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Dynamic software updating (DSU) systems facilitate software updates to running programs, thereby per-
mitting developers to add features and fix bugs without downtime. This paper introduces Kitsune, a DSU
system for C. Kitsune’s design has three notable features. First, Kitsune updates the whole program, rather
than individual functions, using a mechanism that places no restrictions on data representations or allowed
compiler optimizations. Second, Kitsune makes the important aspects of updating explicit in the program
text, making the program’s semantics easy to understand while minimizing programmer effort. Finally, the
programmer can write simple specifications to direct Kitsune to generate code that traverses and trans-
forms old-version state for use by new code; such state transformation is often necessary and is significantly
more difficult in prior DSU systems. We have used Kitsune to update six popular, open-source, single- and
multi-threaded programs, and find that few program changes are required to use Kitsune, that it incurs
essentially no performance overhead, and that update times are fast.
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1. INTRODUCTION
Running software systems without incurring downtime is very important in today’s
24/7 world. Dynamic software updating (DSU) services can update programs with new
code—to fix bugs or add features—without shutting them down. The research commu-
nity has shown that general-purpose DSU is feasible: systems that support dynamic
upgrades to running C, C++, and Java programs have been applied to dozens of realis-
tic applications, tracking changes according to those applications’ release histories [Al-
tekar et al. 2005; Chen et al. 2011; Hayden et al. 2011; Hicks and Nettles 2005; Makris
and Bazzi 2009; Makris and Ryu 2007; Neamtiu and Hicks 2009; Neamtiu et al. 2006;
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Subramanian et al. 2009; Pina and Hicks 2013; Giuffrida et al. 2013; Payer and Gross
2013; Payer et al. 2013]. Concurrently, industry has begun to package DSU support
into commercial products [Arnold and Kaashoek 2009; LiveRebel 2013].

The strength of DSU is its ability to preserve program state during an update. For
example, servers for databases, media, FTP, SSH, and routing can maintain client con-
nections for unbounded time periods. DSU can allow those active connections to im-
mediately benefit from important program updates (e.g., security fixes), whereas tra-
ditional updating strategies like rolling upgrades cannot. Servers may also maintain
significant in-memory state; examples include memcached (a caching server) and re-
dis (a key-value server). DSU techniques can maintain this in-memory state across the
update, whereas traditional upgrade techniques will lose it (memcached) or must rely
on an expensive disk reload that degrades performance (redis). This problem is acute
enough that Facebook uses a custom version of memcached that keeps in-memory state
in a ramdisk to which it can reconnect on restart [Nishtala et al. 2013]. However, Face-
book’s approach permits no changes to the memory representation and may be poten-
tially unsafe if there are significant program changes.

We are interested in supporting general-purpose DSU for single- and multi-threaded
C applications. While progress made by existing DSU systems is promising, a truly
practical system must be in harmony with the main reasons developers use C: control
over low-level data representations; explicit resource management; legacy code; and,
perhaps above all, performance. In this paper we present Kitsune, a DSU system for C
that is the first to satisfy these motivations while supporting general-purpose dynamic
updates in a programmer-friendly manner.

Approach. Kitsune operates in harmony with C thanks to three key design and im-
plementation choices. First, Kitsune uses entirely standard compilation. After a trans-
lation pass to add some boilerplate calls to the Kitsune runtime, a Kitsune program is
compiled and linked to form a shared object file (via a simple Makefile change). When
a Kitsune program is launched, the runtime starts a driver routine that loads the first
version’s shared object file and transfers control to it. When a dynamic update becomes
available (only at specific program points, as discussed shortly), the program longjmps
back to the driver routine, which loads the new application version and calls the new
version’s main function. Thus, application code is updated all at once, and as a con-
sequence, Kitsune places no restrictions on coding idioms or data representations; it
allows the application’s internal structure to be changed arbitrarily from one version
to another; and it does not inhibit any compiler optimizations.

Second, Kitsune gives the programmer explicit control over the updating process,
which is reflected as three kinds of additions to the original program: (1) a handful
of calls to kitsune update(...), placed at the start of one or more of the program’s long-
running loops, to specify update points at which dynamic updates may take effect; (2)
code to initiate data migration, where old-version data is assigned to new-version vari-
ables (possibly after transformation to accommodate program changes); and (3) code
to perform control migration, which redirects execution to the corresponding update
point in the new version. In our experience, these code additions are small (see be-
low) and fairly easy to write because of Kitsune’s simple semantics. (Sections 2 and 3
explain Kitsune’s use in detail.)

Finally, Kitsune includes a novel tool called xfgen that assists the programmer in
writing code to migrate and transform old program state to be compatible with a new
program version. The input to xfgen is a series of programmer-provided transforma-
tion specifications (“transformers” for short), one per changed type or variable, that de-
scribe in intuitive notation how to translate data from the old to new format. The out-
put of xfgen is C code that performs state migration, executing transformation wher-
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ever needed. The generated code operates analogously to a tracing garbage collector,
traversing the heap starting at global variables and locals marked by the programmer.
When the traversal reaches data requiring transformation, it allocates new memory
cells and initializes them using the transformers, taking care to maintain the shape
of the heap. The old version’s copies of any transformed data structures are freed once
the update is complete. To support generating safe traversal code, the programmer
may need to add lightweight, Deputy-style annotations [Condit et al. 2007] to some
types, e.g., to indicate the length of an array. Kitsune’s approach is easy to use, rel-
ative to other DSU systems; it adds no overhead during the non-updating portion of
execution; and it does not change data layout. (Section 4 describes xfgen.)

Results. We have implemented Kitsune and used it to update three single-threaded
programs—vsftpd, redis, and Tor—and three multi-threaded programs—memcached,
icecast, and Snort. For each application, we considered from three months’ to three
years’ worth of updates. We found that the number of code changes we needed to make
for Kitsune was generally small, between 57 and 529 LoC total, across all versions of
a program. The change count is generally related to the amount/complexity of heap-
resident state and its initialization, rather than to overall code size. For example, 134
LoC were changed for 16 KLoC icecast vs. 529 LoC for 215 KLoC Snort. xfgen was also
very effective, allowing us to write transformers with similarly small specifications
totaling between 27 and 297 lines; the size here depends on the number of data struc-
ture changes across the sequence of updates. We thoroughly tested that all programs
behave correctly under our updates.

We measured Kitsune’s performance overhead on normal execution and found it
ranged from -2.2% to +2.35%, which is in the noise on modern systems [Mytkowicz
et al. 2009]. This is substantially better than the overhead that Ginseng [Neamtiu
et al. 2006; Neamtiu and Hicks 2009] and UpStare [Makris and Bazzi 2009], two other
general-purpose DSU systems for C, impose on some of the same programs: we mea-
sured this overhead to be as high as 18.4% for the former and 41.6% for the latter.
We also measured the time an application must pause while Kitsune performs an up-
date and found it was typically less than 40ms, and less than 400ms in the worst case.
This time is substantially faster than the time to save and restore state from disk;
for redis we found this could take as long as 40 seconds for a 15 GB heap. For some
multi-threaded programs we require threads to synchronize before an update can take
place; we found that making some minor program changes could dramatically reduce
this synchronization time from an indefinite pause (in the worst case) to tens of mil-
liseconds.

Related work. Kitsune’s design adopts the best ideas from existing systems while it
eschews their shortcomings; a thorough analysis of the design space is given in Sec-
tion 7. Notably, Kitsune’s design drew significant inspiration from UpStare and Gin-
seng. From the former, Kitsune adopts the notion of whole-program updates, rather
than per-function updates, and from the latter it adopts the idea of updating only at
explicitly specified update points, rather than at arbitrary positions. Whole-program
updating eliminates the need to refactor programs to support certain updates (e.g.,
“loop extraction” [Neamtiu et al. 2006] to enable updating long-running loops), while
update points simplify the task of testing and otherwise reasoning about an update,
since far fewer program states need to be considered.

On the other hand, Kitsune specifically rejects other elements of these systems’ de-
signs to better balance competing concerns. For example, both UpStare and Ginseng
require nontrivial compilers to enable updating—UpStare compiles the entire program
specially to enable stack reconstruction, a mechanism that reduces the control migra-
tion problem to specifying a stack mapping at update-time, while Ginseng’s compiler
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inserts extra levels of indirection, adds “slop” space to struct definitions, inserts read-
/write barriers to support on-the-fly control and data migration, and performs a static
analysis to ensure that these compilation changes will not break the program (e.g., due
to tricky uses of typecasts).

Kitsune’s design requires the programmer to write slightly more code in the worst
case compared to Ginseng and UpStare, but in general, it confers several advantages,
including: (1) significantly better performance, since control migration code is localized
to program paths that rarely overlap with normal program execution, while Ginseng’s
and UpStare’s compilation changes are pervasive; (2) simplified update understanding,
since the programmer can just read the code without having to mentally apply a stack
mapping and/or indirection model to it; (3) a simpler implementation, since no special
compiler/analyzer is needed; and (4) greater flexibility and scalability, since Kitsune
does not require (conservative, slow) whole-program analysis that prohibits certain
programming idioms.

In essence, Kitsune makes DSU a first-class program feature that is implemented
and maintained by the programmer, a task that is made simpler and more manageable
thanks to the careful design of the Kitsune run-time library and tool suite. Considered
as a whole, we find Kitsune to be the most flexible, efficient, and easy to use (and
deploy) DSU system for C developed to date.1

Documentation and the source code of both Kitsune and the programs we retrofitted
to use it are freely available at http://kitsune-dsu.com/.

2. KITSUNE
A Kitsune application’s execution goes through three phases:

Normal execution. When started for the first time, and while no dynamic update is
available, the application executes normally.

Update preparation. Once a dynamic update becomes available, the application
thread(s) must reach a state in which the update can be safely applied. The program-
mer will insert calls to the function kitsune update at program points at which an up-
date is permitted to take effect; such calls are dubbed update points [Hicks and Nettles
2005]. When an update is available, the kitsune update function starts the update pro-
cess. If the program is single-threaded, the new program is loaded and the next phase,
update execution, begins. If the program is multi-threaded, each thread blocks until
all reach an update point, and then update execution begins.

Update execution. The threads running the old code have their stacks unwound,
the entire new program is loaded, and its main function is called by the main thread.
Since main also executes during normal startup, the programmer adds a few Kitsune
API calls to direct it to behave differently during an update. This added code will do
two things: (1) migrate and transform the old version’s data, and (2) direct control to
a point in the new version that is equivalent to the point at which the update took
place in the old version, identified by calls to kitsune update. We call these two activi-
ties data migration and control migration, respectively. Once all threads have reached

1This paper is an expanded version of Hayden et al. [2012c], with changes including: (a) consideration
of dynamic updates to Snort, a large and complicated application; (b) better handling of multi-threaded
programs, incorporating ideas proposed in a workshop paper [Hayden et al. 2012b] to improve update times;
(c) additional performance experiments considering large heaps; (d) comparisons to related work published
since the original paper; (e) many improvements to the exposition.
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Fig. 1. Kitsune build chain

their update points, the update is complete, resources are freed, and normal execution
resumes.

In what follows, we explain how we build programs to implement this semantics
(Section 2.1), and how data and control migration are orchestrated by the programmer
using the Kitsune API (Section 2.2). For simplicity, we start by assuming we are work-
ing with a single-threaded program, and later describe how we handle multi-threaded
programs and other language features (Section 3).

2.1. Implementing dynamic updating
The process of building a Kitsune application is illustrated in Figure 1. There are two
inputs provided by the programmer: the main application’s .c source files (upper left)
and an xfgen . xf specification file for transforming the running state during an update
(not needed for the initial version). The source files are processed by the Kitsune com-
piler kitc to add some boilerplate calls derived from programmer annotations. kitc is
built using CIL [Necula et al. 2002]. Rather than compile and link the resulting .c files
to a standalone executable, these files are compiled to be position independent (using
gcc’s -fPIC flag) and linked, along with the Kitsune runtime system rt .a, into app.so, a
shared object library. (For the best performance we also use gcc’s -fvisibility=hidden op-
tion to prevent application symbols from being exported, since exported symbols incur
heavy overhead when called.) When building an updating version of the program, the
. xf file is compiled by xfgen to C code and linked in as well. During this process, xfgen
uses .ts type summary files produced by kitc for the old and current versions (described
in detail in Section 4.2). We consider xfgen in Section 4.

The first version of a program is started by executing “kitsune app.so args...” where
args... are the program’s usual command-line arguments. The kitsune executable is
Kitsune’s application-independent driver routine, which dynamically loads the shared
library and then performs some initialization. Among other things, the driver installs
a signal handler for SIGUSR2,2 which is later used to signal that an update is avail-
able. The driver also calls setjmp and then transfers control to the (globally visible)
kitsune init function defined in rt .a. This function performs some setup and calls the

application’s (non-exported) main function; at this point, normal execution begins. The

2The exact method for signaling that an update is available is left to the discretion of the programmer.
However, Kitsune provides a sensible default of SIGUSR2, which works well in most cases. In programs we
worked with, only Tor, which had a previously existing control framework, required a different mechanism.
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kitsune driver is 120 lines of C code and is the sole part of a program that cannot be
dynamically updated.

