memory and re-
claim it when the collection completes. We could attempt to avoid
extra copies altogether by invoking object transformer functions
during collection. This approach is more complicated because our
transformer model requires recursively invoking the collector from
the transformer if a dereferenced field has not yet been processed.
We also would need to use a GC-time read barrier to follow for-
warding pointers before dereferencing an object in order to deter-
mine whether an object has been transformed.

We use a stop-the-world garbage collection-based approach that
requires the application to pause for the duration of a full heap GC.
This pause time could be mitigated by piggybacking on top of a
concurrent collector. We could also consider applying object and
class transformers lazily, as they are needed [37, 26, 11, 32, 13].
The main drawback here is efficiency. The VM would need to insert
code to check, at each dereference, whether the object is up-to-
date, imposing extra overhead on steady-state execution. Moreover,
stateful actions by the program after an update may invalidate
assumptions made by object transformer functions. It is possible
that a hybrid solution could be adopted, similar to Chen et al. [13],
which removes checking code once the system updates all objects.
We leave exploration of these ideas to future work.

Finally, our OSR support is currently limited to on-stack meth-
ods whose bytecode has not changed. We plan to further extend
OSR to support changed methods on the stack, similar to what is
provided by UpStare, a DSU system for C [24]. For changed meth-
ods the user wishes to update while they run, she must additionally
provide a mapping between the yield points in the old method to
similar points in the new method. For example, a common change
is to modify the contents of an event handling loop. The user would
map the yield point at the end of the old loop to the yield point at
the end of the new loop. The user would also have to provide the
analogue of an object transformer for initializing the contents of
the new method’s stack frame, given the old stack frame contents.
As with object transformers, this update model poses a question:
should the stack frame transformer be allowed to dereference ob-
jects in the old stack frame if they too have changed? We leave
exploration of updating active methods to interesting future work.

4. Experience
To evaluate JVOLVE, we used it to update three open-source servers
written in Java: the Jetty webserver3, JavaEmailServer,4 an SMTP

3 http://www.mortbay.org
4 http://www.ericdaugherty.com/java/mailserver/
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Figure 5. Throughput and latency measurements of Jetty web-
server v5.1.6

and POP e-mail server, and CrossFTP server.5 These programs be-
long to a class that should benefit from DSU because they typically
run continuously. DSU would enable deployments to incorporate
bug fixes or add new features without having to halt currently-
running sessions.

We explored updates corresponding to releases made over
roughly one to two years of each program’s lifetime. Of the 22
updates we considered, JVOLVE could support 20 of them—the
two updates we could not apply changed classes with infinitely-
running methods, and thus no safe point could be reached. To our
knowledge, no existing DSU system for Java could support all these
updates; indeed, previous systems with simple support for updating
method bodies would be able to handle only 9 of the 22 updates.
Although JVOLVE cannot support every update, it is the first DSU
system for Java that has been shown to support changes to realistic
programs as they occur in practice over a long period of time.

In the rest of this section, we first examine the performance
impact of JVOLVE, and then look at updates to each of the three
applications in detail.

4.1 Performance
The main performance impact of JVOLVE is the cost of applying an
update; once updated, the application eventually runs without fur-
ther overhead. To confirm this claim, we measured the throughput
and latency of two Jetty versions while running on stock Jikes RVM
and on JVOLVE after dynamically updating to the next version. The
performance of these configurations is essentially identical.

The cost of applying an update is the time to load any new
classes, invoke a full heap garbage collection, and to apply the
transformation methods on objects belonging to updated classes.
Roughly, the time to suspend threads and check that the application
is in a safe-point is less than a millisecond, and classloading time is
usually less than 20ms. Therefore the update disruption time is pri-
marily due to the GC and object transformers, and is proportional to
the size of the heap and the fraction of objects being transformed.
We wrote a simple microbenchmark to measure these overheads.
This experiment shows that object transformation is the dominant
cost.