When SIGUSR2 is received, the handler sets a global flag; this starts the up-
date preparation phase. The kitsune update function will notice the flag has been set
and call longjmp to return to the driver, which then dynamically loads the new pro-
gram version’s shared object library. Since the longjmp call will reset the stack, the
kitsune update function copies any local variables marked for migration to the heap be-
fore jumping back to the driver. Thus, just after an update, the old version’s full state
(e.g., its heap, open files and connections, process/parent ID, etc.) is still available. At
this point, kitsune init is invoked to start the new version and initialize Kitsune’s in-
ternal data structures (such as a hashmap used to manage migration), and then the
update execution phase begins when the driver calls into the program’s main function.
The programmer will have inserted calls to various Kitsune API functions to perform
data and control migration during this phase, which we illustrate in detail next.

2.2. Example
To use Kitsune, the programmer must slightly modify her application to insert update
points and add code to perform control and data migration. This subsection uses an
example to illustrate what these modifications look like using the Kitsune API.

Consider the C program in Figure 2, which implements a simple key-value server.
Clients connect to the server and send either get i to get the integer value associ-
ated with index i, or set i n to associate index i with value n. In the figure we have
highlighted the extra code we need to perform data and control migration.

Let us ignore the highlighted code for the moment and discuss the program’s core
operation. Execution begins with main() on line 30. After defining some local variables,
the function calls load config () (code not shown), which initializes config size defined
on line 1 and then allocates an empty mapping. Next, main() calls setup connection()
(code also not shown) to begin listening on main sock. Finally, main() enters the
main loop on lines 41–45. This loop repeatedly waits for a connection and then calls
client loop () to handle that connection. The client loop () function repeatedly reads a
command from the socket; finds the handler (a function pointer) for that command in
dispatch tab (created on lines 18–19); increments a global counter op count that tracks
the number of requests; and then dispatches to handle set or handle get. If the client
disconnects, the function exits the loop on line 24 and returns. While this code is very
simple, many server programs share this same general structure—a main loop that
listens for connections; a client loop that dispatches different commands; and handler
functions that implement those commands.

Now consider the highlighted code, which the developer has added to the program to
implement Kitsune control and data migration. This code makes use of several prim-
itive operations that Kitsune provides which we have summarized in Table I and dis-
cuss here. We should emphasize that because this example is tiny, the amount of high-
lighted code is disproportionately large (see Section 5).

Migrating control. A dynamic update is initiated when the program calls
kitsune update(name), where name distinguishes this update point from other update
points in the program; we will see why such naming is important shortly. In Figure 2
we have added update points on lines 23 and 42, i.e., we have one update point at the
start of each long-running loop. These are good choices for update points because the
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1 int config size ; /∗ automigrated ∗/
2 typedef int data;
3 data ∗mapping; /∗ automigrated ∗/
4 int op count=0; /∗ automigrated ∗/
5

6 void handle set(int sock) {
7 int key = recv int (sock);
8 int val = recv int (sock);
9 mapping[key] = val;

10 send response(sock, ”%d> ok”, op count);
11 }
12 void handle get(int sock) {
13 int key = recv int (sock);
14 send response(sock, ”%d> %d=%d”, op count, key, mapping[key]);
15 }
16 typedef void (∗dispatch fn)( int );
17 struct dispatch item { char ∗key; dispatch fn fun; };
18 struct dispatch item dispatch tab[2] attribute ((kitsune no automigrate))
19 = { {”get” , &handle get }, {”set” , &handle set } };
20

21 void client loop ( int sock) {
22 while (1) {
23 kitsune update(” client ” );
24 char ∗cmd = read request(sock); if (! cmd) break;
25 dispatch fn handler = lookup(dispatch tab, cmd);
26 op count++;
27 handler(sock); }
28 close(sock);
29 }
30 int main() attribute (( kitsune note locals )) {
31 int main sock, client sock;
32 kitsune do automigrate();
33 if (! kitsune is updating ()) {
34 load config (); /∗ sets config size ∗/
35 mapping = malloc(config size ∗ sizeof(data)); }
36 if (! MIGRATE LOCAL(main sock))
37 main sock = setup connection();
38 if (kitsune is updating from(” client ” )) {
39 MIGRATE LOCAL(client sock);
40 client loop ( client sock ); }
41 while (1) {
42 kitsune update(”main”);
43 client sock = get connection(main sock);
44 client loop ( client sock ); }
45 }

Fig. 2. Example; Kitsune additions highlighted
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program is quiescent, i.e., in between events, when update-relevant state is not in the
middle of being modified [Neamtiu et al. 2006; Hayden et al. 2012d].3

The kitsune driver will load the new version and call its main function. During update
execution, the program will direct control toward the equivalent update point in the
new version, which is to say, one having the same name as the update point that ini-
tiated the update in the old version. To do this, it will branch on kitsune is updating () ,
which returns true if the program is being run as a dynamic update, and lets the
program distinguish update execution from normal startup. The Kitsune API also in-
cludes the variant kitsune is updating from(name), which checks whether the update
was triggered at the named update point.

In Figure 2, the conditional on line 33 prevents the configuration from being reloaded
and mapping from being reallocated when run as an update, since in this case the
program will migrate that state from the old version instead (discussed below). If
the update was initiated from the client loop, then on line 38 the program migrates
client sock from the previous version and then goes straight to that loop. Notice that
when control returns from this call, the program will enter the beginning of the main
loop, just as if it had returned from the call on line 44. Also notice we do not specifically
test for an update from the ”main” update point, as in that case the control flow of the
program naturally falls through to that update point.

Migrating data. When a program using Kitsune starts update execution, critical
data from the previous version of the program remains available in memory. The pro-
grammer is responsible for identifying what portion of that data should be migrated to
the new version and specifying how that migration is to take place.

The first step is to identify the global and local variables that should be migrated. All
global variables are migrated by default (that is, “automigrated”), and the programmer
can identify any exceptions. For our example, migration occurs for config size (line 1),
mapping (line 3), and op count (line 4). We use the kitsune no automigrate attribute
on line 18 to prevent dispatch tab from being automigrated, so that it is initialized
normally—with pointers to new version functions—rather than overwritten with old
version data. Only local variables in functions annotated with the kitsune note locals
attribute are eligible for migration (c.f. main()).

To facilitate data migration, kitc generates a per-file do registration () function that
registers the names and addresses of all global variables, including statics, and records
for each one whether it is automigratable. The do registration () function is marked as
a constructor so it is called automatically by dlopen. Similarly, kitc introduces code in
each of the functions annotated with kitsune note locals to register (on function entry)
and deregister (on function exit) the names and addresses of local variables (in thread-
local storage).

The second step is to indicate when data should be migrated after the new version
starts. Calling kitsune do automigrate() (line 32) starts migration of global state, call-
ing a migration function for each registered variable that is automigratable. These
functions traverse data structures, transforming them wherever necessary, and are
produced by xfgen automatically, when migratable data is unchanged between ver-
sions, or else according to programmer specifications. Each function follows a partic-
ular naming convention, and the runtime finds it in the new program version using
dlsym().

Within a function annotated with kitsune note locals, the user calls
MIGRATE LOCAL(var) to migrate (via the appropriate migration function) the

3Note that our definition of quiescent differs from (and is not comparable to) that of some prior work, which
defines it to mean that all updated functions are inactive, i.e., not running.
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Table I. Kitsune primitives

API call / attribute Semantics
Normal Execution Update Execution

kitsune update(label) Begins the update process
when called, if a dynamic
update is available

Marks the completion of an up-
date (so resources can be freed,
etc.)

kitsune is updating () Returns false Returns true
kitsune is updating from( label ) Returns false Returns true if the update be-

gan from an update point with
argument label

kitsune do automigrate() Does nothing Runs migration code to initial-
ize the automigratable global
variables

attribute
((kitsune no automigrate)) Global variables without this attribute are migrated during the call

to kitsune do automigrate()
attribute
(( kitsune note locals )) Local variables in a function with this attribute have their ad-

dresses registered when the function is called so they can be mi-
grated should a new update begin before the function returns. The
addresses are deregistered when the function returns

MIGRATE LOCAL(localvar) Returns false Invokes migration code to ini-
tialize local variable localvar
from its old version; returns
true

MIGRATE GLOBAL(globalvar) Returns false Invokes migration code
to initialize global vari-
able globalvar with
kitsune no automigrate
attribute; returns true

MIGRATE LOCAL STATIC
(funcname, localvar)

MIGRATE GLOBAL STATIC
(globalvar) As above, but for static global/local variables

old version of var to the new version, e.g., as used on line 39 to migrate client sock .
MIGRATE LOCAL() returns true if the program was started as a dynamic update; on
line 36 we test this result to decide whether to initialize main sock.

Our overall design for data migration reflects our experience that we typically need
to migrate all, or nearly all, global variables, whereas we need only migrate a few
local variables—only locals up to the relevant update point are needed, and of these,
most contain transient state. We also assume that data that should be migrated is
reachable from the application’s local and global variables. In our experiments, this
assumption was true except for memcached, in which pointers to some application
data were stored only in a library. We solved this problem by caching such pointers in
the main application; see Section 5.2.

Cleaning up after an update. After updating, Kitsune reclaims space taken up by the
old program version. Since control and data migration are under programmer control
in Kitsune, we need to specify the point at which the update is “complete.” That point
is when the new program version reaches the same update point at which the update
occurred (cf. the branch on line 40 of Figure 2, which then reaches the update point
on line 23). Kitsune then unloads the code and stack data from the previous program
version; to be safe, the programmer must ensure there are no stale pointers to these
locations. For example, programmers must ensure any strings in the data segment
that need to migrate are copied to the heap (which can be done in state transformers,
or with strdup in the program text). Kitsune also frees any heap memory that xfgen-
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generated migrations have marked as freeable. Finally, control returns to the new
version to begin normal execution.

Checking correctness. To test that code supporting dynamic updates is correct, a pro-
grammer can test that the program properly updates to itself (e.g., use the program’s
normal system test suite, slightly modified, to update the program during a test run).
Doing so ensures that all of the control and data migration code works as it should,
preserving the state following the update. In our experience, such self updates are the
most challenging part of retrofitting a program to use Kitsune, and normal program
updates take comparatively far less time.

3. ADVANCED FEATURES
This section describes how Kitsune supports programs that make use of multiple
threads and dynamically loaded libraries, and discusses Kitsune’s current limitations.

3.1. Multi-threading
Updating a multi-threaded program is more challenging since the programmer must
migrate control and data for every thread. Using the methodology in the previous
section, the programmer could add control migration to the main thread to kill and
restart, or reuse, existing threads. However, most of the time the number and role
of threads before and after the update is the same (or close to it), and thus Kitsune
provides support to ease thread management during an update.

To make a pthreads program Kitsune-enabled, the programmer modifies all thread
creation sites to use a wrapper for pthread create called kitsune pthread create.4 A
thread created with kitsune pthread create( tid , f , arg) has its thread id tid , thread
function f , and f ’s argument arg atomically added to a global list kitsune threads of live
threads. When a thread exits normally, it removes its entry from kitsune threads.

When an update to a multi-threaded program is requested, Kitsune sets a flag to
indicate the update has been received, as usual. When a thread reaches an update
point, if that flag is set then the thread records the name of the update point in its
kitsune threads entry and then blocks. Once all threads have blocked at update points,
the system has reached full quiescence and is ready to be begin the actual update.

At this point, the main thread starts updating as described in Section 2.2 and contin-
ues until it finally reaches its own update point in the new version. Then the run-time
system iterates through kitsune threads and relaunches each thread, calling the new
version of the recorded thread function with its recorded argument. If needed, the de-
veloper can provide a special transformation function to modify the set of threads or
transform a thread’s entry function and argument. Each of those threads then exe-
cutes, performing whatever control and data migration is needed. Each thread pauses
when it reaches the update point where it was stopped. Once all threads have paused,
the Kitsune runtime cleans up the old program version, freeing its code and data as
usual, and resumes the main thread and all paused threads.

3.1.1. Requirements for multi-threaded updates. In order to work with the design just
described, Kitsune multi-threaded programs must meet—or be modified to meet—
several requirements. First, the program should be insensitive to the order in which
the threads are restarted in the new version. We find this often holds because the main
thread naturally migrates any shared state, which would otherwise be the main source
of contention between threads. Second recreating threads changes their thread IDs, so

4We could have automated this step, but wanted to give the programmer the option of orchestrating quies-
cence manually, e.g., by killing the existing threads and starting new ones, if she so chooses.
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the program should not store those IDs in memory. We could extend Kitsune to relax
this requirement, but so far have not found it necessary.

Third, to achieve full quiescence quickly, threads should avoid non-interruptible
blocking calls on paths to update points. For example, a call to kitsune update may
be preceded by a call that reads from a socket. If this call blocks and cannot be in-
terrupted, the thread will not reach its update point until data is available. Worse
still, one thread could hold a mutex when it reaches its update point, but then another
thread could block on the same mutex prior to reaching its own update point, delaying
full quiescence indefinitely.

3.1.2. Avoiding blocking calls. To ensure full quiescence the programmer must confirm
that all blocking calls that appear on any path to an update point are interrupt-
ible. This requirement immediately rules out the second situation above: the pro-
gram is not permitted to hold any locks when it reaches an update point, because
pthread mutex lock is not interruptible (nor would it be sensible to make it so). For-
tunately, we found that no quiescent points in the programs we considered are ever
reached by threads holding locks.

For programs we have considered, blocking calls that could inhibit quiescence fell
into two categories: blocking I/O calls and calls to pthread mutex wait. We found that in
both cases, we could interrupt the call and the program would either behave correctly
with no changes, or we could make it behave correctly with a few small modifications.

Blocking on I/O. Mature server programs, such as the kind we studied, are often
written to deal with interrupted blocking calls, so adding update points to such pro-
grams requires little or no change. Consider the following example.

1 void ∗thread entry(void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 kitsune update();
5 res = accept(sockfd, addr, addrlen);
6 if (res == −1 && errno == EINTR)
7 continue;
8 /∗ ... handle connection ∗/
9 } }

Under normal circumstances an accept call will block until a connection is accepted.
However, if a signal is received the call will be interrupted, returning −1 and setting
the errno to EINTR.5 In the above code snippet, the programmer has accounted for
this possibility by returning control to the start of the loop so as to retry the accept.
Because in Kitsune program updates are initiated by sending the process a SIGUSR2
signal, adding the update point to line 4 in the example ensures the blocked accept call
will be released and will reach the update point quickly when the update is signaled.

Note that signals are normally handled by a program’s main thread, so only that
thread’s blocking calls are interrupted. To interrupt blocking I/O calls in all threads,
Kitsune’s main signal handler sends a signal to any other thread that has not already
reached its update point and is not waiting on a condition variable; how we handle the
latter situation is described next.

5POSIX supports auto-restarting interrupted, “slow” system calls [Stevens and Rago 2005] (i.e., without
returning EINTR), which would defeat our scheme. We disable that feature by excluding SA RESTART
from the configuration mask used when installing the signal handler.
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Blocking on Condition Variables. We observe that the threads often coordinate using
condition variables, blocking on calls to pthread cond wait. As a matter of good style,
programmers guard against spurious wake-ups of such calls by placing them in loops,
as the following non-highlighted code on lines 6–7 shows:

1 void ∗thread entry(void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 kitsune update();
5 pthread mutex lock(&mutex);
6 while (! input is ready () && !kitsune update requested()) {
7 kitsune pthread cond wait(&cond, &mutex);
8 }
9 pthread mutex unlock(&mutex);

10 if (kitsune update requested())
11 continue; /∗ reaches kitsune update ∗/
12 /∗ ... handle connection ∗/
13 } }

To allow an update to interrupt this idiomatic use of condition variables, we first mod-
ify the condition to check whether an update has been requested, as shown in the
highlighted code on line 6. We also modify the code following the condition variable
loop to jump back to the start of the loop if an update is requested (lines 10-11). This
ensures that an update is reached if pthread cond wait wakes. One straightforward
way to force the pthread cond wait call on line 7 to wake up would be to replace it
with pthread cond timedwait with a short timeout. But this approach incurs some un-
necessary delay and potentially expensive polling overhead. Therefore, we replace the
pthread cond wait call with a call to kitsune pthread cond wait, which (before calling
pthread cond wait) notes the condition variable argument in the global list of threads
so that it can later be signaled by another thread once an update has been requested.

Uninterruptible sleep calls are similar to blocking condition variables. To solve this
problem, we implemented an interruptible sleep call, kitsune ms sleep, that can be
easily swapped out for blocking sleep functions. When the program receives the update
request signal, the sleep will be interrupted. Similar to the other interruptible calls,
programmers should write code to redirect control flow back to an update point.

These solutions for waking a thread blocking on I/O or condition variables require
that another thread be available to signal the process or condition variable (e.g., since
pthread cond signal cannot safely be called from a signal handler). This presents a
problem if the thread that receives the initial updating signal is blocked on a condi-
tion variable and so may not wake up to signal other threads. For this reason, Kitsune
launches one additional thread that sleeps during most of execution, but periodically
wakes and checks the update-requested flag. If an update was requested, it will at-
tempt to signal any threads that have not yet reached an update point.

While the above circumstances cover the vast majority of blocking calls, one of our
subject programs, suricata, required custom code to be called from a signal handler to
unblock one of its threads (as we describe in Section 6.3). However, POSIX requires
that the same signal handler function be used for all threads in a process. Thus, Kit-
sune provides a library function, kitsune thread update callback, that allows the de-
veloper to provide a callback function to be executed for the current thread when an
update signal is received. A separate callback function may be set for each thread as
needed, or left unset for no callback (in the majority of cases).
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3.2. Dynamically loaded shared objects
Recall that to use Kitsune, we must compile the application to a shared library that
can be loaded and unloaded. If that application itself loads other shared libraries that
change with an update, then we have to update those other shared libraries as well. If
the library was statically linked with the host program, it will be reloaded naturally
along with the new version of the program; if it was linked dynamically, then the
control migration code can be written to call dlclose and dlopen to unload and load
shared objects, respectively. If the shared object has state, then it must be compiled
with kitc so that state can be registered and updated.

One issue we have encountered with shared objects is that Kitsune uses the names
of globals and (registered) locals internal to each shared object. Thus, from Kitsune’s
perspective, symbol names can conflict across different shared objects (and the main
program), even if they are hidden in terms of standard dynamic linking. This situa-
tion arose for us when updating Snort, which uses a plug-in architecture for protocol
analyzers.

To solve this problem we introduced namespace support in the style of C++ using
a directive to the kitc compiler. The programmer can specify a namespace for a file
with the file-level command E_NAMESPACE name, where name is a unique string for
that namespace. The same namespace is used for all files that build the same shared
object. When kitc compiles a file, it prepends the name to the front of each symbol in
that file as it stores it in the . ts file. This change propagates to how kitc generates and
uses symbol registrations, avoiding conflicts.

3.3. Limitations
Kitsune’s main limitations at present are a lack of support for custom allocators and
pointers to the interior of objects.

Custom allocators. One notable limitation is that Kitsune does not support the use
of custom memory allocators. Recall that Kitsune updates the heap by traversing the
pointer graph for the program, redirecting pointers to statically-allocated memory, or
using the standard malloc and free functions to allocate new objects and free old ones
on a per-object basis. However, if an object was allocated by a custom allocator, freeing
it with the standard free function will not work, and likewise allocating memory with
standard malloc during transformation will fail if the updated program uses a custom
free on that memory later.

Supporting custom allocation is certainly possible, e.g., by storing additional meta-
data to disambiguate pointers. But so far custom allocation has not been an issue for
Kitsune, for two reasons. First, in many cases we can simply replace the use of a cus-
tom allocator with the standard one, which often improves performance [Berger et al.
2002]. Second, many custom allocators are type-specific, i.e., they only allocate objects
of some type T . As such, if an update does not change T ’s type, then none of the mem-
ory managed by T ’s allocator will need to be allocated or freed, and so the update can
be performed safely. Snort uses more than a dozen type-specific allocators, but none of
the updates we considered changed their types. If such an update occurred, Kitsune
could not support it and normal stop/restart would have to be employed.

Interior pointers. Another memory management issue is that Kitsune assumes there
are no pointers into the middle of objects. This comes up in two ways. First, our gen-
erated code assumes that when it comes across a struct foo∗ that this pointer is to the
front of an allocated object, and thus can be freed and reallocated if struct foo changed
size. Second, pointers into the middle of objects that could be reallocated may dangle,
e.g., a int ∗x may point to the field of a particular struct, but if that object is freed
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INIT new var : {action}
INIT new type : {action}
old var→ new var : {action}
old type→ new type : {action}
old var→ new var
old type→ new type

$in, $out – old/new type or var
$old/newsym(x) – x in old/new prog.
$old/newtype(t) – t in old/new prog.
$base – containing struct
$xform(old, new) – transformer function

from old to new type/var
(a) transformers (b) special variables

Fig. 3. xfgen specification language

and reallocated then x will now point to stale memory. We currently address this issue
by writing code to manually transform interior pointers. (In all of our test programs
across all versions, we only encountered one instance of an interior pointer.)

Once again, we could address these issues by storing more metadata, but metadata
management (e.g., in conjunction with calls to malloc/free) may add overhead to normal
execution. We do support a debugging mode that maintains an interval tree to keep
track of the address ranges of allocated blocks. This allows us Kitsune-generated code
to identify pointers into the middle of allocated blocks and issue a warning if this
pointer could be affected by a memory management action taken at update time.

4. XFGEN
As mentioned briefly in Section 2.2, Kitsune’s runtime invokes migration functions for
each automigrating variable, following a naming convention to locate the appropriate
migration function. Kitsune includes a tool, xfgen, that produces migration functions
automatically for variables and types that have not changed, and generates migra-
tion functions for those that have changed according to specifications the programmer
expresses in a simple, domain-specific language. We refer to such explicitly specified
migration functions as transformers, since they are used to transform the data from an
old representation to a new one. The design of xfgen is based on our prior experience
applying DSU to C [Hayden et al. 2012d; Hayden et al. 2011; Hicks and Nettles 2005;
Neamtiu and Hicks 2009; Neamtiu et al. 2006], and aims to make common kinds of
state transformers easy to write while maintaining the flexibility to implement arbi-
trary transformations.

This section presents the xfgen specification language, giving a series of examples,
and then describes how xfgen generates migration functions.

4.1. Transformer specifications
Figures 3(a) and (b) summarize xfgen’s specification language. Each transformer has
one of the forms shown in part (a). The INIT transformers describe how to initialize
new variables or values of new types, and the → transformers describe how to trans-
form variables or types that have changed and/or been renamed. Here {new,old} var
is either a noted local (via kitsune note locals from Table I) or global variable name
and {new,old} type is either a regular C type name or a struct field (we will see exam-
ples below). The transformer action consists of C code that may reference the special
xfgen variables shown in Figure 3(b). These variables refer to entities from the old or
new program version. A→ transformation without an action identifies a variable/type
renaming.

Example 1. Suppose we wrote a new version of the program in Figure 2 in which we
removed the variable op count and replaced it with two new variables get count and
set count that record per-operation counts. These variables will need to be initialized
during the update. We do not know exactly how many get and set operations have
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occurred, but we do have their sum in op count, so we might over-approximate each
with the sum, as follows:

INIT get count: { $out = $oldsym(op count); }
INIT set count: { $out = $oldsym(op count); }

Here we are initializing new variables, so we use an INIT transformer, and the action
uses $oldsym(op count) to refer to the old version’s value of op count and $out to refer
to the output of the transformer, i.e., get count and set count in the new version. Alter-
natively, we might wish to preserve the total count, and in lieu of precise information
we might assume most calls are gets, and some are sets:

INIT get count: { $out = ( int ) floor ($oldsym(op count)∗0.9); }
INIT set count: { $out = ( int ) ceil ($oldsym(op count)∗0.1); }

In general, how a programmer writes a transformer depends on an application’s invari-
ants and the desired properties of the updated application’s behavior [Hayden et al.
2012a].

Example 2. While transformers are often simple, xfgen is powerful enough to express
more complicated changes. For example, suppose we change line 3 in Figure 2 so that,
rather than an array, mapping is a linked list:

struct list {
int key; data val ; struct list ∗next;
} ∗mapping;

Then we can specify the following transformer:

1 mapping→mapping: {
2 int key;
3 $out = NULL;
4 for(key = 0; key < $oldsym(config size); key++) {
5 if ($in[key] != 0) {
6 $newtype(struct list ) ∗cur =
7 malloc(sizeof($newtype(struct list )));
8 cur→ key = key;
9 cur→ val = $in[key];

10 cur→next = $out;
11 $out = cur;
12 } } }

Here mapping→mapping indicates this is a transformer for the new version of mapping
(the occurrence to the right of the arrow, referred to as $out within the action) from
the old version of mapping (referred to as $in). The body of the transformer loops
over the old mapping array (whose length is stored in old version’s config size), al-
locating and initializing linked list cells appropriately. In the call to malloc, we use
$newtype(struct list ) to refer to the list type in the new program version.