We conducted all our experiments on an Intel Core 2 Quad ma-
chine running at 2.4 GHz machine with 2 GB of RAM. The ma-

5 http://www.crossftp.com/

http://www.mortbay.org
http://www.ericdaugherty.com/java/mailserver/
http://www.crossftp.com/


# objects Heap Fraction of updated objects
size 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Garbage collection time (ms)
280000 160 MB 78.2 81.3 83.1 89.3 99.0 103.2 108.3 113.2 113.3 120.3 120.0
770000 320 MB 148.9 165.0 181.9 195.8 213.2 223.2 237.0 249.0 262.0 269.5 278.6

1760000 640 MB 313.3 347.7 382.9 416.0 449.8 478.9 506.8 534.0 558.8 583.7 601.5
3670000 1280 MB 615.4 694.6 763.0 833.6 900.1 965.9 1019.0 1076.4 1129.9 1181.2 1217.5

Running transformation functions (ms)
280000 160 MB 0.1 13.0 23.2 34.6 43.9 54.0 62.7 74.5 84.1 93.9 104.2
770000 320 MB 0.1 33.7 63.1 91.2 116.8 145.4 173.9 201.0 231.3 262.0 292.6

1760000 640 MB 0.1 77.9 143.9 207.7 269.5 333.7 397.6 464.0 534.6 604.5 674.9
3670000 1280 MB 0.1 160.8 299.2 429.4 560.2 693.8 827.3 975.0 1119.6 1263.7 1405.4

Total DSU pause time (ms)
280000 160 MB 82.8 99.0 109.5 128.0 147.6 161.2 174.5 192.8 202.5 218.8 228.1
770000 320 MB 153.6 202.9 249.0 291.4 334.5 372.6 414.8 455.4 498.1 535.3 576.8

1760000 640 MB 316.6 429.5 530.5 627.2 723.4 816.0 908.6 1002.6 1097.5 1191.5 1281.2
3670000 1280 MB 618.7 859.0 1065.9 1269.9 1466.1 1663.6 1850.8 2054.2 2253.1 2448.5 2627.9

Table 1. Microbenchmark results: JVOLVE update pause time (in ms) for various heap sizes

chine ran Ubuntu 7.10 on Linux kernel version 2.6.22. We imple-
mented JVOLVE on top of Jikes RVM (SVN r15532).

Jetty performance. To see the effect of updating on application
performance, we measured Jetty under various configurations us-
ing httperf, a webserver benchmarking tool.6 We used httperf to
issue roughly 800 new connection requests/second, which we ob-
served to be Jetty’s saturation rate. Each connection makes 5 se-
rial requests for a 40 Kbyte file. Httperf reports average throughput
and average per-request latency over a 60 second period. We ran
this experiment 21 times and report the median and quartiles of the
throughput and latency reports. With 21 runs, the range between
the quartiles serves as a 98% condence interval [36]. In order to
eliminate network traffic effects, we ran the server on two cores of
a quad-core machine and the client on another core.

Figure 5 shows our results in tabular form and plotted graph-
ically. The second and third columns of the table report the me-
dian throughput and the range between the two quartiles. The third
column and fourth column report the median latency and the inter-
quartile range. The first and seconds rows illustrate the performance
of Jetty version 5.1.6 running on stock Jikes RVM and JVOLVE,
respectively. The third row shows the performance on JVOLVE of
Jetty 5.1.6 dynamically updated from version 5.1.5 prior to the start
of the experiment. The performance of the two JVOLVE configura-
tions is essentially identical: the two configurations’ corresponding
inter-quartile ranges largely overlap. The performance of JVOLVE
is also quite similar to the performance of stock Jikes RVM. There
are many small differences between JVOLVE and the stock imple-
mentation that change VM code size, code layout, and garbage
collection behavior. These differences may impact performance di-
rectly and they may indirectly affect other elements of the VM,
such as the timing of garbage collections and JIT optimizations
(such indirect effects make VMs notoriously difficult to bench-
mark [10]).