Example 3. Finally, suppose the programmer wants to change type data from int
to long, and at the same time extend mapping with field int cid to note which client
established a particular mapping:

typedef long data;
struct list {
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int key; data val ; int cid ; struct list ∗next;
} ∗mapping;

The programmer can specify that val should simply be copied over and cid should be
initialized to −1:

typedef data→ typedef data: { $out = (long) $in; }
INIT struct list . cid { $out = −1; }

Because the type of mapping changed, xfgen will use these specifications to generate
a function that traverses the mapping data structure, initializing the new version of
mapping along the way. As we will see shortly, this is possible because we have merely
added a (non-pointer) field to the struct, so the traversal of the existing data structure
accurately recovers the structure of the updated data structure. (We could not use this
approach for the previous array-to-list change because the data elements were not
related in a simple structural manner.)

Other special variables. In the examples so far, we have seen uses of all but the last
two special variables in Figure 3(b). The variable $base refers to the struct whose field
is being updated. For example, in

INIT struct s.x: { $out = $base.y }

new field x of struct s is initialized to field y in the same struct.
Variable $xform(old,new) names the migration function between types old and new.

This variable is useful when defining a transformer for a container data structure,
so that an action can recursively call the migration for each contained object. For ex-
ample, suppose we merged Examples 2 and 3 into a single update that transformed
mapping to a list and changed data’s type to long. Then we could use the transformer
from Example 2, changing line 9 to

XF INVOKE($xform(data, data), &$in[key], &cur→ val);

$xform looks up (or forces the creation of) the migration between its argument vari-
ables/types. This migration is returned as a closure (a function pointer and an atten-
dant environment) that takes pointers to the old and new object versions. A closure is
called using the XF INVOKE macro.

4.2. Migration generation
xfgen generates code to perform migration. At a high level, the generated code will
traverse the heap, starting from the migratable global and local variables in the old
version’s stack and data segment, and assign the (possibly transformed) data to the
corresponding variables in the new version. With xfgen, the programmer is able to
focus on defining what transformation should be used for data representations that
have changed, and is relieved of the tedium of how to find all of the old values, preserve
the structure of the heap, and manage memory.

xfgen generates migration code based on the contents of the developer-provided . xf
specification file and the Kitsune-maintained . ts type summary files for the old and
new versions (see Figure 1). A type summary file contains all of the type definitions
(e.g., struct, typedef) and global and local variable declarations from its corresponding
.c source file, noting which are eligible for migration (according to the rules given
in Section 2.2). The type summary files of the old and new versions are compared,
to identify those data definitions that have changed from the old to the new version.
To assist the programmer, xfgen can check that . xf files are complete: an . xf file is
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rejected if it fails to define a transformer that applies to migratable data that was
added or whose type changed between versions.

xfgen uses type information to generate migration functions for migratable types
and variables (or portions thereof) that have not changed—these functions will iter-
ate over the variable/type in question, recursively invoking migration functions on
the variable/type’s subcomponents. Migratable data includes migrated local and global
variables, their types, and types they transitively reference; e.g., struct bar is migrat-
able if struct foo is migratable and contains a pointer to a struct bar. xfgen sometimes
needs additional programmer-provided type information to work correctly; e.g., it may
need to know the lengths of arrays. We discuss annotations in detail below.

In the remainder of this section, we describe how migration code is generated for
variables and types, and how annotations are used to ensure the generated code is
complete.

Migrating variables. For each migrated variable listed in the new version’s . ts file, if
that variable is named explicitly in an old var→ new var specification, then xfgen gen-
erates C code from the specified action, substituting references appropriately. For ex-
ample, $in and $out are replaced by values returned from kitsune lookup old and new,
respectively, which return a pointer to a symbol in the old or new program version,
respectively, or NULL if no such symbol exists. Thus xfgen will produce the following C
code from the overapproximating specifications in Example 1, above:

void kitsune migrate get count() {
int ∗o op count = (int∗)kitsune lookup old(”op count”);
int ∗n get count = ( int∗)kitsune lookup new(”get count”);
∗n get count = ∗o op count;
}
void kitsune migrate set count() { /∗ similar to the above ∗/ }

For each remaining migrated variable x, xfgen will consult the y→ x renaming rule
if one exists to determine the source symbol y; otherwise it assumes x’s name is un-
changed. In that case, as we noted previously, the lack of a symbol x in the old version
code, or the lack of an explicit transformer if x’s type has changed, will cause xfgen to
reject the . xf file. Assuming the old version symbol has type old type and the new ver-
sion has type new type, xfgen’s generated function for x will simply call the migration
function for old type → new type; if old type and new type have the same definition
(and no explicit transformer has been specified) then xfgen will generate C code for
this function. We describe this process next.

Migrating types. xfgen generates transformer code from old type→ new type specifi-
cations in approximately the same manner as for variables. For specifications involving
only a single struct field (as for the cid field in Example 3), xfgen will generate code for
the rest of the fields in the manner described below, and then insert the hand-written
code for the new or changed field.

A generated function for an unchanged type simply recursively invokes the migra-
tion functions for the immediate children of the type. For example, suppose we gen-
erated a migration for struct list in Example 3. Then, xfgen would produce code that
retains the old key value by copying it (generated migrations for primitive types are
simple assignments); recursively invokes the user-provided transformer for data for
the val field; inserts the user-provided code to assign to the cid field; and recursively
invokes itself on the target of the next field, assuming it is not NULL.

Pointers must be handled carefully by the generated code. For non-NULL pointers,
the generated code checks a global migration map to see if the pointer has been mi-
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E PTRARRAY(S) – size of ptd-to array
E ARRAY(S) – size of array
E OPAQUE – non-traversed pointer
E FORALL(@t) – polymorphism intro.
E VAR(@t) – refer to type var
E INST(typ) – instantiate poly. type

Fig. 4. xfgen type annotations

grated before; if so it returns the old target. Doing so maintains the shape of the heap
and avoids infinite loops when traversing cyclic data structures. Otherwise it calls the
appropriate migration for the pointer’s target. If the pointer is to a global or local vari-
able, then the address of this variable is different in the new version. As such, the
code will look up the corresponding address and redirect to it. If the pointer target’s
type has truly changed (and so must have an explicit transformer), the generated code
mallocs space to store the result and then frees the old-version pointer. This is what
happens for next in Example 3—since the struct increased in size, new memory is al-
located for it and all fields must be copied. As an optimization, since the generated
code for an unchanged struct reuses the old memory, migrations ignore non-pointer
fields, retaining the old values. Once the source and target addresses (which may be
the same) have been determined, they are added to the migration map.

xfgen-generated code may uselessly traverse portions of the heap that do not contain
changed data. If the programmer knows that a particular data structure contains only
pointers into the heap (and not to global or local variables), and that no pointed-to ob-
jects require transformation, she can create transformers that truncate the traversal.
For example, if field f of struct foo (transitively) points only to unchanged heap data,
the developer could write

struct foo. f → struct foo. f : { $out = $in; }

to shallow-copy the field.
Recall from Section 3.3 that we assume there are no pointers into the middle of

migratable objects. To help check this assumption, we provide an execution mode in
which the xfgen-created migrations use an interval tree to record the start and end of
each object they encounter. A migration reports an error if it is ever asked to migrate
an object that overlaps with, but does not exactly match the bounds of, a previously
migrated object. Supporting pointers to the interior of objects is future work.

Type annotations. xfgen sometimes needs type information beyond what is normally
available in C. For example, without further guidance, xfgen would generate an incor-
rect migration for mapping in Example 1. It would assume that mapping points to a
single data element, rather than an array of elements. In Kitsune, extra type informa-
tion is provided by the programmer as annotations, shown in Figure 4. kitc recognizes
these annotations and adds the information supplied by them to the . ts files.

The annotations, inspired by Deputy [Condit et al. 2007], are straightforward.
E PTRARRAY(S) provides a size S for a pointed-to array. For example, we would change
line 3 of Figure 2 to

data ∗ E PTRARRAY(config size) mapping;

By default, xfgen assumes that t∗ values for all types t are annotated with
E PTRARRAY(1); explicit annotations override this default. Annotation E ARRAY(S)
provides a size S for array fields at the end of a struct (such fields can be left unsized
in C). For both of these annotations, S can be an integer constant, a global variable, or
a co-located struct field. E OPAQUE annotates pointers that should be copied as val-
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Table II. Kitsune benchmark programs

Program # Vers LoC
vsftpd 14 (1.1.0–2.0.6) 12,202
redis 5 (2.0.0–2.0.4) 13,387
Tor 13 (0.2.1.18–0.2.1.30) 76,090
memcached∗ 3 (1.2.2–1.2.4) 4,181
icecast∗ 5 (2.2.0–2.3.1) 15,759
snort∗ 4 (2.9.2–2.9.2.3) 214,703
∗Multi-threaded

Table III. Kitsune modifications to support updating

Program Upd Ctrl Data E ∗ Oth Σ v→v t→ t Σ xf LoC
vsftpd 6 26 17+8 6+14 28+8 83+30 9 21 30 101
redis 1 2 3 43 50 99 0 5 5 37
Tor 1 39 37+6 19 57 153+6 16 15 31 189
memchd∗ 4 9 13 20 66 112 12 10 22 27
icecast∗ 11+1 22+3 14+9 32+3 41 120+16 25 50 75 200
snort∗ 2 136+16 118 183+2 54+18 493+36 111 64 175 297
∗Multi-threaded

ues, rather than recursed inside during traversals (so we could use this annotation on
the foo. f field to truncate traversal in the above example, rather than define a manual
transformation).

Finally, xfgen includes annotations to handle some idiomatic uses of void∗ to encode
parametric polymorphism (a.k.a. generics). For example, the following definition intro-
duces a struct list type that is parameterized by type variable @t, which is the type
of its contents:

struct list {
void E VAR(@t) ∗val;
struct list E INST(@t) ∗next;
} E FORALL(@t);

E FORALL(@t) introduces polymorphism, E VAR(@t) refers to type variable @t, and
E INST(@t) instantiates a polymorphic type with type @t. For comparison, this exam-
ple is equivalent to the following Java generic linked list:

class List<T> { // like E FORALL(@T)
T val ; // like E VAR(@T)
List<T> next; // like E INST(@T)

}

With generics, we can write struct list E INST(int) ∗x to declare that x is a list of ints.
Generated migration code will invoke the migration function that is appropriate for
the list elements’ instantiated type.

5. EXPERIENCE AND APPLICATIONS
To evaluate Kitsune, we used it to develop dynamic updates for six widely deployed
open-source server programs.6 This section quantifies the programming effort of ap-
plying Kitsune to these applications; Section 6 quantifies Kitsune’s performance.

6The source code for these programs is freely available at http://kitsune-dsu.com/.
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To measure programmer effort, we tallied the number and kinds of changes we made
to the programs, and the number and variety of xfgen specifications we wrote for state
transformation. Overall, we made few code changes—between 99 and 529 LoC—to
support updating, with most changes only to the initial version. Likewise, xfgen speci-
fications were generally small, averaging 3–4 lines per changed variable or type. These
numbers are comparable to prior work.

5.1. Applications
We applied Kitsune to programs that maintain in-process state that would be benefi-
cial to preserve during an update. Vsftpd is a popular open-source FTP server. Redis
is a key-value database used by several high-traffic services, including guardian.co.uk
and craigslist.org. Tor is a popular onion-router that provides anonymous Internet ac-
cess. Memcached is a widely used, high-performance data caching system employed
by sites such as Twitter and Facebook. Icecast is a popular music streaming server.
Snort is an open-source network intrusion detection and prevention system with mil-
lions of downloads and nearly 400,000 registered users. All of these programs main-
tain persistent network connections that an offline update would interrupt. Redis and
memcached also maintain potentially large volumes of in-memory data that would ei-
ther be lost (memcached) or expensive to restore (redis) following an update. Vsftpd
also serves as a useful benchmark because several other DSU systems have used it
for evaluation [Neamtiu et al. 2006; Makris and Bazzi 2009; Chen et al. 2011; Hayden
et al. 2011].

Table II lists for each program the length of the version streak we looked at (for n
versions there are n−1 updates), which versions we considered, and the number of
source lines of the last version as computed by sloccount. We consider at least three
months of releases per program; for Tor we cover two years and for vsftpd we cover
three. We tested that all programs behaved correctly before, during, and after updates
were applied; we say more about the tests we used at the start of Section 6.2.

5.2. Programmer effort
Here we describe the manual effort that was required to prepare these programs for
updating with Kitsune, and to craft updates corresponding to actual releases.

Table III summarizes the Kitsune-related source code modifications we made, tab-
ulating the number of update points added (Upd); the number of lines of code needed
for control migration and data migration (Ctrl and Data, respectively);7 the number of
type annotations for xfgen (E *); the number of lines changed for other reasons (Oth);
and their sum. Changes from the Oth column are explained in the subsections below
for the respective applications. Each column shows the number of changes in the first
version, followed by +n, where n is the sum of changes in all subsequent versions; if
this is omitted, no further changes were needed.

One striking trend in the table is that most required changes occurred in the first
version. Control migration and update points were particularly stable, essentially be-
cause the top-level control structure of the programs rarely changed. Data migration
code and annotations were occasionally added along with new data structures. Another
interesting trend is that the magnitude of the changes required is not directly propor-
tional to either the code size or number of versions considered, e.g., 134 LoC for 16
KLoC icecast vs. 529 LoC for 215 KLoC Snort. On reflection, this trend makes sense.
Changes to support control migration depend on the number and location of update

7Specifically, control migration changes comprise calls to kitsune is updating and kitsune is updating from.
Data migration changes include calls to kitsune do automigrate, MIGRATE GLOBAL, and MIGRATE LOCAL,
and uses of the kitsune no automigrate attribute.
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points, and data annotations depend on the type and number of data structures; none
of these characteristics scales directly with code size. Together, these numbers show
that with Kitsune, DSU can be viewed as a stable program feature that is added to the
program and maintained (with minimal effort) as the program evolves.

The rightmost columns of Table III list the xfgen specifications we wrote for each
program’s updates. We list the number of variable transformers (v→ v) and type trans-
formers ( t→ t), across all versions, and their sum. We also list the total number of lines
of transformer code we wrote, across all versions. We can see that, on average, 3–4
lines of xfgen code were needed for each transformer. The median lines of xfgen code
was 1, with some larger transformations such as one that switches on a signal value
to determine the type of certain data, which affects its transformation.

Overall, we found both the control and data migration code relatively easy to write.
Following the structure of the example given in Section 2.2, we added conditionals to
avoid re-initializing data we wished to preserve across the update, and to direct con-
trol back to the correct update points. State transformation code was also relatively
easy to write. Most state required either no or very simple transformation along the
lines of Example 1 in Section 4.1. Perhaps the trickiest part was adding type annota-
tions to data structures. While in many cases these annotations were obvious (specify-
ing generic types or bounded arrays) or prompted by xfgen, a missing annotation was
sometimes hard to debug. For example, failing to annotate a pointer as an array would
result in the generated code not migrating all of the state, ultimately leading to a later
crash. Fortunately, since Kitsune uses normal compilation and linking, we could use
gdb to debug these problems directly.

Now we consider the particulars of each program, and when possible, compare the
magnitude of these changes against those required by prior systems. In general, using
Kitsune seems to require more program changes than prior systems, but the total sum
of changes is still small.

5.2.1. Vsftpd. Many of the changes we made to vsftpd were typical across our bench-
marks: we added type annotations for generics and inserted control flow changes to
avoid overwriting OS state when updated. We added one update point for each of the
five long-running loops in the program, which comprise the connection acceptance loop,
two loops to implement privilege-isolated logins, the main FTP command processing
loop, and a loop left running in a privileged parent process that implements commands
such as chown.

The most interesting change we made to vsftpd was to handle I/O. Instead of calling
the recv library routine directly, vsftpd calls a wrapper that calls recv, restarting it if
it is interrupted, e.g., by the receipt of a signal. We inserted one update point in the
wrapper, just after the recv, so that interruption can initiate an update. To simplify
the control-flow changes needed, rather than give the update point its own name, we
reused the name of the update point in the loop that initiated the wrapped call; this is
safe is because this loop will reinitiate the call when the update completes.

Other DSU systems. Neamtiu et al. [2006] applied Ginseng, another DSU system,
to vsftpd. They updated a subset of the version streak we did (finishing at version
2.0.3). Even though their changes support just one update point (versus our six, which
permit updating in many more situations), the effort was comparable: They report 50
LoC changed and 162 lines for state transformation, compared to 113 LoC changed
and 101 lines of state transformation for Kitsune.

Makris and Bazzi [2009] also updated vsftpd using UpStare for a shorter streak. Up-
Stare version 0.12.9 (which we compare against experimentally in Section 6) includes
14 state-mapping files for vsftpd, containing 4,644 lines of C code between them.
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While most of this code is automatically generated by UpStare’s patch generator,
322 lines are manually added [Makris 2009]. Of these lines, 300 are bookkeeping code,
and 22 have deeper semantic meaning. xfgen’s design goal is to obviate the need for
such bookkeeping code, and the remaining 22 lines would be expressed as xfgen trans-
formation rules.

The presence of these user-defined state mappings effectively reduces the number of
update points to two, from 613 in versions that do not require user-defined mappings.
This reduction in flexibility is an obvious consequence of requiring manual state map-
pings, since a programmer could hardly be expected to instrument mapping between
states at hundreds of update points, but it removes one of the key advantages of Up-
Stare.

5.2.2. Redis. Redis required few modifications to support updating. We placed a single
update point in its main event loop and added one check to avoid some reinitialization.
The vast majority of redis’s state is stored in a single global variable, server, so few
variables needed migration. Redis makes extensive use of linked lists and hash ta-
bles, and we used xfgen’s generics annotations to model their types precisely. The ver-
sion streak we considered included only code modifications, but we still needed xfgen
to migrate data structures that reference global variables (whose addresses change
with each updated version). For example, we wrote a 19-line specification to direct the
traversal through a void∗ field by consulting an integer key to determine the field’s
type. Finally, redis uses a custom allocator, which xfgen does not support, so we modi-
fied the redis header files with preprocessor directives to redirect custom allocator calls
to malloc and free.

Initially, the heap traversal of redis visited every key-value pair in memory. Exam-
ining redis more closely, we observed that the pointers that force us to traverse the
heap in fact point to a small, finite set of static locations. Thus, we modified redis (42
LoC changed) to store integer indices into a table in place of those pointers. Doing so
obviates the need for a full heap traversal for all the updates in our streak, making the
update times constant for all tested heap sizes. Programs that use Kitsune may bene-
fit from a similar transformation if they maintain a large amount of state containing
static pointers.

We are unaware of prior work applying DSU to redis.

5.2.3. Tor. Tor is one of the largest benchmark programs, at ∼76 KLoC. Adding DSU
support required one update point in Tor’s main loop. The larger number of control flow
changes in comparison to other programs is a result of Tor’s modular design. Twelve
of the thirty three modules’ module init functions required simple two-line changes to
prevent re-initialization of updated state. The remaining changes were made along
the path from main to Tor’s main loop, similarly to our other benchmarks. Most “data”
changes were kitsune no automigrate attributes, directing Kitsune to skip over various
constant strings used in parsing Tor’s configuration file. We automigrated most global
variables at the start of update execution, but manually migrated Tor’s network con-
sensus data structure (via a call to MIGRATE GLOBAL). This update added a field to
the network consensus, and the easiest way to update the current state was to use
an existing routine in Tor to reload the consensus from disk, rather than duplicating
code to read the new field from the on-disk consensus format in a custom transformer.
Kitsune’s manual migration API allowed us to wait for the rest of Tor’s state to be
consistent before reloading the consensus using standard Tor APIs.

The rest of our changes (counted above as “other”) were primarily to add support to
initiate an update via Tor’s control interface, rather than a command-line signal, for
easier testing.
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We wrote eight xfgen rules, corresponding to 16 variables and 15 types. All the
transformers for Tor data structures were straightforward, since type representation
changes were rare in the streak we considered. Investigating further, we found that
Tor’s data representations tended to remain stable because most Tor data represents
protocol messages, and these rarely change so as to preserve backward compatibility.
The bulk of the remaining xfgen rules update function pointers for event handling
stored in libevent and/or OpenSSL data structures.

We are unaware of prior work applying DSU to Tor.

5.2.4. Memcached. Memcached is a multi-threaded server implemented using
libevent. Unlike Tor, memcached’s main loop is in libevent’s event base loop function.
To work with Kitsune, we had to change main to install a libevent callback on SIGUSR2
to handle update notifications. When the main thread is notified of an update, it uses
pipes, via libevent itself, to notify each child thread of the update; each thread then ter-
minates in response. The main thread then performs the update, and when the update
is complete all threads are restarted and work back to calls to event base loop in the
new code. Interestingly, we needed to “sandwich” such calls with like-named update
points:

kitsune update (‘‘ upd’’ ); /∗ complete any active update ∗/
event base loop(libevent base, 0); /∗ pass control to libevent ∗/
kitsune update (‘‘ upd’’ ); /∗ a new update upon return ∗/

When a thread is signaled, the event base loop call returns and initiates the update.
When the program restarts, the update will complete when it reaches the update point
(of the same name) just prior to the event base loop call in the new code.

There are two additional challenges in updating due to libevent: First, as with Tor,
we needed to reinstall new function pointers in libevent after an update. Second, mem-
cached installs the data associated with active connections in libevent, but does not re-
tain its own pointers to that data. To enable updates to transform that data, we added
code to maintain, in memcached itself, a list of active connections, which we can then
use for state transformation.

Other DSU systems. Neamtiu and Hicks [2009] updated memcached using Ginseng.
They needed 26 lines of program changes and 12 lines for state transformation. Kit-
sune required more changes in part because we did not change libevent itself, which
in Neamtiu and Hicks’ setup was merged into the main program (and thus was updat-
able). Their changes also created a problem with reaching update points suitably often
due to intervening blocking calls; placing the update point outside libevent avoided
this issue. Nishtala et al. [2013] discuss Facebook’s custom version of memcached that
supports dynamic updates: it stores its state in a ramdisk to which a restarted version
can reconnect. The paper does not describe the amount of code affected by this change,
nor does it discuss the limitations of this approach (e.g., aside from the obvious limita-
tion that internal data structures must not be altered between versions).

5.2.5. Icecast. Icecast is another multi-threaded program, with separate threads for
connection acceptance, connection handling, file serving, receiving a stream from an-
other server, sending statistics, and more. To modify icecast to support DSU with Kit-
sune, we located each of the thread creation points and then inspected the thread
entry function and related code to make two types of changes. First, we identified the
thread’s long-running, event-handling loop to which we added a call to kitsune update.
Second, we added the necessary annotations to migrate local variables or skip initial-
ization during thread startup.
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In its standard configuration, icecast runs with 6 threads. Several of the threads
use sleep operations to reduce polling; it turns out these sleep times are the dominant
component of the time to reach full quiescence. We replaced the blocking sleep calls
with sleep calls that are interrupted by the update request signal, causing the sleeping
thread to hit the update point immediately upon update request. The most complex
icecast patch added a new thread to handle authentication (which required us to add
an update point to the new authentication thread’s code) and reduced the number of
connection threads. To implement this patch, we wrote transformation code that uses
a C API provided by the Kitsune runtime that exposes the set of active threads at the
time the update was taken (including the entry function, initialization argument, and
update point taken) and allows the developer to add and remove threads or modify the
properties of existing threads.

Other DSU systems. Neamtiu and Hicks [2009] also considered updates to the same
streak of icecast versions. They changed 154 LoC and wrote 80 lines of state trans-
formation code. For Kitsune we changed 134 lines of the main program, and wrote
200 lines of xfgen specifications. A large proportion of these specifications were simple
rules to initialize added variables or fields. However, they also included more complex
rules for adding and removing a thread, as mentioned above. Ginseng’s patches do not
attempt to remove this extra connection thread.

5.2.6. Snort. Snort is a widely used, open-source network intrusion detection and pre-
vention system which works by inspecting and possibly blocking packets as they enter
a network. It is the largest program we updated, at 215K lines of C code (counting only
the code in the main distribution). Snort identifies suspicious packets using rulesets
that are available by subscription. New rules are published every few days, while new
Snort software versions are released every 1-3 months. Snort provides rule-reloading
to allow users to update some of their rules without shutting down Snort. However,
there is no built-in mechanism to dynamically update Snort itself; thus, updating it
requires halting its protective services for the duration of a restart and losing all in-
formation for current packet streams.

Snort was challenging to dynamically update for two reasons. First, it makes ex-
tensive use of dynamically loaded shared objects (a.k.a., plugins), which are used for
extended protocol analysis (such as POP, SSH, and DNP3), output formatting, and
more. Snort 2.9.2 ships with 14 dynamic preprocessors that compile to shared objects,
and we configured the plugin engine to load all of them at startup. Plugins create
two challenges. First, code that interfaces with plugins makes heavy use of void ∗’s to
simplify the type structure. For example, output plugins are stored in a linked list of
closures (function pointers with an additional environment) as follows:

1 typedef struct OutputFuncNode {
2 void ∗arg;
3 union {
4 OutputFunc fptr;
5 void ∗vfptr ;
6 } fptr ;
7 struct OutputFuncNode ∗next;
8 } OutputFuncNode;

Many of the void pointers in Snort vary based on the configuration file. For
example, with struct OutputFuncNode, what a void ∗ arg points to depends on
the logging format specified in the configuration file, which consequently affects
which transformation rule to write. Snort provides several options for logging for-
mats, such as a custom format called Unified2. If the configuration file specifies
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Unified2 format, then void ∗ arg points to a struct Unified2Config, and we must
write XF INVOKE(XF PTR($xform(Unified2Config, Unified2Config)),....) in the trans-
former. However, if the configuration file specifies a different format, then the cor-
responding transformation for that specified format is necessary.