Microbenchmarks. The two dominant factors that determine
JVOLVE update time are the time to perform a GC, determined
by the number of objects, and the time to run object transformers,
determined by the fraction of objects being updated. To measure
the cost of each, we devised a simple microbenchmark that cre-
ates an array of objects and transforms a specified fraction of these
objects when a JVOLVE update is triggered. The microbenchmark
has two simple classes, Change and NoChange. Both contain three
integer fields, and three reference fields that are always null. The

6 http://www.hpl.hp.com/research/linux/httperf
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Figure 6. Microbenchmark pause times with a heap size of 1280
MB containing 3.67 million objects

update adds an integer field to Change. The user-provided object
transformation function copies the existing fields and initializes
the new field to zero. We measure the cost of performing an update
while varying the total number of objects and the fraction of objects
of each type. The number of objects is the maximum that can fit in
heap sizes 32, 64, 128 and 256 MB. Note that Jikes RVM’s heap
includes VM data structures as well. We measure the running time
in a generous heap, five times the minimum required size, such that
the only collections are those DSU triggers. We report the median
of 21 runs.

Table 1 shows the elapsed time while varying the number of
total objects and the fraction of the objects that are updated. The
variance was insignificant, so we do not report it. The first group of
rows reports garbage collection time, the second group reports the
time to transform all updated objects, and the final group reports
the total update time, which includes the sum of the GC and trans-
formation time, the time to load and install the updated classes,
synchronize running threads, and find a DSU safe point. The first
column of the table shows the number of objects in the test, and
the second column the heap size. Columns 3 though 13 show pause
times for varying fractions (from 0% to 100%) of updated objects.

http://www.hpl.hp.com/research/linux/httperf


Ver. # # changed
classes classes methods fields
added add del chg add del

5.1.1 0 14 4 1 38/0 0 0
5.1.2 1 5 0 0 12/1 0 0
5.1.3* 3 15 19 2 59/0 10 1
5.1.4 0 6 0 4 9/6 0 2
5.1.5 0 54 21 4 112/8 5 0
5.1.6 0 4 0 0 20/0 5 6
5.1.7 0 7 8 0 11/2 9 3
5.1.8 0 1 0 0 1/0 0 0
5.1.9 0 1 0 0 1/0 0 0
5.1.10 0 4 0 0 4/0 0 0

Table 2. Summary of updates to Jetty

To shed light on the results in the table, Figure 6 plots collection
time, transformer time and total update time for the microbench-
mark with 3.67 million objects in a 1280 MB heap. The figure
shows that the costs of garbage collection and transformation in-
crease as a function of the number of changed objects. The slope
of the “GC time” line illustrates the cost to deal with an increas-
ing number of transformed objects. This cost includes creating an
additional copy of each transformed object; creating the update log
entry with a pointer to the old and new copy; and caching a pointer
to the old copy from the new copy. The slope of the “Running trans-
formers” line illustrates the added cost of iterating over the update
log and actually running the transformers. This extra processing
to handle transforming objects increases the total pause time with
all objects updated by roughly four times compared to the pause
time with no object updated. The “Running Transformers” line is
steeper than the “GC time” line, revealing that the cost of running
transformers is higher than the extra copying cost incurred during
GC.

Transformations are more expensive than standard copying GC.
The GC uses memcopy, which is highly optimized, whereas our
transformer functions use reflection to look up jvolveObject, and
this function copies one field at a time. One optimization would be
to eliminate the log by copying the old and new objects to their
own space and walking through and transforming each object. The
cost of reflection could be reduced by caching the lookup, but even
then a naı̈vely compiled field-by-field copy is much slower than the
collector’s highly-optimized copying loop.

4.2 Jetty webserver
Jetty is a popular webserver written in Java. It supports static and
dynamic content and can be embedded within other Java applica-
tions. Jikes RVM, and thus JVOLVE, is not able to run the most
recent versions of Jetty (6.x). Therefore we considered 11 versions,
consisting of 5.1.0 through 5.1.10 (the last version prior to version
6). Version 5.1.10 contains 317 classes and about 45,000 lines of
code. Table 2 shows a summary of the changes in each update.
Each row tabulates the changes relative to the prior version. For the
column listing changed methods, the notation x/y indicates that
x + y methods were changed, where x changed in body only, and
y changed their type signature as well. For dynamic updating sys-
tems that only support changes to method bodies, only the first and
last three of the ten updates could be supported, since the rest either
change method signatures and/or add or delete fields.