The second challenge with Snort was that it contains a large amount of global state.
This is not a problem in and of itself, but it was a problem for us: since we are not the
Snort authors, we needed to pore over the code to understand the role and function of
all this state, which was challenging due to Snort’s heavy use of void pointers. In more
detail: Snort’s global policy user context structure contains a void pointer to an array
of structure pointers with information such as protocol-specific function pointers, state
loaded from Snort’s configuration file, and information about the current packets being
processed. There are several dozen of these large configuration structures, making up
a large portion of the global state in Snort. Additionally, the main global SnortConfig
structure contains information about nearly everything that gets loaded from the con-
figuration and all available preprocessors; this SnortConfig structure alone contains
well over 100 fields in Snort 2.9.2. Snort also keeps a substantial amount of informa-
tion in hash tables. Although it varies based on the configuration, there are around
20 hash tables in Snort 2.9.2 when all of the default plugins are enabled. These hash
tables maintain state on flowbits (to track information on packets that are part of a
continuous stream), protocol-specific information, rule information, and port informa-
tion. Many of the entries in the hash tables contain structures with function pointers
and must be transformed on update. In addition to determining the actual types of
these void ∗ function pointers, a big challenge in migrating the hash table data was
making sure that all of the arrays were properly annotated with the correct lengths
and generic types for each hash table type. Another challenge in data migration was
that structures are often nested many layers deep, and a mistake somewhere in trans-
forming the nested data (such as writing the wrong transformation rule for a void ∗)
made debugging cumbersome.

As reported in Table III, the largest single category of changes required for Snort
was E ∗ annotations. A large number (106) of these annotations include labeling each
plugin file with the appropriate namespace, as described in Section 3.2. The Other col-
umn includes naming anonymous structures/unions so that the proper transformation
rules can be applied, writing wrappers around system calls so that they are not trans-
formed, modifying a function signature so that Kitsune would recognize it, and adding
an additional #define to fix a 64-bit issue with the version of CIL we use with Kitsune.

Control migration in Snort was fairly straightforward, involving redirecting around
some initialization code before jumping to the main packet-processing loop, and adding
some additional code to make sure the new version of the plugins were loaded during
update.

We are unaware of prior work applying DSU to Snort.

6. PERFORMANCE
To evaluate Kitsune’s performance, we conducted several experiments. We measured
the slowdown on normal execution for the Kitsune versions of the servers compared to
the originals. We found that there is essentially no overhead on normal execution, a
result uniformly better than prior work. We also measured the time taken to perform
an update, from signaling to completion. We found that the time required to apply
an update ranges from 2ms up to 390ms, depending on the program; in all cases, the
times seem acceptable for typical use. We show that multi-threaded programs quiesce
quickly with Kitsune, typically in less that 1ms. We also show that Kitsune scales
well and requires almost no additional update time for large amounts (>14GB) of in-
memory state for memcached and redis.
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Table IV. Normal execution performance overhead

Program Orig (SIQR) Kitsune Ginseng UpStare
64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7
vsftpd 2.0.6∗ 6.55s (0.04s) +0.75% – –
memcached 1.2.4 59.30s (3.25s) +0.51% – –
redis 2.0.4 48.05s (0.81s) -2.00% – –
icecast 2.3.1 10.11s (2.27s) -2.18% – –
snort 2.9.2 23.09s (0.50s) -1.74% – –
32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10
vsftpd 2.0.3∗ 5.96s (0.01s) +2.35% +11.3% +41.6%
vsftpd 2.0.3† 14.03s (0.02s) +0.29% +1.47% +6.64%
memcached 1.2.4 101.40s (0.35s) -0.49% +18.4% –
redis 2.0.4 46.13s (0.22s) -0.01% – –
icecast 2.3.1 35.71s (0.68s) +1.18% -0.28% –
snort 2.9.2 10.42s (0.50s) +1.73% – –

∗CD+LS benchmark, †file download benchmark

6.1. Normal execution overhead
We measured the overhead Kitsune adds to normal execution (as determined by com-
piling with the standard Makefile and running the resulting executable) for all pro-
grams except Tor, discussed separately below. For comparison, we also measured the
overhead of Ginseng and UpStare 0.12.9 on programs they had previously bench-
marked: vsftpd, memcached, and icecast for Ginseng, and vsftpd for UpStare.

We used the following workloads: For memcached, we ran memslap (2.5M operations
using memslap’s default workload). For redis, we used redis-benchmark (1M GET and
1M SET operations), and for a fair comparison, we modified the non-updating version
of redis to use the standard memory allocation functions, as we had done to support
xfgen. (Note that switching to standard malloc slightly improves redis’ performance,
since the custom allocator performs extra bookkeeping for tracking memory usage.)
For vsftpd, we measured two separate tests. The first, which we call the CD+LS bench-
mark, performs the following interaction 2K times: connect to the server, change di-
rectories, and retrieve a directory listing. The second, performed only on the 32-bit
platform, establishes a connection and downloads a 32-byte binary file 200 times. This
test, which we call the file download benchmark, closely resembles tests reported in
the UpStare and Ginseng papers [Neamtiu et al. 2006; Makris and Bazzi 2009]. For
icecast, we used a benchmark originally developed for Ginseng [Neamtiu and Hicks
2009] that measures the time taken for 16 simultaneous clients to download 7 music
files, each roughly 2MB in size. For all programs, we ran the client and server on the
same machine, to factor out network latency. For Snort, to eliminate the variance in
live traffic, we measured the time it took Snort to process a folder of captured packet
files ranging from 343 to 304,298 packets per file. (We found that the file size of the
captured packet file caused overhead to vary ±11%, so we used a range of file sizes in
our test.)

Table IV reports the results. We ran each benchmark 21 times and report the median
time for the unmodified programs along with the semi-interquartile range (SIQR), and
the slowdowns for Kitsune, Ginseng, and UpStare (the median time for each compared
to the median original time). The top of the table gives results on a 24 core, 64-bit
machine, and the bottom gives results on a 2 core, 32-bit machine. Ginseng only works
in 32-bit mode and UpStare is only distributed in binary packages, which are only
available for 32-bit systems.
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Table V. Kitsune update times

Program Med. (SIQR) Min Max
64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd→2.0.6 2.99ms (0.04ms) 2.62 3.09
memcached→1.2.4 2.50ms (0.05ms) 2.27 2.68

redis→2.0.4 40.27ms (0.97ms) 38.37 43.60
icecast→2.3.1 171.34ms (34.44ms) 33.81 255.44
tor→0.2.1.30 11.81ms (0.12ms) 11.65 13.83

snort→2.9.2.3 390.37ms (5.82ms) 376.73 412.63
32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10

vsftpd→2.0.3 2.62ms (0.03ms) 2.52 2.71
memcached→1.2.4 2.44ms (0.08ms) 2.27 3.12

redis→2.0.4 30.62ms (0.23ms) 30.05 32.40
icecast→2.3.1 136.35ms (60.03ms) 34.82 267.38
tor→0.2.1.30 10.43ms (0.46ms) 10.08 12.98

snort→2.9.2.3 327.16ms (5.62ms) 312.61 337.30

From this data, we can see that Kitsune adds essentially no overhead to normal ex-
ecution: the performance differences range from -2.18% to 2.35%, which is well within
the noise on modern systems [Mytkowicz et al. 2009]. In contrast, the overhead for
Ginseng and UpStare is more significant: for Ginseng it is 11.3% and 18.4% for mem-
cached and the vsftpd CD+LS benchmark, respectively, and for UpStare it is 41.6% for
the CD+LS benchmark.

Previously published papers on Ginseng and UpStare report lower overheads for vs-
ftpd than we report here. In particular, Ginseng’s overhead was reported at 3% and
UpStare’s at 16% [Neamtiu et al. 2006; Makris and Bazzi 2009]. We believe the dif-
ference is that our CD+LS benchmark spends a high proportion of its time executing
application code (handling a series of FTP commands and generating the directory
listing), while the one used in these previous papers is simply a file download, which is
mostly implemented as a single operating system call. In the latter case, the overhead
introduced by the Ginseng and UpStare compilers is reduced because little application
code is executed during the benchmark. We ran our second vsftpd benchmark—just a
file download—to confirm this conjecture and measured 1.47% overhead for Ginseng
and 6.64% for UpStare. These overheads are closer to the previously reported numbers,
where the remaining difference is likely due in part to the use of a difference architec-
ture, operating system, and C compiler version. We decided to report both benchmarks
to provide a fuller picture, but the CD+LS benchmark more directly measures the over-
head of Ginseng and UpStare, and is perhaps more representative. We note, for exam-
ple, that UpStare reports overheads of 40% for an updateable version of PostgreSQL,
for which query processing is largely implemented in the application, and thus highly
affected by the UpStare’s special-purpose compiler.

While we did not measure the overhead of Kitsune on Tor directly, we did test it
by running a Tor relay in the wild. We chose this experiment because evaluating the
raw performance overhead of Kitsune on Tor would have involved creating a synthetic
Tor network, which would not have realistically approximated a real-world use case.
Moreover, update times would most likely be hidden by network latency—a Tor user’s
visible performance is limited by the slowest link in the Tor circuit their connections
are multiplexed over, and these connections are over the (slow, geographically dis-
tributed) Internet. This is unlike our other benchmark programs, as even though the
interfaces to redis and memcached are network-based, those programs are typically
hosted on high-bandwidth, low-latency links to their client applications.
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We dynamically updated this relay from version 0.2.1.18 to version 0.2.1.30 (13 ver-
sions) as it was carrying traffic for Tor clients. We initiated several dynamic updates
during periods of load, when as many as four thousand connections carrying up to
11Mb/s of traffic (up and down) were live. No client connections were disrupted (which
would have been indicated by broken or renegotiated TLS sessions). Over the course
of this experiment, our relay carried 7TB of traffic.

6.2. Time required for an update
We also measured the time it takes to deploy an update with Kitsune, i.e., the total
elapsed time for an update’s preparation and execution, starting from when the update
is signaled to when it has completed. The total time consists of roughly two parts: the
time to reach full quiescence while each thread in a multi-threaded program pauses at
an update point until all threads have reached one, and the time to perform control and
data migration. Here we present direct measurements of the time taken to perform the
last update in each program’s streak. In the next two subsections we investigate full
quiescence in more depth, and also consider the impact on updating for programs with
large amounts of state.

Table V gives the median+SIQR, minimum, and maximum update times for the last
program version we considered. For each program, we picked a suitable workload dur-
ing which we did the update. For vsftpd, we updated after an FTP client had connected
to and interacted with the server and ensured that none of the connections were in-
terrupted during or after the update. For redis and memcached, we inserted 1,000 and
15,000 key-value pairs, respectively, prior to update, and verified that the same key-
value pairs were present after the update. For icecast, we established one connection
to a music source and 10 clients receiving that stream prior to updating and listened to
the uninterrupted stream during and post-update. For Tor, we fully bootstrapped as a
client, establishing multiple circuits through the network and communicating with di-
rectory servers, and then applied the update and ensured the circuits were maintained
after updating. For Snort, we generated network traffic consisting of web browsing
traffic, streaming music traffic, and file downloading traffic, and we saved the traffic
to file. We then replayed the traffic as fast as possible as using Snort’s built-in replay
capability as we applied the update and verified that the packet count and attack de-
tection logs were the same in the update and non-update case. We also ran Snort on
live traffic and recorded very similar update times.

For most programs, the update times are quite small. The two programs with slightly
longer update times are icecast and snort. For icecast, the delay occurs while the Kit-
sune runtime waits for each thread to reach an update point. This time is lengthened
by one-second sleeps sprinkled throughout several of these threads; thus, Kitsune’s
ability to break out of blocking sleeps (Section 3.1) is essentially for keeping the up-
date times low. For snort, the delay occurs because it loads fifteen shared objects (four-
teen plugins and the main plugin engine) dynamically during startup, and these new
versions must also be loaded in during update. This adds ∼100ms to the update time
(Section 3.2).