Reaching a safe point in Jetty. We successfully wrote dynamic
updates to all versions of Jetty that we examined. For each version
starting at 5.1.0, we ran Jetty under full load. After 30 seconds we
tried to apply the update to the next version. We did this five times

Ver. # classes # changed
add del classes methods fields

add del chg add del

1.2.2 0 0 3 0 0 3/0 0 0
1.2.3 0 0 7 0 0 14/2 12 0
1.2.4 0 0 2 0 0 4/0 0 0
1.3* 4 9 2 11 3 6/9 12 5
1.3.1 0 0 2 0 0 4/0 0 0
1.3.2 0 0 8 4 2 4/2 3 1
1.3.3 0 0 4 0 0 3/0 0 0
1.3.4 0 0 6 2 0 6/0 2 0
1.4 0 0 7 6 1 4/1 6 0

Table 3. Summary of updates to JavaEmailServer

Ver. # classes # changed
add del classes methods fields

add del chg add del

1.06 4 1 1 0 0 3/0 1 0
1.07 0 0 3 4 0 14/0 5 0
1.08 0 1 3 2 0 10/0 0 2

Table 4. Summary of updates to CrossFTP server

per version. Other than the update to 5.1.3, all versions immediately
reached a safe point every time, with no need of return barriers.

We could not apply the update to version 5.1.3 (denoted with an
asterisk in the table) because JVOLVE was never able to reach a safe
point. The update modified ThreadedServer.acceptSocket(),
a method that waits for a connection from the client, and this
method is nearly always on stack. We installed a return barrier that
is triggered when acceptSocket returns, but this barrier is not
sufficient to perform the update since the main methods of several
threads were themselves modified. For example, we also install
a return barrier on PoolThread.run(), but this barrier is never
triggered because this method never becomes inactive.

4.3 JavaEmailServer
For JavaEmailServer, we considered 10 versions—1.2.1 through
1.4—spanning a duration of about two years. Version 1.4 consists
of 20 classes and about 5000 lines of code. Table 3 shows the sum-
mary of changes for each new version. Approaches that only sup-
port updates to method bodies will be able to handle only four of
these updates. We could successfully construct updates for all ver-
sions we examined, and we could successfully apply all of them
except the update to version 1.3. This update reworks the configu-
ration framework of the server, among other things removing a GUI
tool for user administration and adding several new classes that im-
plement a file-based configuration system. As a result, many of the
classes are modified to point to a new configuration object. Among
these classes are threads with infinite processing loops (e.g., to ac-
cept POP and SMTP requests). Because these threads are always
active, the safety condition can never be met and thus the update
cannot be applied.

The update from 1.3.1 to 1.3.2 indirectly changes the SMTPSen-
der.run() and Pop3Processor.run() methods. These methods
contain processing loops run by several threads. Though these
methods are always running, JVOLVE applies OSR and the update
succeeds. JVOLVE also uses OSR for the update from 1.3.2 to 1.3.3.

4.4 CrossFTP server
CrossFTP server is an easily configurable, security-enabled FTP
server. CrossFTP allows simple configuration through a GUI and



more advanced customization using configuration files. We did not
use the GUI interface and therefore do not consider changes to
that part of the program. We looked at 4 versions— 1.05 through
1.08, details shown in Table 4—spanning a duration of more than
a year. Version 1.08 contains about 18,000 lines of code spread
across 161 classes. JVOLVE successfully applies all three updates
to this application. Note that since all updates either add or delete
fields, simple method body updating support on its own would be
insufficient.

JVOLVE could only apply the update from version 1.07 to
1.08 when the server was relatively idle. The server runs a new
RequestHandler thread to process each FTP session, and the
RequestHandler.run() method was changed by the update.
JVOLVE installs a return barrier on this method, but with many ac-
tive sessions, this method is essentially always on stack, preventing
the update. Future work could address this problem using scheduler
support for coordinating updates among active threads [30].

5. Related Work
We compare our VM-centric approach to DSU with related work
on implementing DSU for managed languages, C, and C++.

Edit and continue. Debuggers and IDEs have long provided edit
and continue (E&C) functionality that permits limited modifica-
tions to program state to avoid stopping and restarting during de-
bugging. For example, Sun’s HotSwap VM [27, 15], .NET Visual
Studio for C# and C++ [14], and library-based support [17] for
.NET applications all provide E&C. These systems restrict updates
to code changes within method bodies. While this restriction re-
duces safety concerns and obviates the need for class and object
transformers, the resulting systems are inflexible. They cannot per-
form more than half of the updates discussed in Section 4.

DSU for managed languages without VM support. To avoid
changing the VM to support DSU, researchers have developed
special-purpose classloaders and/or compiler support. The main
drawbacks of these approaches are inflexibility and high overhead.
For example, Eisenbach and Barr [4] and Milazzo et al. [28] use
custom classloaders for binary-compatible and component-level
changes respectively, but cannot perform class field additions.

Orso et al. [35] use source-to-source translation for DSU by
introducing a proxy object that indirectly accesses an object that
may change. This approach requires updated classes to export the
same public interface, forbidding new public methods and fields.
Non VM-based approaches are in general limiting because they are
not transparent—they make visible changes to the class hierarchy,
and insert or rename classes. This approach makes it essentially
impossible to be robust in the face of code using reflection or
native methods. Moreover, the indirection imposes time and space
overheads on steady-state execution. Our VM approach naturally
supports reflection and native methods (these are updated as well),
and is more expressive, e.g., it supports signature changes.

VM support for DSU in managed languages. The PROSE sys-
tem performs short-term, run-time patches to code for logging, in-
trospection, and performance adaptation, rather performing general
updates [33]. An Eclipse plug-in performs run-time bytecode in-
strumentation and a modified JIT performs method code replace-
ment, using an API in the style of aspect-oriented programming.
PROSE has the same update model as the E&C systems: it sup-
ports updates to method bodies but not class or method signature
changes that require changes to object state.

JDrums [37] and Dynamic Virtual Machine (DVM) [26] both
implement DSU for Java within the VM, providing a programming
interface similar to JVOLVE, but are lacking in two ways. First, nei-
ther JDrums nor DVM have ever been demonstrated to support up-

dates from real-world applications. Second, their implementations
impose overheads during steady-state execution. They both update
lazily and use an extra level of indirection (the handle space). Indi-
rection conveniently supports object updates, but adds extra over-
head. For example, JDrums traps all object pointer dereferences to
apply VM object transformer function(s) when the object’s class
changes. Lazy updating has the advantage that it amortizes pauses
due to an update over subsequent execution. The main drawback
is that its overhead persists during normal execution, even though
updates are relatively rare. DVM works only with the interpreter.
Relative to this interpreter, which is already slow, the extra traps
result in roughly 10% overhead.

Compared to these two, JVOLVE performs updates eagerly by
employing a full heap collection at update-time. This stop-the-
world approach imposes a longer pause at update time, but elim-
inates overhead during steady-state execution. Likewise, by invali-
dating updated methods, JVOLVE’s performance is slowed just after
the update as these methods are being recompiled. However, com-
pared to running with an interpreter, steady-state execution is much
improved, since methods will be much better optimized.

Boyapati et al. [11] support dynamic updates to classes kept in
a persistent object store (POS). While the setting is different, their
basic update model, and in particular their notion of object trans-
former function, is similar to ours. In their system, programmers
manually write an object transformer that they view as a method
on the old version of the updated class, i.e., the transformer method
is type-safe with respect to the old class. In JVOLVE, object trans-
formers may access the new versions of objects pointed to from
the old class. Instead, Boyapati et al.’s transformers may access the
old versions. To implement this model, they rely on encapsulation
based on ownership types: if an object a of class A has an “owned”
field pointing to an object b of class B, then only a can point to
(and access) b. Encapsulation thus ensures the system will always
transform a before b, which makes the transformation algorithm
more efficient. They rely on the programmer to enforce encapsula-
tion, and describe how the compiler could automate language sup-
port for encapsulation in a non-standard type system. JVOLVE takes
the opposite tack of forcing old object fields to point to up-to-date
objects, and thus requires no special language support. Moreover,
JVOLVE’s model follows that of earlier work [5, 32, 30, 24] which
has proven its effectiveness on a half-dozen realistic applications
across several years’ worth of releases. However, further research
to understand the costs and benefits of the two updating models
would be useful.