6.3. Time required for full quiescence
The design of several prior DSU systems focused on making update times fast, and
identified the need to reach full quiescence as potentially imposing an unacceptable
delay [Neamtiu and Hicks 2009; Chen et al. 2011; Chen et al. 2006]. Therefore we
decided to study several multi-threaded programs in addition to the three already
considered (snort, memcached, and icecast) to see, if we were to update them with
Kitsune, whether the time to reach full quiescence would be acceptable. Our results in
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this subsection show that the changes required to support full quiescence were small,
and quiescence could be achieved fairly quickly (in less than 1ms).

For our study, we considered Apache httpd, iperf, Space Tyrant, and suricata, cov-
ering the domains of web hosting, Internet profiling, gaming, and intrusion detection,
respectively. We discuss these programs in more depth below. For each program we
added a handful of calls to kitsune update to identify legal update points, and we made
some changes of the kind described in Section 3.1. Then we measured the quiescence
time, which is the time elapsed between the first thread reaching an update point (fol-
lowing the receipt of a SIGUSR2 signaling an available update) and the last thread
reaching one.

Next, we describe the programs in more detail, along with the changes we made to
them, and then discuss the experimental results.

6.3.1. Changes to support full quiescence. The first three columns of Table VI describe
the size and thread structure of our four subject programs. We consider each in turn.

Apache httpd. Apache httpd is a widely used web server. We configured httpd to use
thread-based concurrency with 3 worker threads. To achieve full quiescence quickly, we
first needed to make the standard changes described in Section 2 and summarized in
the last three columns of Table VI. We report the number of update points and lines of
code changed for each program and keep a separate count of the changes that include
calls to our library. In the remainder of this section, we describe only the changes given
in the Manual Changes column, i.e., those that tweak existing program code beyond
adding/substituting calls to Kitsune.

For httpd, the only such change was modifying a loop written to immediately retry
an interrupted poll operation to break out of the loop if an update is requested. We
used a workload of downloading a large file from the httpd server.

Iperf. Iperf is a program that measures the network performance (e.g., bandwidth,
delay jitter, and datagram loss) between two machines. Although the same executable
is used for both client and server modes, we only modified the server code to reach up-
date points during execution. Iperf has 3 threads at startup and an additional thread
for each connected client. The main thread has a conditional wait in a while loop. We
added an additional update-request–flag check to jump back to the update point when
needed. We measured iperf quiescence times while a client (running on the same ma-
chine) performed a network measurement.

Space Tyrant. Space Tyrant is a server for a text-based, multiplayer space strategy
game. At startup, Space Tyrant has 3 threads, and it creates 2 more for each con-
nected player. Space Tyrant implements long sleep operations using loops that check
for server-shutdown events between shorter sleeps. We added an additional update-
request-flag to jump back to the update point when needed. Space Tyrant’s threads
required no additional modification. We updated Space Tyrant while it had 5 concur-
rent telnet client connections.

Suricata. Suricata is a network intrusion detector that monitors the packets that
pass through a network interface. By default, Suricata is configured to use 11 threads.
One thread required special treatment: It calls into libpcap’s blocking pcap dispatch
function to process packets. libpcap provides a function pcap breakloop that can be
called from a signal handler to interrupt pcap dispatch. We install a thread-specific
handler function (cf. Section 3.1.2) to break out of the loop when an update signal is
received.
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Table VI. Multithreaded quiescence experiment: Program thread and modification information

LoC Upd Changed Required
Program Total # of Threads Pts LoC (†) Manual Chgs
httpd-2.2.22 232,651 2 + c∗, c = 3 5 7 (5) 3 (Cond. Var. Loop)
iperf-2.0.5 3,996 3 + n◦, n = 1 5 8 (3) 1 (Cond. Var. Loop)
space-tyrant-0.354 8,721 3 + 2n◦, n = 5 6 8 (6) 1 (Thread Sleeps)
suricata-1.2.1 260,344 8 + c∗, c = 3 7 11 (6) 1 (libpcap break)

∗Configurable: c workers ◦Varies by n connected clients
†Calls to Kitsune excluding update

Table VII. Multithreaded quiescence experiment: Program quiescence times

w/Load (ms) w/o Load (ms)
Program All Chgs Upd only All Chgs Upd only
httpd-2.2.22 0.185 0.230 0.123 0.150
iperf-2.0.5 0.193 DNQ 0.169 DNQ
space-tyrant-0.354 0.426 20.583 0.078 20.304
suricata-1.2.1 0.503 68.098 0.378 DNQ

DNQ = Does not quiesce.

In our tests we ran Suricata with a default set of 7,946 packet analysis rules. We
requested an update as Suricata processed the packets produced by a constant stream
of 10 concurrent http requests and one large file download.

6.3.2. Experimental results. Table VII reports the median quiescence times of 11 bench-
mark runs. All tests were run on a machine with an Intel Core 2 Duo T5550 processor
with 2GB of memory. For each program, we measured the time taken to reach full qui-
escence under two workloads: while the server was idle (i.e., no connected clients) and
while performing the (program-dependent) work described in the previous section. The
idle workloads were used to reveal problematic cases where threads block indefinitely
waiting for input.

The Upd only columns show quiescence times when programs are only modified to
contain update points, but not the changes to handle blocking calls tabulated in the
rightmost column of Table VI. The All chgs columns measure quiescence times when
the full set of changes is made. We find that dealing with blocking calls is crucial: for
several of the programs, without such support the programs will either not quiesce
at all, or take a long time to do so. When blocking calls are dealt with, we reach full
quiescence quickly for both workloads.

6.4. Time and memory required for data migration
As mentioned in Section 6.2, update times depend in part on the time to perform data
migration. xfgen-generated migrations could traverse significant portions of the heap,
and thus for some updates the update time may vary with the size of the program
state. Large heaps could also be a limiting factor when performing an update due to
the need to allocate new data structures during an update. We consider both issues in
this subsection.

Among our benchmark programs, the ones most likely to have a large heap are mem-
cached and redis, which implement in-memory databases/caches. Thus, we performed
a series of experiments in which we update memcached and redis with varying heap
sizes. The experiments were performed on an Intel Core i7-3770K CPU @ 3.50GHz
(8 cores) with 16GB RAM running 64-bit Ubuntu 12.04 LTS. The hard drive of this
machine is 250GB at 5400 RPM with 8MB Cache (2.5” SATA 3.0Gb/s).
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Table VIII. Memcached - Median of 11 Trials

Num RSS +Kit Total SIQR
Entries* (GB) +Kit w/Upd (ms) (ms)
1,000,000 2.17 0.013% 0.032% 2.737 0.248
2,000,000 4.34 0.007% 0.018% 2.677 0.959
3,000,000 6.50 0.004% 0.010% 2.698 0.338
4,000,000 8.67 0.003% 0.008% 2.817 0.156
5,000,000 10.85 0.003% 0.007% 2.650 0.133
6,000,000 13.00 0.002% 0.006% 2.684 0.239

∗Entries are (∼10B,∼2KB) text pairs

Table IX. Redis- Large Heap/Large Entries - Median of 11 Trials

Num RSS +Kit Cold Time SIQR
Entries* (GB) +Kit w/Upd Start (s) (ms) (ms)
1,000,000 2.07 0.017% 0.313% 5 22.445 0.324
2,000,000 4.14 0.008% 0.156% 11 20.097 1.244
3,000,000 6.22 0.006% 0.104% 17 24.683 2.726
4,000,000 8.26 0.004% 0.078% 22 19.877 2.969
5,000,000 10.38 0.003% 0.062% 28 21.584 4.279
6,000,000 12.45 0.003% 0.052% 34 16.643 1.268

∗Entries are (∼1KB,∼1KB) text pairs

Table X. Redis- Large Heap/Small Entries - Median of 11 Trials

Num RSS +Kit Cold Time SIQR
Entries* (GB) +Kit w/Upd Start (s) (ms) (ms)

16,000,000 2.99 0.012% 0.216% 6 21.048 5.113
32,000,000 5.97 0.006% 0.108% 12 22.639 4.137
48,000,000 9.33 0.004% 0.069% 19 22.538 6.034
64,000,000 11.95 0.000% 0.051% 23 19.596 5.846

∗Entries are (∼10B,∼10B) text pairs

Table VIII shows how memcached update times vary with heap size when updated
from version 1.2.3 to 1.2.4; in these runs, we allowed up to 13GB to be cached using
the command line options because this is essentially the maximum the application
can consume on this machine configuration. Each key is approximately 10 bytes and
each value is approximately 2 KB; the length is approximate because each consists of a
fixed-length string concatenated with an increasing integer, and 10 bytes and 2KB are
the average sizes respectively. The first two columns of the table show the number of
entries and maximum resident set size (RSS) of (normally compiled) memcached dur-
ing the benchmark run. The third column shows the maximum RSS of Kitsune-enabled
memcached, including the Kitsune executable and the driver program, expressed as a
percentage increase over the RSS of normal memcached. The fourth column shows the
maximum RSS of Kitsune-enabled memcached when the program updates during the
benchmark run, thus giving a sense of the additional memory requirements during
a dynamic update. This measurement includes all allocated data structures used for
bookkeeping during the update and the memory used by having the additional pro-
gram version loaded. The last two columns list the median time and the SIQR for 11
runs. From this table, we can see from the table that update times are essentially
invariant with heap size, taking just a few milliseconds, and the additional memory
overhead is also quite small.
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Table XI. Redis-traverse Comparisons - Median of 11 Trials

Num RSS Deep Shallow Cold Deep Shallow Mod
Entries* (GB) w/Upd w/Upd (s) (s) (s) (ms)
1,000,000 2.07 39.1% 38.7% 5 3.743 3.544 22.445
2,000,000 4.14 39.3% 38.7% 11 7.532 7.087 20.097
3,000,000 6.22 40.4% 40.2% 17 11.886 11.264 24.683
4,000,000 8.26 39.3% 39.2% 22 15.340 14.493 19.877
5,000,000 10.38 40.9%† 38.9%† 28 22.332† 21.235† 21.584

∗Entries are (∼1KB,∼1KB) text pairs †Page Faults

Tables IX and X show how update times for redis vary with heap size when updating
from version 2.0.2 to 2.0.3, with ∼1KB and ∼10B keys and values, respectively. The
first two columns of these tables again show the number of entries and resident set
size. The third and fouth columns show the additional memory overhead incurred by
running with Kitsune and by updating. The third-to-last columns show the cold start
times (loading the database from disk) for comparison. The last two columns give the
median update time and SIQR of 11 trials. From these results, we can see that, overall,
update times remain nearly constant across all heap sizes and, as with memcached,
memory overhead is also quite small.

Recall from Section 5.2.2 that we modified redis to eliminate the need to traverse the
heap for our update streak. Table XI reports on an experiment in which we measured
the update times from version 2.0.2 to 2.0.3 with ∼1KB keys and values, but with the
key-value structure type changed, thus forcing the heap to always be traversed.

The second column shows the maximum resident set size of (normally compiled) re-
dis from Table IX for comparison. The third column shows the additional overhead if
we were to traverse the entire heap, including all of the database entries, mallocing
(deep-copying) a new structure for each traversed entry and immediately freeing the
old entry once the new one is allocated. The fourth column shows the additional over-
head if we were to traverse the entire heap but modifying memory in-place, obviating
the need to malloc a new structure and free the old one. Columns three and four have
a very similar memory footprint because the old copy of the structure is immediately
freed when it is allocated in the deep-copy case, and no additional memory is allo-
cated; the main source of memory overhead in this case is the bookkeeping necessary
to traverse millions of entries. The number of these bookkeeping structures scale along
with the size of the heap, so the overall percentages in columns three and four remain
roughly constant.

The fifth column of the table shows the cold start times (loading the database from
disk) for comparison. The sixth column reports update times when the traversal re-
quires a deep-copy of all entries, and the next column reports update times when the
traversal requires only modifying entries in-place. The last row of the table, 5,000,000
entries, incurred some page faults causing the update times to be a bit slower. Finally,
the last column shows update times when traversals are not required (for comparison
from Table IX). These results show that even in the worst case, when the entire heap
must be traversed, a dynamic update is still faster than the cold start time for ∼1KB
sized key-value pairs.

7. RELATED WORK
In this section we consider recent work that supports DSU for programs written in
C and C++; these languages impose stringent constraints on a DSU system’s design.
Table XII characterizes the mechanisms used to implement Kitsune and other recent
C/C++ DSU systems. Ekiden [Hayden et al. 2011], Ginseng [Neamtiu et al. 2006],
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Table XII. Comparing DSU systems for C/C++
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DynaMOS4 × ×
Ekiden × × ×
Ginseng12345 × × ×
K4225 × × ×
Ksplice × × ×
OPUS2 × – – – ×
LUCOS/POLUS245 × ×
UpStare23 × × (×)
DynSec4 × ×
PROTEOS × × (×)
Kitsune × × ×
1needs deep analysis
2inhibits optimizations
3pervasive instrumentation

4mixes old and new code
5relaxed thread sync.