Boyapati et al. also differs from JVOLVE in that, like JDRUMS
and DVM, updates are applied incrementally as objects are ac-
cessed following an update rather than all at once using a stop-
the-world GC. This incremental cost is more natural in a POS
since indirection is already required to access external objects. The
POS model also permits programmers to specify ACID transaction
boundaries, which can help ensure that updates are applied con-
sistently and safely. In contrast, our work focuses on supporting
dynamic upgrades in a high-performance VM for Java, and thus
many of the issues we consider—reaching a safe point via return
barriers and OSR, and coexisting with the JIT compiler—are the
unique contributions of our work.

Dynamic Software Updating for C/C++ There are several sub-
stantial systems for dynamically updating C and C++ programs that
target server applications [22, 2, 32, 13, 24, 30] and operating sys-
tems components [39, 5, 12, 23, 25]. Although some of these sys-
tems are mature, the flexibility afforded by JVOLVE is comparable
or superior. JVOLVE’s timing restrictions and Java’s type safety also
provide comparable or superior safety; the fact that C and C++ pro-
grams often circumvent the languages’ weak type systems greatly
complicates efforts to ensure that updates behave correctly. Some



prior systems [30, 24, 13] have focused on means to reach DSU
safe points quickly, and we plan similar efforts as future work. In
particular, we plan to extend our support for OSR to apply to run-
ning methods whose bytecode has changed, allowing the user to
map an active method’s PC and stack frame and those of its new
version, similar to support provided by UpStare [24].

The lack of a VM is a disadvantage for C and C++ DSU. For
example, because a VM-based JIT can compile and recompile re-
placement classes, it imposes no steady-state execution overhead.
By contrast, C and C++ implementations must use either statically-
inserted indirections [22, 32, 39, 5, 24] or dynamically-inserted
trampolines to redirect function calls [2, 12, 13, 3]. Both cases
impose persistent overhead on normal execution and inhibit opti-
mization. Likewise, because these systems lack a garbage collec-
tor, they either do not update object instances at all [3], update
them lazily [32, 13] or perform extra allocation and bookkeeping
to locate the objects at update-time [5]. Finally, because these sys-
tems lack support for on-stack replacement, they must pre-compile
potentially long-running methods specially, so that they can be up-
dated while they run. These techniques impose time and space over-
heads on steady-state execution, and in some cases limit update
flexibility.

Other proposals Gilmore et al. [20] propose DSU support for
modules in ML programs using a similar, but more restrictive
programming interface compared with JVOLVE. They formalize
an abstract machine for implementing updates using a copying
garbage collector. Duggan [16] also proposes dynamic updates to
ML programs, focusing on lazy updates to data type definitions.
Neither approach was ever implemented.

UpgradeJ [8] is an extension to the Java language design sup-
porting class upgrades, in two flavors: revision upgrades, which
may modify method bodies, and evolution upgrades, which may
add new methods and fields. Programmers control the effects of up-
grades using version annotations, introduced by Bierman et al. [7]
in earlier work. For example, the programmer may write o = new
Button[1=]() to force o to always use version 1 methods, while
writing p = new Button[1+]() or p = new Button[1++]()
allows p to be revised or evolved, respectively. UpgradeJ’s update
model is easier to implement than JVOLVE’s because it need not
change existing object instances. Of course, the downside is a loss
of flexibility. Many of the updates to our benchmark applications
change field contents and layout. UpgradeJ does not support these
updates. On the other hand, evolution upgrades add power over
simple method body updates, and consequently enable more real-
world updates to be supported [41]. There is no implementation of
UpgradeJ.

6. Conclusions
This paper presents JVOLVE, a Java virtual machine with support
for dynamic software updating. JVOLVE is the most full-featured,
best-performing implementation of DSU for Java published to date.
We demonstrate its flexibility and safety by successfully applying
updates for one to two years worth of releases for three programs:
Jetty webserver, JavaEmailServer, and CrossFTP server. JVOLVE
imposes no overhead during a program’s steady-state execution.
JVOLVE’s DSU support builds naturally on top of existing VM ser-
vices, including dynamic class loading, thread synchronization, re-
turn barriers, on-stack replacement, JIT compilation, and garbage
collection. It is probably optimistic to believe that DSU will be able
to support every update. Nevertheless, our results demonstrate that
dynamic software updating support can be naturally incorporated
into modern VMs, and that doing so has the potential to signifi-
cantly improve software availability by reducing downtime.
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