OPUS [Altekar et al. 2005], POLUS [Chen et al. 2011], UpStare [Makris and Bazzi
2009], and DynSec [Payer et al. 2013; Payer and Gross 2013] target applications, while
Ksplice [Arnold and Kaashoek 2009], K42 [Baumann et al. 2005], LUCOS [Chen et al.
2006], DynaMOS [Makris and Ryu 2007], and PROTEOS [Giuffrida et al. 2013] sup-
port (or are) OS kernels. (LUCOS is essentially a version of POLUS that uses VMMs
to effect changes in operating systems; all comments we make about the latter apply to
the former.) We discuss tradeoffs resulting from these mechanism choices, and argue
that Kitsune provides the greatest flexibility and best performance with modest pro-
grammer effort. The footnotes in the table summarize the discussion below. (A direct
comparison to two systems, Ginseng and UpStare, appears at the end of the introduc-
tion.)

Code updates. Most systems effect code updates at the granularity of individual
functions (or objects). As noted in the first column, Ksplice, OPUS, DynaMOS, PO-
LUS, and DynSec insert, at run-time, a trampoline in the old function to jump to the
function’s new version.8 As noted in the second column, Ginseng and K42 use indirec-
tion: Ginseng compiles direct function calls into calls via function pointers, while the
K42 OS’s object handles are indirected via a hand-coded object translation table (OTT);
updates take effect by redirecting indirection targets to the new versions.

There are several drawbacks to using these mechanisms. Trampolines require a
writable code segment, which makes the application vulnerable to code injection at-
tacks. Trampoline-based updating may break programs optimized using inlining, since
it presumes to know where the start of a function is, so POLUS and OPUS both forbid
inlining. (Ksplice is able to account for the compiler’s inlining decisions.) Using indi-
rect calls adds overhead to normal execution and also inhibits inlining. Most onerously,
neither trampolines nor indirections support updating functions that never (or rarely)
exit, such as main, which changes relatively frequently [Hayden et al. 2012d], or func-
tions that contain event-handling loops, such as the scheduling loop in the OS. In the
best case, programmers must refactor the program to place long-running loop bodies
in separate functions (e.g., using “loop extraction” [Neamtiu et al. 2006]).

8The first instruction of the function is replaced by a jump to a small piece of code, the trampoline, that
executes the replaced instruction and then jumps to the function’s new version.
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The remaining four systems, UpStare, Ekiden, PROTEOS, and Kitsune, support
more general changes by updating at the granularity of the whole program or process
rather than individual functions. PROTEOS performs updates at the process-level by
placing virtual end-points in its IPC implementation, which allows the kernel to atom-
ically rebind the virtual endpoints at update time, replacing the whole process at once.
UpStare loads in code for the new program and then performs stack reconstruction:
the running program automatically unwinds the current stack one function at a time
back to main, and then rewinds the stack to a new-version program point specified by
the programmer. In contrast, Kitsune relies on the programmer to migrate control to
the equivalent new-version program point.

Kitsune’s manual approach pays dividends in both better performance and simpler
semantics. To allow updates to happen at any program point, UpStare’s compiler adds
unwinding/rewinding code to all functions; while convenient, this code adds substan-
tial performance overhead to normal execution. Moreover, to exploit UpStare’s flexibil-
ity, a developer must carefully define how to map from all possible old-version thread
stacks to new-version equivalents. UpStare reduces this burden, allowing the pro-
grammer to limit updates to fewer program points, just as Kitsune does. But then
the value of general-purpose stack reconstruction is less clear. Kitsune allows all com-
piler optimizations,9 and code to support control migration imposes no overhead dur-
ing normal execution since such code only appears on program paths leading to update
points, and these paths tend not to intersect with normal execution paths. Moreover,
expressing control migration in the code rather than in a specification to the side is
arguably advantageous: with only a few update points there is very little code to write,
and its presence in the program makes the update semantics explicit and easier to
understand. Ekiden, the precursor of Kitsune, effects updates by transferring state
to a new-version process; it employs roughly the same API as Kitsune and enjoys its
benefits of high flexibility and low overhead, but updates take longer and require more
memory.

Data updates. Returning to Table XII, we can see that most systems handle data
structure representation changes by using object replacement, in which the program-
mer, or system, can allocate replacement objects and initialize them using data from
the old version. Ksplice and DynaMOS leave the old objects alone but allocate shadow
data structures that contain only the new fields. Ginseng uses an approach called type
wrapping wherein programs are compiled so that structs have an added version field
and extra “slop” space to allow for future growth. Calls to mediator functions are in-
serted to access updatable objects, and these calls initiate transformation of those ob-
jects that are not up to date.

Shadow data structures have the benefit that fewer functions are changed by an up-
date: if we add a new field to a struct, then only code that uses that field is affected,
rather than all code that uses the struct. But programmers must write additional code
to deal with shadow fields and manage their lifetimes, which imposes run-time over-
head and clutters the software over time. Type wrapping has the benefit that there
is no need to find objects in order to update them; rather, object transformation will
occur lazily as the new version executes. But type wrapping has several limitations:
(1) mediator functions slow normal execution; (2) the added slop space hurts perfor-
mance (e.g., cache locality) and may prove insufficient for some changes; (3) the change
in representation forbids certain coding idioms (e.g., involving typecasts to/from void∗);

9Compiling the updatable program to use position-independent code (PIC) sacrifices a register. However,
modern servers are often already compiled with PIC to enable address-space layout randomization.
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and (4) the whole-program static analysis underlying Ginseng’s type wrapping has
trouble scaling.

Object replacement adds the least overhead to normal execution, but there must be
a way to find all instances of changed objects (e.g., by chasing pointers from global
variables) and redirect these pointers to newly allocated, transformed objects. K42’s
coding style makes this easy—the system can just traverse the OTT—but most appli-
cations are not written this way. Kitsune’s xfgen tool is able to generate traversal code
given relatively small specifications and some type annotations; in other systems, the
programmer burden is much higher. Note that DSU for type-safe languages can avoid
xfgen’s traversal generation: the garbage collector can automatically find and initi-
ate transformation of changed objects [Subramanian et al. 2009; Gilmore et al. 1997]
without need of further type annotations.

That said, object replacement in Kitsune is not a panacea. For one, xfgen does not
currently support migrating a pointer to the interior of an object before the object itself
has been migrated. Type wrapping is not limited in this way because the address of the
interior object will not change between versions. However, type wrapping does suffer
from a related problem where other data structures may hold onto an address inside
a wrapped type (what Neamtiu and Hicks call an abstraction-violating alias [Neamtiu
et al. 2006]), which will delay the update. Another problem with object replacement
in Kitsune is that all migration takes place at update time, potentially producing a
lengthy pause in execution. Type wrapping postpones transformation of data until it
is accessed, which amortizes the transformation cost over the post-update execution.
However, type wrapping’s lazy approach could have the undesirable of effect of delay-
ing the pause until the application is performing a time-critical request.

Timing. Returning to the table, we consider how systems determine when an update
may take effect. Ksplice, K42, and OPUS only permit an update when changed code
is not active; that is, no thread is running that code, and no thread’s stack refers to it.
While this restriction reduces post-update errors, it does not eliminate them [Hayden
et al. 2012d], and moreover imposes strong restrictions on the form of an update and
how quickly it can be applied.

For increased flexibility, other systems allow updates to active code. Kitsune and
UpStare updates take place when all threads reach a programmer-designated update
point (for UpStare, such points may be system-determined). We have found this sim-
ple approach works quite well in practice. In contrast, Ginseng allows an update to
take effect so long as it appears as though it occurred when all threads were at update
points [Neamtiu and Hicks 2009]. This approach accelerates update times, but the
static analysis that underlies it scales poorly and is conservative, requiring awkward
code restructurings. POLUS allows threads to update immediately, and thus because
POLUS updates take effect at function calls, after an update a program may wind up
running bits of old and new code at the same time; a study using Ginseng showed mix-
ing code versions substantially increases the chances of errors [Hayden et al. 2012d].
Moreover, POLUS data structures are versioned, with version N of the code accessing
version N of the data, so the programmer defines callbacks (invoked via virtual mem-
ory page protection support) to keep the copies in sync. Therefore, the programmer
must understand the impact of multiple code versions accessing the same data, which
we imagine could be tricky when a data structure change corresponds to a change in
semantics. Our experience with the simple barrier approach suggests these more so-
phisticated approaches, with higher programmer demands, may be unnecessary (as
per Section 6.3).

PROTEOS takes a hybrid approach of allowing updates at almost any time but re-
quiring “state quiescence” as defined by programmer-provided assertions written in a
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domain-specific language, or even in full C. If these assertions pass at a marked event
loop, an update may proceed.

Checkpointing. Checkpoint-and-restart systems [Roman 2002] allow programs to be
relaunched “in the middle” of execution from a checkpoint. At a high-level this bears
some similarity to DSU, but checkpointing systems do not provide support for chang-
ing code or data representations on restart. Ekiden effects an update by serializing and
transferring state between an old-version process and a fresh new-version process—
i.e., Ekiden works like a checkpointing system that does permit code and data modifi-
cation. However, we found that the cost of transferring state in Ekiden was significant,
and hence moved to the Kitsune model, which has a similar programming API but al-
lows in-place code and data changes, for better performance.

Multi-threaded quiescence. Several systems [Arnold and Kaashoek 2009; Krieger
et al. 2006; Subramanian et al. 2009] forbid updates to any code that is actively run-
ning. Some synchronization is needed to ensure that all threads satisfy this condition.
Unfortunately, as we have observed in prior work [Hayden et al. 2012d], this safety
condition is insufficient to ensure update safety, and it provides no guarantee that an
update is applied in a timely manner. For example, if a program’s main function is
modified by an update, the update will be delayed indefinitely because main is always
running.

STUMP [Neamtiu and Hicks 2009] lifts the restriction against updates of active
code: instead, any update may take effect when all threads have reached programmer-
identified update points. To potentially reduce delay at update time, STUMP imple-
ments a relaxed synchronization protocol that permits an update whenever it appears
as if the update took effect at legal update points. A static analysis determines which
program points are equivalent to update points [Neamtiu et al. 2008] and incorpo-
rates this information into the synchronization protocol. Unfortunately, in the worst
case, there is no guarantee that meaningful opportunities for updating will be created.
Moreover, it may be difficult for a developer to understand the results of the analyses,
e.g., to understand why it did not permit more update points. Finally, the static anal-
ysis itself is fairly intricate and may not scale to large programs. The reported update
times for STUMP for the same programs used in our study (icecast, space tyrant, and
memcached) are higher than Kitsune—1,068ms, 6ms, and 1ms, respectively—though
the experimental setup is different.

UpStare [Makris and Bazzi 2009] supports immediate updates, with no synchroniza-
tion, by allowing threads to update at any point during program execution. To provide
this support, UpStare requires the developer to create a mapping between each pro-
gram point in the old version of a changed function and the corresponding point in its
new version; such a mapping could require a significant manual effort, depending on
the size and complexity of the change. UpStare prevents blocking library calls from
delaying an update by substituting versions that include special handling when an
update has been requested; we use a similar, but simpler, approach in Kitsune. The
UpStare paper does not report update times for any multi-threaded programs.

POLUS [Chen et al. 2011] supports immediate updates by permitting contempora-
neous threads to execute code from different program versions. When a thread accesses
a piece of shared state, POLUS uses developer-provided, bidirectional transformation
functions to ensure that each thread sees the representation of state that it expects.
With this approach, however, the developer must additionally puzzle out the possi-
ble multi-version executions and reason that thread interactions via bi-directional
transformations will make sense. POLUS was applied to one multi-threaded program,
Apache httpd. The authors report (for a different hardware configuration) update times
on the order of 15ms, but these also include time to transform any in-flight state.
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8. CONCLUSIONS
We have presented Kitsune, a new system for dynamically updating C programs. Kit-
sune works by updating the entire program at once, thus avoiding the restrictions
imposed by other DSU systems on data representations, programming idioms, and
compiler optimizations. Kitsune’s design allows program changes for updatability to
be simple and informative, and xfgen makes writing state transformers much easier.
Our results from applying Kitsune to both single- and multi-threaded benchmarks
show that Kitsune has essentially no performance overhead, multi-threaded programs
show no barrier to expedient update, and code changes required to use Kitsune are
comparable to, or only slightly more than, prior systems. We show that Kitsune scales
well in systems with large amounts of state. We believe that the ideas and insights
behind Kitsune could also be applied to C++ programs, though extending to kitc and
xfgen to C++ would require non-trivial effort. We believe that Kitsune’s careful balanc-
ing of flexibility, efficiency, and ease-of-use makes it a major step forward in practical
dynamic software updating for C.

Kitsune is freely available from http://kitsune-dsu.com/.
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